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Abstract—Complex networks are at the core of an intense
research activity. However, in most cases, intricate and costly
measurement procedures are needed to explore their structure.
In some cases, these measurements rely on link queries: given two
nodes, it is possible to test the existence of a link between them.
These tests may be costly, and thus minimizing their number
while maximizing the number of discovered links is a key issue.
This is a challenging task, though, as initially no information
is known on the network. This paper studies this problem:
we observe that properties classically observed on real-world
complex networks give hints for their efficient measurement;
we derive simple principles and several measurement strategies
based on this, and experimentally evaluate their efficiencyon
real-world cases. In order to do so, we introduce methods to
evaluate the efficiency of strategies. We also explore the bias that
different measurement strategies may induce.

I. PRELIMINARIES

Complex networks, modeled as large graphs, are every-
where in science, society, and everyday life: in transportation
(airlines, roads); communication (internet, web, file or email
exchanges); social life (collaborations, friendship, economi-
cal exchanges); life sciences (interactions between proteins
or genes, dependencies between species); language analysis
(synonymy, co-occurrences of words); etc. As a consequence,
much effort is devoted to the analysis and modeling of such
networks, leading to key insight on various key topics like
epidemy or information spreading, algorithm and protocol
design, resilience to failures and attacks, etc.

However, it must be clear that most real-world complex
networks are not directly available: collecting information
on their structure generally relies on intricate and expensive
measurement procedures. Conducting such a measurement
often is a challenge in itself, and is an important part of the
work needed to study a complex network.

In general, complex network measurements consist in a
combination of a few simple measurement primitives. In
several cases, this primitive consists in testing the existence of
a link, which we call alink query: given two nodesu andv,
a measurement operation makes it possible to decide whether
there is a link between them or not. This simple test may be
expensive (regarding the needed resources or time, or the load
it induces on the network, for instance) and so conducting
measurements with as few calls to the measurement primitive
as possible is a key issue.

For instance, in online social networks like Facebook or
Flickr 1, privacy concerns and reduction of server load often
lead to limitations in the queries that one is allowed to perform
to explore networks between users. Link queries are however
allowed in most cases. Likewise, measurements of real-world
social networks often rely on interviews, in which link queries
play a central role [1]. In biological networks like protein
interactions or gene regulatory networks, link queries also play
a key role [2], [3].

In all these contexts, and others, link queries are very
expensive: they have a significant load on server running
online social network software and their number is generally
bounded; they have a significant cost for interviewers and
participants in sociological studies ; or they require costly
biological experiments, depending on the case.

In this paper, we formalise this problem as follows: given
a graphG = (V, E), we want to definestrategies(ordered
lists of link queries) which lead to the discovery of as many
links of the network as possible. In other words, we want to
minimize the number of link queries while maximizing the
number of observed links, i.e. the number of positive answers
to these tests2.

In order to do so, we will rely on simple intuitions de-
rived from statistical properties observed on most real-world
complex networks, which we discuss in Section II. We then
propose several measurement strategies in Section III based on
these principles. We also need a way to compare and evaluate
measurement strategies, see Section IV. We finally use this to
experimentally evaluate proposed strategies in Section V.

Before entering in the core of this paper, we give the needed
formalism and notations, and discuss related work.

A. Formalism and notations

In all the paper, we will consider an undirected3 graph
G = (V, E), with n = |V | nodes andm = |E| links.
We suppose that all the nodes are known, and focus on link
discovery only. In other words, we knowV but know nothing

1http://www.facebook.com/ and http://www.flickr.com/
2Notice that, whereas we suppose that link queries are very expensive, the

computational cost of each strategy is not our concern here;we consider it as
negligible compared to measurement costs, which fits most real-world cases.

3This means that we make no difference between(u, v) and (v, u), for
any u andv.
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aboutE (although we will make some statistical assumptions
in accordance with classical empirical observations in thefield,
see Section II).

We will denote byN(v) the set of neighbors ofv ∈ V :
N(v) = {u ∈ V, (u, v) ∈ E} and byd(v) its degree:d(v) =
|N(v)|.

