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Single pixel camera: an acquisition strategy based on the non-linear
wavelet approximation

Florian Rousset!, Nicolas Ducros!, Cosimo D’Andrea® and Francoise Peyrin'

Abstract— Single pixel imaging opened the door to a cheaper
camera architecture able to operate in a wide spectral range.
Compressive sensing has been used with such an optical setup to
reconstruct an image using ¢;-minimization. To avoid this type
of reconstruction, we consider an adaptive approach leading to
a direct restoration of an image and for which we propose a
new acquisition strategy. Our technique allows one to acquire
an image in the wavelet domain with a progressive non-linear
acquisition strategy. This scheme is based on the non-linear
approximation of the wavelet transform which takes advantage
of the transformation’s sparsity. This approximation is applied
in a multiresolution way and is shown to offer high compression
performance on simulated data. One application of the single
pixel camera concerns time-resolved acquisition to observe
fluorescence lifetime images of biological structures.

I. INTRODUCTION

The single pixel camera (SPC) architecture is the key
to building small, cheap and efficient sensors. Compared
to CCD or CMOS cameras architecture, SPC has several
advantages. This imaging technique can indeed operate at
different wavelengths where building CCD or CMOS can be
expensive. Infrared or multispectral imaging can therefore
be considered. In addition, the single detector can have
a very good quantum efficiency and few storage memory
is needed compared to conventional imaging techniques.
Having only one detector, SPC is also well suited for time-
resolved acquisition using a single TCSPC (Time-Correlated
Single Photon Counting) board.

Our goal in this paper is to provide a new acquisition
strategy for SPC acquisitions that leads to a low cost
time-resolved imaging technique. One application of this
method could be the observation of biological tissues via
fluorescence imaging. In particular, the overall framework
could benefit to optical tomography for preclinical imaging
of animals [1]. Fluorescence lifetime imaging can also be
considered using the SPC as a low cost time-resolved acqui-
sition device [2].

II. PROBLEM AND RELATED WORK

We address the problem of recovering the image of an
object acquired by a SPC, which was originally formulated
in [3], [4]. The optical setup consists of a digital micromirror
device (DMD) and a single detector element (e.g. single
photon avalanche diode or photomultiplier). A lens is added
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Fig. 1. Optical setup composed of a DMD and a single pixel detector.
The measure at the detector corresponds to the projection of the image on
a certain pattern.

to focus the light rays on the single detector as depicted in
Fig. 1. A DMD is composed of thousands of mirrors that can
be independently tilted in two states. The first one reflects the
light toward the detector and is said to be the ON state. The
second one, the OFF state, reflects the light in the opposite
direction. Hence, a DMD can act as a tunable spatial filtering
device.

A SPC acquisition consists in computing sequentially the
dot product of the image and some DMD patterns. Let
f € RV*N be the N x N image and {p; € RV*N i =1..I},
a sequence of I DMD patterns. The measurements {m;,i =
1..I} can be expressed as

m; = (£, pi) (D

Then, the problem consists in retrieving f from {m;}, know-
ing the patterns {p;}.

In [3], [4], the authors used compressed sensing [5]. This
approach is nonadaptive in the sense that random patterns are
considered, their elements being drawn as independent and
identically distributed +1 random variables from a uniform
Bernoulli distribution. The image f is then restored with /-
minimization. In [6], [7], [8], the image is restored directly,

i.e.
f= Zmipi
;

and the image was acquired with an adaptive scheme. Some
of the patterns were determined during acquisition depending
on measurements already acquired. The difficulty lies not so
much in recovering the image as in determining the DMD
patterns.



In this paper, we consider the same type of approach since
it avoids the time-consuming ¢;-minimization. In particular,
we consider to obtain {m;} from wavelet patterns {p;} using
a non-linear acquisition strategy.

III. METHODS

A. Wavelet decomposition

The discrete wavelet decomposition of an image f € RV*V

with the standard dyadic wavelets separates the signal into
approximation and detail coefficients (horizontal, vertical
or diagonal). The approximation coefficients result from
a low-pass filtering, detail coefficients from a high-pass
filtering [9].

