
HAL Id: hal-01217886
https://hal.science/hal-01217886

Submitted on 21 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inferring Update Sequences in Boolean Gene Regulatory
Networks

Fabien Tarissan, Camilo La Rota

To cite this version:
Fabien Tarissan, Camilo La Rota. Inferring Update Sequences in Boolean Gene Regulatory Networks.
Cologne-Twente Workshop on Graphs and Combinatorial Optimization 2009 (CTW’09), 2009, Paris,
France. �hal-01217886�

https://hal.science/hal-01217886
https://hal.archives-ouvertes.fr


Inferring Update Sequences in Boolean Gene

Regulatory Networks

Fabien Tarissan a Camilo La Rota b

aComplex System Institute (ISC) & CNRS, Palaiseau, France
bComplex System Institute (IXXI), Lyon, France

Key words: Mathematical programming, Inverse problems, Gene regulatory
networks reconstruction

1 Introduction

This paper employs mathematical programming and mixed integer linear pro-
gramming techniques for solving a problem arising in the study of genetic
regulatory networks. More precisely, we solve the inverse problem consisting
in the determination of the sequence of updates in the digraph representing
the gene regulatory network (GRN) of Arabidopsis thaliana in such a way that
the generated gene activity is as close as possible to the observed data.
Differences among cells of different tissues depend on the specific set of genes
that are active in each tissue. Therefore, one usually assumes that the dif-
ferent steady states of a GRN dynamics correspond to the different possible
cell fates ([7]). This leads to explain the changes observed during the develop-
ment of the organisms by the fact that perturbations on specific elements of
the network make the system switch from one steady state to another. Some
hypothesis can be made about these perturbations, which are then treated as
initial conditions for the new tissue being formed. However, an important un-
known is (are) the update sequence(s) of the gene activity that let the system
evolve from a given set of initial conditions to the set of steady states. Indeed,
different update sequences determine different sets of basins of attraction of
the GRNs. However, the steady states remain the same under any sequence.
Usually, a specific update sequence is assumed to rule the dynamics of the
GRNs [1,3]. The present study differs from this approach in that we sought
to infer the update sequence from the biological observations. It also differs
from our previous paper as we focus here on asynchronous sequences whereas
in [6] the updates were synchronous.
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2 The problem

Given a directed graph G = (V, E), a discrete set T of time instants (which
we suppose to be an initial contiguous proper subset of N) and the following
functions:

• a function α : E → {+1,−1} called the arc sign function;
• a function ω : E 7→ R+ called the arc weight function;
• a function χ : V × T 7→ {0, 1} called the gene state function;
• a function ι : V 7→ {0, 1} called the initial configuration;
• a function θ : V 7→ R called the threshold function;
• a function γ : V × T 7→ {0, 1} called the updating function.

A gene regulatory network (GRN) is a 8-tuple (G, T, α, ω, θ, χ, ι, γ) such that:

∀v ∈ V χ(v, 0)= ι(v) (1)

∀v ∈ V, t ∈ T r {0} χ(v, t) =











H(v, t − 1) if γ(v, t) = 1

χ(v, t − 1) otherwise
(2)

where H is the Heaviside function defined for v ∈ V and t ∈ T by

H(v, t)=















1 if
∑

u∈δ−(v)
α(u, v)ω(u, v)χ(u, t) ≥ θ(v)

0 otherwise,

(3)

with δ−(v) = {u ∈ V | (u, v) ∈ E} for all v ∈ V . Eqns. (1)-(2)-(3) together are
called the evolution rules of the GRN. For any particular t ∈ T , χ(·, t) : V →
{0, 1} is called a configuration. Since the evolution rules relate a configuration
at time t with a configuration at time t−1, χ(·, t) is called a fixed configuration

(or fixed point) if it remains invariant under the application of one complete
cycle of updates encoded by γ. Furthermore, as long as the evolution rules
are purely deterministic (as is modelled above), a fixed point of a GRN is
determined by its initial configuration.

In this paper we deal with an inverse problem related to the estimation of
update sequence in GRNs. More precisely, we address the following.

Update Sequence Estimation in GRNs (USEGRN). Given a digraph
G, a time instant set T , an arc sign function α, an arc weight function ω,
a threshold function θ and a set I of initial configurations, find an update
function γ with the property that for all ι ∈ I there exists a gene activation
function χ such that (G, T, α, ω, θ, χ, ι, γ) are GRNs whose fixed points are
at a minimum distance to observed data.