A measurement consists in a series of link queries,i.e. tests
of the existence of link(u, v) for two nodesu andv in V . At a
given stage in such a measurement, one has already discovered
a set of links, which we will denote byE′ ⊆ E. The set of
extremities of links inE′ will be denoted byV ′ ⊂ V . Notice
that, although we knowV , in generalV ′ 6= V . We will also
denote byn′ the number of nodes inV ′ andm′ the number
of discovered links so far:n′ = |V ′| and m′ = |E′|. We
also defineN ′(v) = N(v) ∩ V ′ and d′(v) = |N ′(v)| for all
v ∈ V ′. Notice that bothV ′, E′, n′, m′, N ′ andd′ vary during
a measurement; however, the context will make it clear which
value we consider.

B. Related work

This work belongs to the fields of complex network metrol-
ogy, which mostly focused on the specific case of the internet
topology until now, see for instance [4]–[10]. This area of
research aims mainly at evaluating the relevance of collected
complex network samples and properties observed on them,
and correcting these observations. Viewing the measurement
as the combination of many instance of a simple primitive
(link queries, here) which we want to optimize is new, and is
an important contribution of this paper.

Another related problem is the one oflink prediction: given
a network in which new links may appear, one wants to predict
which new links will appear in the future based on currently
existing ones [11], [12]. In this context, authors use properties
of the known network to infer probable future link, which is
similar to what we do below in the measurement context.

II. U NDERLYING PRINCIPLES

Our goal is to design measurement strategies based on link
queries (test of the existence of a link between two given
nodes) which will minimize the number of such queries and
maximize the number of discovered links (i.e. the number of
positive answers to these tests). In order to do so, we will rely
on some simple statistical properties which are observed on
most real-world complex networks [13].

A. Properties of complex networks

First, we will suppose thatG is sparse: its densityδ =
2.m

n.(n−1) is very small. In other words, the probability that a
link exists between two randomly chosen nodes is very small,
i.e. a random link query will fail with high probability.

The second key property is the fact that most complex
networks have a very heterogeneous degree distribution (often
close to a power law). Since the degree of a node is the number
of links attached to it, this means that there is a high variability
between the number of links of each node (many nodes have
very few links, but some have more, and even many more).

Finally, another key property is the local density: although
randomly chosen nodes have a very low probability to be
linked, two nodes which have a neighbor in common are linked
with a much higher probability. This is generally captured
by the clustering coefficient or the transitivity ratio [13]–[15],
defined by:

cc(G) =

∑
v

∆(v)
∨(v)

n

tr(G) =
3.∆(G)

∨(G)

where, for eachv ∈ V , ∆(v) denotes the number of triangles
(sets of three nodes with three links) to whichv belongs;
∨(v) = d(v).(d(v)−1)

2 denotes the number of pairs of neighbors
of v; ∆(G) =

∑
v ∆(v); and∨(G) =

∑
v ∨(v).

A classical observation in complex network studies is that
both these quantities are high, at least compared to the density.
In other words, if one chooses a random pair of links with an
extremity in common (transitivity ratio) or a random node and
two of its neighbors (clustering coefficient) then the probability
that the third possible link exists is high.

B. Consequences on measurements

The properties above, observed on most real-world complex
networks, have a strong impact on measurements and will play
a key role here.

First, the low density of complex network implies that
randomly choosing two nodes and testing the presence of a
link between them is very inefficient. Notice however that,
when only link queries are possible, one has no choice but to
begin with a series of such random measurements. However,
it must be clear that exploring a large complex network with
such a strategy only is not reasonable.

Instead, the existence of nodes with degree much larger than
the average may be useful for efficient measurement. Suppose
that we test a random pair(u, v). The probability that it is
positive (i.e. the link (u, v) exists) is proportional to the degree
of u (resp.v). Therefore, if it exists then one may guess that
u (resp.v) has a high degree, and so testing all pairs(u, w)
(resp.(v, w)) for anyw will probably lead to the discovery of
many links. Notice thatu andv play a symmetric role in this
reasoning. We will call this observation thedegree principle.

