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Abstract—Complex networks are at the core of an intense  For instance, in online social networks like Facebook or
research activity. However, in most cases, intricate and atly  Flickr!, privacy concerns and reduction of server load often
measurement procedures are needed to explore their structe. a5 to limitations in the queries that one is allowed to gerf
In some cases, these measurements rely on link queries: givevo . .
nodes, it is possible to test the existence of a link betweehem. to explor.e networks between .users. Link queries are however
These tests may be Cosﬂy, and thus m|n|m|z|ng their number a."OWed In most cases. L|keW|Se, measurements Of realdNOI‘l
while maximizing the number of discovered links is a key isse.  social networks often rely on interviews, in which link gigesr
This is a challenging task, though, as initially no informaton play a central role [1]. In biological networks like protein

is known on the network. This paper studies this problem: ; ; ;
we observe that properties classically observed on real-wid g‘tkeerscrté?ens[z(;r %e}ne regulatory networks, link queries play

complex networks give hints for their efficient measurement . .
we derive simple principles and several measurement stragges In al! these contexts, a_nd_gthers, link queries are very
based on this, and experimentally evaluate their efficiencyon expensive: they have a significant load on server running
real-world cases. In order to do so, we introduce methods to online social network software and their number is gengrall
evaluate the efficiency of strategies. We also explore thedsi that 1, |nded; they have a significant cost for interviewers and
different measurement strategies may induce. . . . . . ) .
participants in sociological studies ; or they require lgost

| PRELIMINARIES biological experiments, depending on the case.

1In this paper, we formalise this problem as follows: given

graphG = (V, E), we want to definestrategies(ordered

(airlines, roads): communication (internet, web, file oraéim lists of link queries) which lead to the discovery of as many
links of the network as possible. In other words, we want to

exchanges); social life (collaborations, friendship, resri- o h b £ link . hil L h
cal exchanges); life sciences (interactions between i|m$)temm"ﬁmZe the num er of fink queries while maximizing the
nber of observed links, i.e. the number of positive answer

or genes, dependencies between species); language analysi
(synonymy, co-occurrences of words); etc. As a consequen ethese tests i _ o

much effort is devoted to the analysis and modeling of suchIn order to glo_ S0, we WII.I rely on simple intuitions de-
networks, leading to key insight on various key topics Iikgved from statistical properties observed on most realldvo

epidemy or information spreading, algorithm and protoc&lomplex networks, which we d|scuss. In _Sectlon Il. We then
design, resilience to failures and attacks, etc. propose several measurement strategies in Section |ltlwase

However, it must be clear that most real-world complegpeSe pnnmpl:est. V\t/e glso needSa \{\-/ay K)/c\cl)vmp;gre”and e;ﬁl.u?te
networks are not directly available: collecting infornoeti measurement strategies, see Section 1v. Ve finally usedhis

on their structure generally relies on intricate and expens experimentally evaluate proposed strategies in Section V.

measurement procedures. Conducting such a measurenPeﬁtEf?re entedrmgtlnt_the coredo:;_tms papelr,twg glvekthe needed
often is a challenge in itself, and is an important part of thgrmalism and notations, and discuss refated work.
work needed to study a complex network. A. Formalism and notations

In general, complex network measurements consist in & i he paper, we will consider an undirecfegraph
combination of a few simple measurement primitives. I@ — (V,E), with n = |V| nodes andm = |E| links

several cases, this primitive consists in testing the emis of We suppose that all the nodes are known, and focus on link

a link, which we call all.nk query. given two nodes: gndv, %iscovery only. In other words, we knoW but know nothing
a measurement operation makes it possible to decide whether

there is a link between them or not. This simple test may bethp:/mww.facebook.com/ and hitp:/www.flickr.com/

expensive (regarding the needed resources or time, or #ue lo *Notice that, whereas we suppose that link queries are vergresive, the

it induces on the network. for instance) and so Conductiﬁgmputational cost of each strategy is not our concern hegegonsider it as
. ’ ... negligible compared to measurement costs, which fits maswerld cases.

measurements with as few calls to the measurement pnmmnghis means that we make no difference betwéenv) and (v, u), for

as possible is a key issue. any« andv.