Let j = 1..J be the scale at which the image f is observed,
J being the decomposition level of the wavelet transform,
with 1 <J <log,N =R and k = (kj,ky) € Z? specify a
location. Let f3;; be the approximation coefficients and }/;f_k
the detail coefficients with e = 1, 2, or 3 representing the
horizontal, vertical and diagonal coefficients, respectively.
These elements can be obtained by:

Brie=1Er)  Vip={EVx) 2)

where ¢ and y are respectively the scaling and wavelet
basis functions. Equations (1) and (2) show that each wavelet
coefficient can be computed by the SPC using its scaling and
wavelet functions as detection patterns. In an orthonormal
basis, one can recover an image from its wavelet coefficients
using the inverse wavelet transform given by:

30 J
f= Z ﬁj.k¢J,k+ Z Z Z 7’;71(‘!’;71( 3)
keZ? e=1j=1ke7?

Wavelet decomposition was shown to give sparse signals,
allowing one to discard many of the coefficients at the recon-
struction step [9]. This sparsity is exploited by compression
algorithms such as JPEG2000 [10].

B. Patterns loaded on the DMD

While wavelet patterns generally have both negative and
positive entries, the DMD only allows positive patterns to
be uploaded. Given the linearity of (1), a solution consists
in splitting a pattern p into its positive and negative parts, p*
and p~, respectively, such that p=p™ — p~. Henceforth, the
corresponding measure is easily obtained as the difference
of two measures:

m=m"—m" %)

where

m"=(fp") and m = (f,p7) (5)

Haar’s wavelet is considered in this paper since its sep-
arated patterns only take two values. Using a scale factor,
each pattern can be transformed to patterns with only O or
1 values. This is well suited for the ON/OFF technology of
the DMD.

Moreover, today’s DMDs can produce up to 1024 gray
levels and should allow the use of other wavelets with better
compression skills.

C. Acquisition strategy

Given the sparsity of the wavelet transform, acquiring each
coefficient would be a time loss. Hence, a sampling scheme
has to be chosen to mainly acquire significant coefficients.
Deutsch et al. [6] considered a father-son relationship based
on the tree structure of the wavelet decomposition [9]. It
stands that a coefficient at the scale j has 4 sons at the scale
j— 1. Then, they employed a thresholding strategy to predict
the relevant coefficients at finer and finer scales. The father-
son relationship is used in their strategy given that wavelet
coefficients tend to persist through scale, i.e. a significant
coefficient at the scale j may have 4 significant sons at j— 1.
Dai et al. [7] considered the same type of approach but with
a more refined thresholding strategy that performs better than
the previous method. To overcome the limits of an image-
dependant thresholding strategy, we propose instead to non-
linearly determine the relevant coefficients.

We base our method on the non-linear approximation
of the wavelet transform. This technique retains a number
M << N? of the largest wavelet coefficients and was shown
to give excellent image recovery [9]. However, having no
knowledge of the full wavelet transform of the object, we
perform several non-linear approximations throughout the
decomposition levels. Our strategy therefore consists in the
following steps. First, we acquire the approximation of the
image at scale J, which provides np = 22 coefficients
with L = R —J. Then, the approximation image is one-level
wavelet transformed and a given percentage p; of the largest
detail coefficients are retained. The four sons of each of the
retained detail coefficients are chosen for acquisition. The
number n; of detail coefficients acquired at scale J is given
by

n,:3><22<L’1) X4 X py=3XnaXxpjy.

Then, we perform another non-linear approximation among
the n; details by keeping a new percentage p;_; of the largest
ones. As previously, the four children of the significant
details will be considered for measurement. The number ny_;
of measured detail coefficients at J —1 is

nj1=4xpj1xng

Repeating the previous step until the finest scale j =1
is reached, one can obtain the total number of acquired
coefficients n with:

I’l:22L

J J
1+3) <4J1Hp,->1 (6)
Jj=1 i=j

The set of percentages & = {p1,p2,...,ps} controls the
number of sampled coefficients over the total number of
pixels (6). The latter ratio defines the sampling rate (SR).
One can finally recover an image from the samples using
the inverse wavelet transform (3).