Likewise, the high local density may be used for efficient
measurement: when we know that two nodesu andv have a
neighborw in common then testing pair(u, v) certainly makes
sense as this link exists with high probability. We call thisthe
triangle principle.

We may now turn to the definition of measurement strategies
based on these principles.

III. M EASUREMENT STRATEGIES

First notice that when one starts a measurement in our
framework, no link is known and we have no way to dis-
tinguish between vertices. Therefore, there is no choice but to
test random pairs of nodes. We call this null strategyrandomk.
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Strategy 1: randomk with k an integer.

while m′ < k do
test a random untested pair

As soon as some links are discovered, though, one may
try to design more efficient strategies. Thetriangle principle
indicates that, when a∨ pattern is discovered one may test
the missing link in the triangle. This leads to the following
strategy.

Strategy 2: ∨-randomk with k an integer.

while m′ < k do
Test a random untested pair(u, v)
if (u, v) existsthen

Test all untested pairs(v, w), for anyw in N ′(u)
Test all untested pairs(u, w), for anyw in N ′(v)

Applying directly the degree principlewould lead to a
strategy in which we test the pairs(u, v) for all v as soon as a
random test led to the discovery of a link ofu. However, the
degree principlebecomes stronger if one waits untilseveral
links of a node are found. We therefore propose a strategy
in which a series of tests (performed according to another
strategy) is followed by a use of thedegree principleon nodes
for which we discovered many links.

Strategy 3: (∨-)Complete Simple —csk (resp.∨-csk) with
k an integer.
Apply randomk (resp.∨-randomk)
foreach u ∈ V ′ in decreasing order ofd′(u) do

Test all untested pairs(u, v), for any v ∈ V

This strategy may be improved by using the links it discov-
ers for choosing the next link queries to perform. This leads
to the following strategy.

Strategy 4: (∨-)Complete —ck (resp.∨-ck) with k an
integer.
Apply randomk (resp.∨-randomk)
Let X = V ′

while X is nonemptydo
Let u in X with d′(u) maximal
Removeu from X

Test all untested pairs(u, v), for any v ∈ V

if (u, v) exists and is the first link ofv discovered
then

Add v to X

One may try to use an even stronger version of thedegree
principleby noticing that the probability of a link between two
nodes is even larger ifbothhave a high degree. Therefore, link

queries between nodes for which we already discovered many
links have an even higher probability of positive outcome. This
leads to the following strategy.

Strategy 5: (∨-)Test-Between-Found —tbfk (resp.∨-tbfk)
with k an integer.
Apply randomk (resp.∨-randomk)
foreach (u, v) ∈ V ′ × V ′ in decreasing order of
d′(u) + d′(v) do

Test (u, v) if it was untested

Finally, one may try to combine the strategies above in
order to improve their efficiency. Indeed, some of them use
complementary principles which both help in discovering more
links with less link queries. One may therefore expect even
better results with combinations of them. We will therefore
consider the following strategy.

Strategy 6: (∨-)TBF-Complete —tbfck (resp.∨-tbfck)
with k an integer.
Apply tbfk (resp.∨-tbfk)
Apply c0

It must be clear that many variants and improvements of the
strategies above are possible. Probably, completely different
strategies may also be defined. Our goal here however is to
evaluate the relevance of thedegree principleand triangle
principle in the design of measurement strategies. We therefore
focus on these relatively simple strategies, which we consider
as a natural first set of strategies derived from these basic
principles.

IV. EVALUATION METHODOLOGY

For any measurement strategyS, let us definem′

S(q) as the
number of links discovered withq link queries with strategy
S 4. It must be clear that our goal, for a givenq, is to design a
strategyS that maximisesm′

S(q). Conversely, one may want
to discover a given numberx of links and ask for the strategy
S that will minimize theq such thatm′

S(q) = x.
However, given two numbers of queriesq and r it is

possible that a given strategyS discovers more links with
q tests than another strategyT , while T discovers more with
r tests (we will observe such a situation in Section V-B). As
a consequence, it makes no sense to say thatS is better than
T , nor the converse; this depends on the allowed number of
link queries.