Complex networks, modeled as large graphs, are eveQ/
where in science, society, and everyday life: in transpioria



aboutE (although we will make some statistical assumptions Finally, another key property is the local density: althbug
in accordance with classical empirical observations irfidld, randomly chosen nodes have a very low probability to be
see Section II). linked, two nodes which have a neighbor in common are linked
We will denote by N (v) the set of neighbors of € V: with a much higher probability. This is generally captured
Nw)={u eV, (u,v) € E} and byd(v) its degreed(v) = by the clustering coefficient or the transitivity ratio [+§]5],

[N (v)]. defined by:
A measurement consists in a series of link queiiestests S, AW
A N A - v V(v)
of the existence of linku, v) for two nodes: andv in V. At a ce(G) = ——=
given stage in such a measurement, one has already disdovere
a set of links, which we will denote by’ C E. The set of £r(G) = 3.A(G)
extremities of links inE’ will be denoted byl’’ C V. Notice V(G)

that, although we know, in generalV’ # V. We will also
denote byn’ the number of nodes i’ andm’ the number
of discovered links so farn’ = |V'| andm’ = |E'|. We

also defineN’(v) = N(v) NV andd’'(v) = |N'(v)] for all of v; A(G) :22 A(w); andV(G) = 3. V(o).

v € V'. Notice that boti/’, E’, n/, m/, N’ andd’ vary during A classical ob tion i | work studies is that
a measurement; however, the context will make it clear Whi%h classical 0 §§rva lon !n complex network stu |es. IS tha
. oth these quantities are high, at least compared to thetgens
value we consider. . ) . 4
In other words, if one chooses a random pair of links with an
B. Related work extremity in common (transitivity ratio) or a random nodelan

This work belongs to the fields of complex network metrolV© of its ngighbors_ (clugtering cogﬁicient) then the prinibiey
t@@t the third possible link exists is high.

ogy, which mostly focused on the specific case of the intern

topology unul now, see for mstgnce [4]-{10]. This area of Consequences on measurements

research aims mainly at evaluating the relevance of celiect )

complex network samples and properties observed on them] N€ properties above, observed on most real-world complex

and correcting these observations. Viewing the measuremBRIWOrks, have a strong impact on measurements and will play

as the combination of many instance of a simple primitiva K&y role here. _ o

(link queries, here) which we want to optimize is new, and is First, the low density of complex network implies that

an important contribution of this paper. randomly choosing two nodes and testing the presence of a
Another related problem is the one lafk prediction given link betwee.n them .is very ineff_icient. Notice howeyer that,

a network in which new links may appear, one wants to predi¢'€n only link queries are possible, one has no choice but to

which new links will appear in the future based on currentlj€gin with a series of such random measurements. However,

existing ones [11], [12]. In this context, authors use prtips it must be clear that gxplorlng a large complex network with

of the known network to infer probable future link, which iSUch a strategy only is not reasonable.

where, for eachy € V, A(v) denotes the number of triangles
(sets of three nodes with three links) to whichbelongs;
V(v) = d@)-(d®)=1) genotes the number of pairs of neighbors

similar to what we do below in the measurement context.  Instead, the existence of nodes with degree much larger than
the average may be useful for efficient measurement. Suppose
Il. UNDERLYING PRINCIPLES that we test a random pai, v). The probability that it is

Our goal is to design measurement strategies based on Rgéitive {.e.the link (u, v) (.ex.ists)_is proportional to the degree
queries (test of the existence of a link between two givedf v (resp.v). Therefore, if it exists then one may guess that
nodes) which will minimize the number of such queries arid (résp.v) has a high degree, and so testing all pairsw)
maximize the number of discovered linkise( the number of (resp-(v,w)) for anyw will probably lead to the discovery of
positive answers to these tests). In order to do so, we wjll rénany links. Notice that andw play a symmetric role in this
on some simple statistical properties which are observed &#soning. We will call this observation tidegree principle

most real-world complex networks [13]. Likewise, the high local density may be used for efficient
measurement: when we know that two nodeandv have a
A. Properties of complex networks neighborw in common then testing paji:, v) certainly makes
First, we will suppose thaG is sparse: its density = Sense as this link exists with high probability. We call tthie
n.Qﬁﬂin is very small. In other words, the probability that dfiangle principle o _
link exists between two randomly chosen nodes is very small, We may now turn to the definition of measurement strategies
i.e. a random link query will fail with high probability. based on these principles.