In other words, we attempt to estimate the sequence of updates in a GRN
from the knowledge of the digraph topology in such a way that (a) the GRN
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evolution rules are consistent with respect to a certain set of initial configura-
tions and (b) the fixed points induced by the estimated values are as close as
possible to the observed ones.
As the reader might notice, the problem strongly depends on the modelling
of the update sequence encoded by γ. In [3], the authors proposed to describe
such a sequence by means of periods and delays parameters for each gene. As-
suming pv and dv to be such values for gene v, we can reformulate Equation 2
in the previous modellisation according to the following relation:

∀t ∈ T γ(v, t) = 1 ⇐⇒ ∃n ∈ N s.t. t = npv + dv

3 The mathematical programming formulation

The methodology we shall follow is that of modelling the USEGRN by means
of a mathematical programming formulation:

minx f(x)

subject to g(x) ≤ 0,











where x ∈ R
n are the decision variables and f : R

n → R is the objective

function to be minimized subject to a set of constraints g : R
n → R

m which
may also include variable ranges or integrality constraints on the variables.
The primary concern in solving the USEGRN is thus modellistic rather than
algorithmic. One of the foremost difficulties is that of employing a static mod-
elling paradigm — such as mathematical programming — in order to describe
a problem whose very definition depends on time. Another important difficulty
resides in describing the necessary and sufficient conditions for a configuration
to be a fixed point in a mathematical form. We solve this difficulty by intro-
ducing two decision variables: a binary variable s stating that the network has
been stable for at least two successive time steps; a binary variable y that will
indicate the first time the network is stable. The last difficulty concerns the
proper modelling of the update sequence as proposed in [3]. The solution relies
on the use of two binary variables π and δ for each gene and indexed over the
possible values for the periods and the delays. Then, πv(p) (resp. δv(d)) is set
to 1 if the period (resp. delay) of v is p (resp. d). We provide above such a
formulation:

• Sets: V of genes in the network, E of edges in the network, T of time
instants, P of periods values, D of delay values and R of regions.

• Parameters:
· ι : R × V 7→ {0, 1} is the initial configuration of the network (vector of

boolean values affected to the genes) for each region.
· α : A → {+1,−1} is the sign of the arc weights;
· w : V 7→ R+ is the arc weight function;
· θ : V 7→ R is the threshold function;
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· φ : V × R 7→ {0, 1} is the targeted fixed configuration for region r.
• Variables:
· for all r ∈ R, v ∈ V , t ∈ T , xt

r,v ∈ {0, 1} is the activation state of gene v

at time t in region r;
· for all r ∈ R, v ∈ V , t ∈ T , ht

r,v ∈ {0, 1} is the projection of state of gene
v at time t in region r according to Heaviside function;

· s : R × T 7→ {0, 1} is a decision variable indicating that the network is
stable during at least two successive time steps in region r.

· y : R × T 7→ {0, 1} is a decision variable that indicates the first time the
network reaches a stable state in region r.

· for all v ∈ V , p ∈ P , πv,p ∈ {0, 1} is a decision variable that indicates that
the periodicity of gene v is p.

· for all v ∈ V , d ∈ D δv,d ∈ {0, 1} is a decision variable that indicates that
the delay of gene v is d.

• Objective function:

min
∑

r∈R

∑

t∈T\{1}

(

(yt−1
r − yt

r)
∑

v∈V

|xt
r,v − φr,v|

)

.

• Constraints:
· Heaviside function computation rule (for all t ∈ T \ {1}, v ∈ V, r ∈ R) :

θvh
t
r,v − |V |(1 − ht

r,v) ≤
∑

u∈δ−(v)

αuvwuvx
t−1
r,u ≤ (θv − 1)(1 − ht

r,v) + |V |ht
r,v

· state transition rules (for all r ∈ R, v ∈ V , p ∈ P , d ∈ D):

x0
r,v = ιr,v

∀t ∈ T \ {1} s.t. t 6= np + d πv,p δv,d xt
r,v = πv,p δv,d xt−1

r,v

∀t ∈ T \ {1} s.t. t = np + d πv,p δv,d xt
r,v = πv,p δv,d ht−1

r,v

πv,p δv,d d≤ p

· fixed point conditions (for all r ∈ R, t ∈ T \ {1}):

∑

v∈V

|xt
r,v − xt−1

r,v | ≤ ‖V ‖st
r

∑

v∈V

|xt
r,v − xt−1

r,v | ≥ st
r

yt
rf

t
r = 0

∑

u>t
su

r = f t
r

(1 − yt
r) ≤ f t

r

(|P | + |D|)2 ≤
∑

τ∈T
yτ

r

4 Reformulations and solutions

The above problem is a nonconvex Mixed-Integer Non-Linear Problem that
can be reformulated exactly to a Mixed-Integer Linear Problem using the
techniques proposed in [5]. After standard mathematical manipulations, all
the nonlinearities reduce to product terms of binary and/or integer variables,
which can be reformulated by adding new auxiliary variables and constraints

4



as follows:

xy terms (x, y : binary) xz terms (x : binary, z : integer)

η ≥ 0 ζ ≥ zLx

η ≤ y ζ ≤ z + (|zL| + |zU |)(1 − x)

η ≤ x ζ ≤ zUx

η ≥ x + y − 1 ζ ≥ z − (|zL| + |zU |)(1 − x)

where zL and zU stand for the boundaries of z and η and ζ are the new
variables that replace the products in the equations.

We solved to optimality a few real-life instances from the GRN of Arabidopsis

thaliana using AMPL [2] to model the problem and CPLEX [4] to solve it.
The size of the GRNs involved were such that CPLEX obtained the optimal
solution in a matter of minutes.
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