Going further, one may notice that ifS andT discover the
same number of links after a given numberq of tests, but ifS
discovers more links thanT for any numberr < q of test, then
it seems natural to consider thatS surpassesT (it discovers
the same number of links, but faster).

4Notice that, in practice, it is in general impossible to reach a situation
where we test all pairs of nodes:q =

n.(n−1)
2

, or conversely where we
discovered all existing links:m′

S
(q) = m.



4

A simple way to formalise these intuitions is to define the
efficiencyof a strategyS for a given number of queriesq
as the (discrete) integral of the functionm′

S from 0 to q:
Eq(S) =

∑q

i=1 m′

S(i).

Notice that the obtained value will depend on the considered
graph, and onq. It seems difficult to avoid this, as the
efficiency of strategies do indeed depend on the graph under
concern, and on the number of allowed link queries. We will
therefore always compare strategies ran on the same graph and
with the same number of link queries here.

Another weakness of this definition is that it may give any
positive value for the efficiency of a strategy, making it hard
to evaluate how far from the worst or best solution we are.
In order to avoid this we introduce thenormalised efficiency:
Eq(S) =

Eq(S)−Eq(min)
Eq(max)−Eq(min) where min and max stand for

the worst and best strategies,i.e. the ones with minimal and
maximal efficiencies.

Notice that strategiesmin andmax are easy to determine:
min consists in testing pairs of nodes with no links between
them as long as possible, thusn.(n−1)

2 − m times, and then
performing the positive tests; converselymax consists in
performing first them positive tests. As a consequence, we
can compute easilyEq(min) andEq(max) for anyq, and thus
obtain the normalized efficiency of any strategy.

The notion of normalized efficiency however remains insuf-
ficient. Indeed, as we consider sparse graphs, there are only
very few positive link queries, and thus one may expect to
be much closer to themin strategy than to themax. As a
consequence, the efficiency of any strategy will be very low.

A solution to this problem consists in comparing strategies
to the random one, denoted by ran, which consists in per-
forming link queries on random untested pairs of nodes. The
expected efficiency of this strategy is easy to compute, as the
probability of success of a link query is exactly the densityδ;
we obtain:Eq(ran) =

∑q

i=1 i · δ = q.(q+1)
2 · δ.

Finally, we introduce therelative efficiency, which indicates
how a given strategyS performs compared to the random
one (and the minimal and maximal ones) afterq link queries:
Rq(S) =

Eq(S)

Eq(ran) .
Notice that the relative efficiency does not give a value

between0 and 1 and therefore does not have the advantage
of being relatively independent from the context. However,
we cannot normalize it as we would loos the benefit of the
comparison to the random strategy. We will therefore use both
the normalized efficiency and the relative efficiency to discuss
efficiency of strategies below, and keep in mind that in any
case the efficiency of a strategy depends on the graph under
concern and on the number of link queries allowed. Only the
full m′

S() function can describe the efficiency of strategyS

entirely, on a given graph.

V. EXPERIMENTAL EVALUATION

In this section, we present experiments aimed at illustrating
the differences between the proposed measurement strategies,
and how they may be evaluated. We first present the dataset

we used, which is a typical real-world case. We then examine
a typical situation and discuss the observations. We deepen
this by observing the impact of the initial random period of
measurement; and finally we discuss the bias that measurement
strategies may induce on observed properties.

A. Dataset

We use here data on an online social network which we
consider as a typical example of complex networks studied in
the literature. This social network comes from theFlickr site,
which provides facilities for publishing online photos, sharing
them with others, discuss them, etc. Users may also subscribe
to various interest groups and have lists of other users known
as theircontacts.

Here we used a complete measurement ofFlickr conducted
in August 2006 [16]. We considered the largest of the 72 875
groups observed then5, which contained 31 523 members.

We then defined three different networks among these
31 523 users:

• contact: two usersa andb are linked ifa is a contact of
b or b is a contact ofa;

• comment: two usersa and b are linked if a posted a
comment on a photo fromb or b posted a comment on a
photo froma;

• symmetric-comment: two usersa andb are linked if both
a posted a comment on a photo fromb and b posted a
comment on a photo froma.