The second key property is the fact that most complex
networks have a very heterogeneous degree distributiden(of
close to a power law). Since the degree of a node is the numbeFirst notice that when one starts a measurement in our
of links attached to it, this means that there is a high vdiigb framework, no link is known and we have no way to dis-
between the number of links of each node (many nodes hdirguish between vertices. Therefore, there is no choitedou
very few links, but some have more, and even many more)est random pairs of nodes. We call this null strateyydom,.

IIl. M EASUREMENT STRATEGIES



gueries between nodes for which we already discovered many
Strategy 1 random, with k an integer. links have an even higher probability of positive outcomigisT
while m’ < k do leads to the following strategy.
| test a random untested pair

Strategy 5 (V-)Test-Between-Found -tbf, (resp.Vv-tbf,)

) _ with & an integer.
As soon as some links are discovered, though, one m“yAppIy random, (resp.v-randory,)

try to design more efficient strategies. Ttrangle principle foreach (u,v) € V' x V' in decreasing order of
indicates that, when & pattern is discovered one may test /() —i—d’(’v) do
the missing link in the triangle. This leads to the following

| Test(u,v) if it was untested

strategy.
Strategy 2 V-random, with k an integer. Finally, one may try to combine the strategies above in
while m’ < k do order to improve their efficiency. Indeed, some of them use
Test a random untested pdit, v) complementary principles which both help in discoveringeno
if (u,v) existsthen links with less link queries. One may therefore expect even

Test all untested pair&, w), for anyw in N’(u)  better results with combinations of them. We will therefore
Test all untested pair&:, w), for anyw in N’(v)  consider the following strategy.

Strategy 6 (V-)TBF-Complete —tbfc, (resp. V-tbfc,)
Applying directly the degree principlewould lead to a _With k an integer.
strategy in which we test the paifs, v) for all v as soonasa  Apply tbf, (resp.v-tbf,)
random test led to the discovery of a link of However, the  Apply ¢y
degree principlebecomes stronger if one waits unsiéveral

links of a node are found. We therefore propose a strategyj; myst e clear that many variants and improvements of the

in which a series of tests (performed according to anothgfategies above are possible. Probably, completelyrdifte
strategy) is followed by a use of titegree principleon nodes gyrategies may also be defined. Our goal here however is to

for which we discovered many links. evaluate the relevance of thiegree principleand triangle
principlein the design of measurement strategies. We therefore

Strategy 3 (v-)Complete Simple —es;, (resp.v-cs;) with focus on these relatively simple strategies, which we c®@rsi
k an integer. as a natural first set of strategies derived from these basic
Apply random, (resp.V-random.) principles.
foreach u € V' in decreasing order ofl’ (u) do
| Test all untested pair&:, v), for anyv € V IV. EVALUATION METHODOLOGY

For any measurement strate§ylet us definen’s(¢) as the

This strategy may be improved by using the links it diSCOVn_umber of links discovered with link queries with strategy

4 e .
ers for choosing the next link queries to perform. This Iead% - Itmust be C'eaf that oulr goal, for a givenis to design a

; StrategyS that maximisesn/s(¢). Conversely, one may want
to the following strategy.

to discover a given numbaer of links and ask for the strategy
S that will minimize theq such thatm/y(q) = =.
However, given two numbers of querigs and r it is

Strategy 4 (Vv-)Complete —c; (resp.V-c;) with £ an

Integer. possible that a given strategy discovers more links with
fptpg rar;;jlomc (resp.Vv-random,) q tests than another strate@y while 7' discovers more with
e =

r tests (we will observe such a situation in Section V-B). As
a consequence, it makes no sense to say&hatbetter than

T, nor the converse; this depends on the allowed number of
link queries.

while X is nonemptydo
Let u in X with d’(u) maximal
Removeu from X

Test all untested pairg, v), for anyv € V Going f ; ;
. . ORUAT _ ther, tice that.& andT d th
if (u,v) exists and is the first link of discovered oing Wriner, one may notice hats an iscover ‘e

same number of links after a given numlgeof tests, but ifS

trll_eg\dd vto X discovers more links thahf for any number < ¢ of test, then
it seems natural to consider th&tsurpasse§” (it discovers
the same number of links, but faster).