One may also define asymmetric-contactgraph in which
two usersa and b are linked if botha is a contact ofb
and b is a contact ofa. In order to save space, we will not
consider it here. Likewise, we do not detail the features of
these networks; the key point here is that they are sparse,
have heterogeneous degree distributions and high clustering
coefficient and transitivity ratio. To this regard, they aresimilar
to most real-world complex networks, and so the principles
discussed in II apply.

B. A typical example

Let us first try all our strategies with the same parameter
k = 1 000 and on thecontactgraph. We represent in Figure 1
the numberm′

S(q) of links discovered by each strategyS as
a function of the numberq of link queries performed, forq
between0 andQ = 4.106. The obtained plot is representative
of what is obtained on other graphs.

This plot shows clearly that measurement strategies perform
very differently, and that trying to optimize them is relevant.
This is a first important result in itself. Moreover, both thede-
gree principleand thetriangle principleare useful in doing so:
strategies based on each of them perform significantly better
than the random strategy. However, thedegree principleseems
to be much stronger: while the improvement of∨-random
remains quite low, the improvement obtained by thecomplete
strategy is huge. This is probably due to the fact that, although
the clustering coefficient and transitivity ratio are much larger

5FlickrCentral, http://flickr.com/groups/central/
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Fig. 1. Number of links (vertical axis) discovered by each strategy as a
function of the number of link queries performed (horizontal axis) in a typical
case (contactnetwork,k = 1000). The tbf, tbf-completeand∨-tbf-complete
strategies are indicated as a unique curve (named TBFs) in the plot as the
three curves overlap eachother.

than the density, they remain quite small; instead, the largest
degrees in the graphs are relatively close to its number of
nodes.

The best final results (the largest number of links discovered
at the end of the measurement) are obtained with mixed
strategies, namelytbf-completeand ∨-tbf-complete, which
succeed in discovering between22 and 23% of existing
links by performing only1% of possible link queries. They
slightly outperformcomplete, which was expected as they are
more subtle (though a stronger improvement may have been
expected).

Notice that, although these strategies finally outperform
complete, they discover linkslater than this strategy. In this
sense, they may therefore be considered as less efficient, which
is captured by our notion of efficiency, see Table I.

m′ % tested % found E R

random 9 609 1.04 1.03 0.006 0.99
∨-random 21 030 1.04 2.25 0.010 1.64

c1000 209 485 1.04 22.4 0.142 24.2
tbf1000 68 874 0.46 7.36 0.048 15.6
tbfc1000 218 448 1.04 23.4 0.131 22.3

∨-tbfc1000 214 175 1.04 22.9 0.134 22.7

TABLE I
Efficiency of each strategy after4.106 links queries on thecontactnetwork:
the numberm′ of discovered links; the percentage of tested pairs of nodes;

the percentage of existing links found; and the efficiency coefficientsE
andR.

C. Impact of the initial phase

In order to test the impact of the initial phase on the
efficiency of the strategies, we conducted a similar experiment
in which we increased the parameterk to 1 500. We present
the results in Figure 2. The change of thek value implies in
particular that the random phase will last longer than in the
previous runs as it looks for a larger set of discovered links.
This induces a delay before the beginning of the second phase
of the strategies which should in turn decrease their efficiency
as they have less queries to test the existence of the links.

Surprisingly though, the efficiency of the strategies does
not seem to be affected. The amount of discovered links after
the same number of queries is for instance comparable in the
contactnetwork case (around21% of the existing links). This
can be explained by the fact that while searching for the1 500
links, the random phase has improved the partial knowledge
of the network topology. It is very likely then that the highly
connected nodes have emerged more significantly during this
phase. Thus the ordering used by the elaborated strategies,
based on thedegree principle, is in turn more pertinent.

The plots based on thecommentand symmetric-comment
networks also show that the behaviour of the strategies can be
very similar in some cases. This suggests to investigate other
criteria to sort out their efficiency.

D. Measurement bias

Until now, we focused on our ability to discover many links
with as few link queries as possible. However, different strate-
gies discover different links, which may have consequenceson
the properties of the obtained samples: they may be biased by
the measurement strategy, and biased differently depending on
the strategy we use. This can be observed visually in Figure 3
for instance, and confirmed by the statistics given in Table II.

Fig. 3. Drawings of samples obtained with thecomplete (left) and
tbf-complete(right) strategies after the20 000 link queries. The position of
the nodes is the same in the two drawings (it is obtained by a classical graph
drawing algorithm ran on the actual network), which makes itpossible to
observe visually that the links discovered by each strategyare not the same.

m′ δ avg deg max deg cc tr
Reference 21298 0.002 35.5 1708 0.083 0.124
random 6307 0.000 2.1 38 0.001 0.001

∨-random 6248 0.001 3.1 123 0.133 0.120
c1500 9840 0.001 13.0 1708 0.061 0.422

tbf1500 2289 0.024 54.5 663 0.175 0.208
tbfc1500 7717 0.003 20.0 1708 0.085 0.371

∨-tbfc1500 8789 0.002 17.7 1708 0.072 0.388

TABLE II
Main statistical properties (number of links finally discovered, densityδ,

average degree, maximal degree, clustering coefficient andtransitivity ratio)
of the samples obtained by each measurement strategy withk = 1500

applied on thesymmetric-commentnetwork. We also display the properties
of the actual network (first row), for comparison.

These experiments clearly show that the observed properties
are biased by the measurement (they are not the same as
the ones of the actual network), and moreover that different
strategies lead to different bias.

One can notice for instance that thecomplete and the
test-between-foundstrategies induce a very different bias on
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Fig. 2. Number of links (vertical axis) discovered by each strategy as a function of the number of link queries performed (horizontal axis) for each of our
three graphs (from left to right:contact, commentandsymmetric-comment), with k = 1500. The tbf, tbf-completeand∨-tbf-completestrategies are indicated
as a unique curve (named TBFs) in the two last plots as the three curves overlap eachother.

the properties. It is likely to be due to the fact that the number
of involved nodes (m′) is very low for the second strategy
but all the possible links between them have been tested.
This means in particular that all the possible triangles have
been discovered which leads naturally to an over-evaluation
of the clustering coefficient. The strict opposite happens in
the completecase since many nodes are discovered but the
links between them are not directly tested.

In some specific cases though, the values are correctly
evaluated by the strategies. Strategy∨-random, for instance,
gives a correct value of the transitivity ratio. This is well
explained by the strategy itself that tests the existence ofthe
third link of a triangle as soon as two nodes appear to have a
common neighbor.

It is also worth noticing that the mixed strategies have
a better evaluation of the clustering coefficient than other
strategies. This can be explained by the fact that, as the name
suggests, they mix the effects of the different strategies.In
particular, the over-evaluation of this property given by the
test-between-foundphase seems to be compensated by the
under-evaluation of thecompletephase.

These observations suggest to put in perspective the quan-
titative assessments of the runs and to try integrating the
qualitative point of view in the evaluation of the efficiency
of the strategies.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we studied the problem of measuring large
complex networks when the measurement operation consists
in testing the existence of a link between two nodes. We
proposed different strategies for ordering the link queries in
order to minimize their number while maximizing the number
of discovered links. Those strategies rely on the expected
statistical properties of the network in order to predict the
existence of the links and we tested this approach on several
real-world networks based on the Flickr database.

The empirical results confirmed that the principles underly-
ing the development of the strategies are relevant in this mea-
surement context. The experiments showed that the elaborated
strategies made a huge improvement compared to the random
approach. But they also raised the question of accounting
for the bias they induce on the extracted samples. It turned
out that the different strategies gave different evaluations of
the statistical properties of the original networks. This result

suggests to try combining them in order to compensate those
unwanted effects, which is what we plan to investigate more
specifically in the future.

Going further, we also intend to extend the kind of real-
world networks on which test the strategies, add measurement
properties to the list of statistical properties considered (such
as the assortativity and the degree-degree correlation) and try
to adapt the strategies to the directed graphs.
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