.On_e may try. t9 US€ an even stro_nger ver_S|0n Ofdhgree “Notice that, in practice, it is in general impossible to teac situation
principle by noticing that the probability of & link between tWOyhere we test all pairs of nodes: = =1 or conversely where we

nodes is even larger Bothhave a high degree. Therefore, linkdiscovered all existing linksin’y (q) = m.



A simple way to formalise these intuitions is to define theve used, which is a typical real-world case. We then examine
efficiencyof a strategyS for a given number of querieg a typical situation and discuss the observations. We deepen
as the (discrete) integral of the function’y from 0 to ¢: this by observing the impact of the initial random period of
E,(S) =321 mls(0). measurement; and finally we discuss the bias that measutemen

Notice that the obtained value will depend on the considerggategies may induce on observed properties.

graph, and ong. It seems difficult to avoid this, as thea. Dataset

efficiency of strategies do indeed depend on the graph unde(Ne use here data on an online social network which we

concern, and on the number of allowed link queries. We will " . L
. consider as a typical example of complex networks studied in
therefore always compare strategies ran on the same grdph

. ) . {A literature. This social network comes from fikr site,
with the same number of link queries here. : . o S .
. S . . which provides facilities for publishing online photosasimg
Another weakness of this definition is that it may give an : . .
em with others, discuss them, etc. Users may also sulescrib

positive value for the efficiency of a strategy, making itdhar . ) .
) to various interest groups and have lists of other users know
to evaluate how far from the worst or best solution we are.

o . . . as theircontacts
In order to avoid this we introduce theormalised efficiency Here we used a complete measuremerfliakr conducted
£,(8) = FLal8)Emin) - \yhere min and max stand for P

i ‘ gq(éln%m)_tgq(fmri) ds. th h minimal and in August 2006 [16]. We considered the largest of the 72875
€ worst and best strategies. the ones with minimat an groups observed thénwhich contained 31523 members.

max'”_‘a' efﬂmenmes._ ) . We then defined three different networks among these
Notice that strategiemin andmax are easy to determme.31 523 users:

min consists in testing pairs of nodes with no links between tact t db linked ifa | tact of
: n-1) ; « contact two usersa andb are linked ifa is a contact o
them as long as po§_5|ble, th@s(z— m times, an_d th_en borbis a contact of:
performing the positive tests; converselyax consists in ' . _
o commenttwo usersa and b are linked if ¢ posted a

performing first them positive tests. As a consequence, we boto f q
can compute easilg,(min) and&,(max) for anyg, and thus ;ﬁ';';n?rr:n?n a photo from or b posted a comment on a
a,

obtain the normalized efficiency of any strategy. i , ,
o Symmetric-commentwo usersa andb are linked if both
The notion of normalized efficiency however remains insuf-  ; posted a comment on a photo frdmand b posted a

ficient. Indeed, as we consider sparse graphs, there are only comment on a photo froma.

very few positive link queries, and thus one may expect to 5,4 may also define aymmetric-contacgraph in which
be much closer to thenin strategy than to thenax. AS @ 14 ysersq and b are linked if botha is a contact ofb
consequence, the efficiency of any strategy will be very Iowyq, is a contact ofu. In order to save space, we will not

A solution to this problem consists in comparing strategieg)sider it here. Likewise, we do not detail the features of
; the key point here is that they are sparse,

forming link queries on random untested pairs of nodes. THe e heterogeneous degree distributions and high clogteri
expected efficiency of this strategy is easy to compute, @s i oficient and transitivity ratio. To this regard, they aimilar
probability of success of a link query is exactly the density , ot real-world complex networks, and so the principles
we obtain:&,(ran) = 20, i -6 = 24t 5, discussed in Il apply.

Finally, we introduce theelative efficiencywhich indicates
how a given strategys performs compared to the randonB. A typical example
one (and the minimal and maximal ones) afjéink queries: | ot ys first try all our strategies with the same parameter
Rq(S) = ;qﬁg? . k = 1000 and on thecontactgraph. We represent in Figure 1

Notice that the relative efficiency does not give a valuthe numbernn’s(q) of links discovered by each strategyas
between0 and 1 and therefore does not have the advantagefunction of the numbeg of link queries performed, fog
of being relatively independent from the context. Howevebetween) and(@ = 4.10°. The obtained plot is representative
we cannot normalize it as we would loos the benefit of thef what is obtained on other graphs.
comparison to the random strategy. We will therefore usa bot This plot shows clearly that measurement strategies parfor
the normalized efficiency and the relative efficiency to d&sc very differently, and that trying to optimize them is relava
efficiency of strategies below, and keep in mind that in anphis is a first important result in itself. Moreover, both ithe-
case the efficiency of a strategy depends on the graph ungegse principleand thetriangle principleare useful in doing so:
concern and on the number of link queries allowed. Only thetrategies based on each of them perform significantly bette
full ms() function can describe the efficiency of strate§ly than the random strategy. However, tlegree principleseems
entirely, on a given graph. to be much stronger: while the improvement wfrandom
remains quite low, the improvement obtained by toenplete
_strategy is huge. This is probably due to the fact that, algio

In this section, we present experiments aimed at illustgati e clustering coefficient and transitivity ratio are muarger
the differences between the proposed measurement sestegi

and how they may be evaluated. We first present the datasétlickrCentral, http://flickr.com/groups/central/

V. EXPERIMENTAL EVALUATION



e Surprisingly though, the efficiency of the strategies does

2000001 . not seem to be affected. The amount of discovered links after
/ the same number of queries is for instance comparable in the
: . contactnetwork case (aroungll % of the existing links). This
can be explained by the fact that while searching forltheo
links, the random phase has improved the partial knowledge
of the network topology. It is very likely then that the highl
connected nodes have emerged more significantly during this
- . ‘ Random phase. Thus the ordering used by the elaborated strategies,
0 500000 1e306 18ei06 20106 25¢106 30105 350106 4et0s based on thelegree principleis in turn more pertinent.
The plots based on theommentand symmetric-comment
Fig. 1. Number of links (vertical axis) discovered by eactntegy as a networks also show that the behaviour of the strategies ean b

function of the number of link queries performed (horizérteis) in a typical  Very similar in some cases. This suggests to investigater oth
case ¢ontactnetwork, k = 1000). Thetbf, tbf-completeand v-tbf-complete criteria to sort out their efficiency.

strategies are indicated as a unique curve (named TBFs)kimldt as the

three curves overlap eachother. D. Measurement bias

1500001

Complete

1000001~
TBFs

Number of discovered links

500001 V-Random -{

Until now, we focused on our ability to discover many links
with as few link queries as possible. However, differerdtetr

than the density, they remain quite small; instead, theelstrg ies discover different links, which may have consequenoes

degrees in the graphs are relatively close to its number t%‘tee properties of the obtained samples: they may be biased by
nodes. . _ _ the measurement strategy, and biased differently depgmain
The best final results (the largest number of links discaverg, strategy we use. This can be observed visually in Figure 3

at the .end of the measurement) are obtained With, mixgg} instance, and confirmed by the statistics given in Table |
strategies, namelybf-completeand V-thf-complete which

succeed in discovering betweel2 and 23% of existing
links by performing only1% of possible link queries. They
slightly outperformcomplete which was expected as they are
more subtle (though a stronger improvement may have be:
expected).

Notice that, although these strategies finally outperforr
complete they discover linkdater than this strategy. In this
sense, they may therefore be considered as less efficieict) wh

is captured by our notion of efficiency, see Table I. Fig. 3.  Drawings of samples obtained with treamplete (left) and
tbf-complete(right) strategies after th20 000 link queries. The position of
the nodes is the same in the two drawings (it is obtained byassidal graph

U
Tandom 97?09 %:Lt%sied %lf%%nd OgOG 0729 drawing a_Igorithm ran on the a_ctual network), which makepadssible to
v-random | 21030 104 205 0010 | 164 observe visually that the links discovered by each strasgynot the same.
C1000 209 485 1.04 22.4 0.142 | 24.2
tbf, 000 68874 | 0.46 7.36 | 0.048 | 15.6 i
thfc,g0o | 218448| 1.04 234 | 0131 223 m 0 | avgdeg| maxdeg| cc tr
V-tbfc ggo | 214175 1.04 229 0.134 | 22.7 Reference | 21298 | 0.002 35.5 1708 0.083 | 0.124
random 6307 | 0.000 2.1 38 0.001 | 0.001
N TABLE | _ V-random | 6248 | 0.001 | 3.0 123 | 0.133] 0.120
Efficiency of each strategy after. 106 links queries on theontactnetwork: C1500 9840 | 0.001 13.0 1708 0.061 1 0422
the numbern’ of discovered links; the percentage of tested pairs of nodes tbf;roo 5589 | 0.004 515 663 0.175 | 0.208
the percentage of existing I|nkasnfdo7uzr.1d, and the efficiencgfftments £ 7, 500 =717 1 0.003 0.0 1708 0.085 1 0371
V-tbfc; 509 | 8789 | 0.002 17.7 1708 0.072 | 0.388
TABLE Il
Main statistical properties (number of links finally diseoed, densitys,
o average degree, maximal degree, clustering coefficientranditivity ratio)
C. Impact of the initial phase of the samples obtained by each measurement strategykwith 500
. N applied on thesymmetric-commemetwork. We also display the properties
In order to test the impact of the initial phase on the of the actual network (first row), for comparison.

efficiency of the strategies, we conducted a similar expenim

in which we increased the parameteto 1500. We present

the results in Figure 2. The change of thevalue implies in ~ These experiments clearly show that the observed propertie
particular that the random phase will last longer than in there biased by the measurement (they are not the same as
previous runs as it looks for a larger set of discovered linkthe ones of the actual network), and moreover that different
This induces a delay before the beginning of the second phasategies lead to different bias.

of the strategies which should in turn decrease their effisie = One can notice for instance that tlemplete and the

as they have less queries to test the existence of the linkstest-between-foundtrategies induce a very different bias on



2500 . 250000, 8000 T

Complete 70000 TBFs
2000001

200000~
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400001~

1000001~ 100000

300001~

Number of discovered links
Number of discovered links
Number of discovered links

V-Random

Complete 20000 Complete

V-Random |
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bt ¥ bsmms x 1 I L = n L L
0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 de+ 70 500000 1e+06 156406 2e+06 256406 3e+06 3.56+06 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 ¢
Number of tested links Number of tested links Number of tested links

Fig. 2. Number of links (vertical axis) discovered by eadfategy as a function of the number of link queries performeatizontal axis) for each of our
three graphs (from left to rightontact commentand symmetric-commeptwith k& = 1 500. Thetbf, tbf-completeand \V-tbf-completestrategies are indicated
as a unique curve (named TBFs) in the two last plots as the ttweves overlap eachother.

the properties. It is likely to be due to the fact that the nembsuggests to try combining them in order to compensate those
of involved nodes /) is very low for the second strategyunwanted effects, which is what we plan to investigate more
but all the possible links between them have been testapecifically in the future.

This means in particular that all the possible trianglesehav Going further, we also intend to extend the kind of real-
been discovered which leads naturally to an over-evalonatiorld networks on which test the strategies, add measuremen
of the clustering coefficient. The strict opposite happeans properties to the list of statistical properties considefguch

the completecase since many nodes are discovered but the the assortativity and the degree-degree correlatiah}rgin
links between them are not directly tested. to adapt the strategies to the directed graphs.

In some specific cases though, the values are correctly
evaluated by the strategies. Strategyandom for instance, ) _ _ o
gives a correct value of the transitivity ratio. This is well (1 Ef' :xi'ig‘?]gmg?é ’fg(t)‘g’i‘;rlk,\l'ztxgskgcg:f 'zrgf?]%‘fC;"ogptloﬁg‘ﬂggssﬁy
explained by the strategy itself that tests the existenchef 2007.

third link of a triangle as soon as two nodes appear to haveld M. Bouvel, V. Grebinski, and G. Kucherov, “Combinatdrigearch on
common neighbor graphs motivated by bioinformatics applicatitons: a bigefvey,” in
. ’ . . . Proceedings of the 31st International Workshop on GrapheFétic
It is also worth noticing that the mixed strategies have concepts in Computer Scienaer. Lecture Notes in Computer Science,
a better evaluation of the clustering coefficient than other D. Kratsch, Ed., vol. 3787. Springer Verlag, 2005, pp. 16-27
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