IV. RESULTS

The proposed acquisition strategy was applied to several
test images and compared to the global non-linear approxi-
mation (GNLA) as well as to Dai’s acquisition strategy. The



Fig. 2.
Ground truth image. (b) Recovered image using a GNLA with a SR of 10
% giving a PSNR of 41.29 dB. (c) Recovered image using our technique
with a SR of 10 % giving a PSNR of 36.07 dB. (d) Recovered image using
Dai’s method with a SR of 10 % giving a PSNR of 35.76 dB.

Results of different methods on a 512 x 512 pixels image. (a)

GNLA consists in retaining the largest M << N? wavelet
coefficients on the whole wavelet transform [9]. Dai et al. [7]
recently proposed approach is based on Haar’s properties,
the father-son relationship and a thresholding acquisition
strategy.

In Fig. 2, we first show results obtained on a single image
for different strategies. In each case, the sampling rate was
fixed to 10 %.

Figure 3 highlights the sampled wavelet coefficients in our
strategies compared to the GNLA.

Table II presents the PSNRs obtained for different standard
test images considering both our proposed and Dai’s tech-
nique, showing that the proposed strategy seems to perform
better.

Fluorescence imaging being a target application, we tested
our acquisition strategy on an image of a mouse injected with
a fluorescence dye, for different SRs, as reported in Fig. 4
and table I. Even with a SR as low as 2 %, our method shows
efficient results with most of the structures still visible in the
recovered image.

V. DISCUSSION
A. Comparison with a global non-linear approximation

The global non-linear approximation gives the best result
with a PSNR of 41.29 dB (Fig. 2). This comes from the
approximation being applied to the whole wavelet transform
that is in practice not applicable with the SPC. Our method,
possible with the SPC, gives a PSNR of 36.07 dB. This
indicates that our strategy misses some of the significant
wavelet coefficients found with the GNLA (Fig. 3). We

Fig. 4. Results of our approach on a fluorescence image (256 x 256) with
different sampling rates. (a) Ground truth image, (b) images recovered with
a SR of 15 %, (c) 10 %, (d) 5 %, (e) 3 % and (f) 2 %. Table I presents the
set of percentages and PSNR associated with these results.

can see that most of the significant coefficients are well
found with our method for the coarser decomposition levels.
However, at the finest decomposition level j = 1, a lot of
the significant coefficients are forgotten, restoring less details
and inducing an important PSNR loss.

To get as close as possible to the GNLA, further researches
based on super resolution methods [11] should allow us to
predict with more accuracy the significant coefficients.

B. Comparison with Dai’s method

In addition to better PSNRs (table II), our method presents
adaptivity in the sense that an unique set of percentages
works well for several images whereas a threshold is image-
dependent. This can be seen by comparing the cases (c) of
Fig. 2 and Fig. 4. For both cases, the same set of percentages
was used. In the fluorescence case, the image have clearly
smooth areas whereas the considered image in Fig. 2 have
sharp edges. Despite this difference, the recovered images
are very close to their ground truth versions, showing the
powerfulness and adaptivity of our method.



Fig. 3. Comparison of the calculated coefficients for a SR of 10 % between our method and a GNLA in the case of Fig. 2. Left: sampled coefficients with
a GNLA (1). Middle: sampled coefficients using our method (2). Right: comparison showing the coefficient sampled in both method (in green), sampled

with (1) but not (2) (in red), sampled with (2) but not (1) (in blue).

Case Sampling rate Set of percentages PSNR (dB)
(b) 15 % {0.1,0.45,0.85,0.95} 46.31
(©) 10 % {0.05,0.3,0.8,0.95} 43.50
(d) 5% {0.01,0.2,0.5,0.85} 38.15
(e) 3% {0.01,0.05,0.4,0.8} 35.97
) 2 % {0,0.04,0.3,0.6} 33.20

TABLE I
SET OF PERCENTAGES AND PEAK SIGNAL TO NOISE RATIOS ASSOCIATED
WITH THE RESULTS OF FIG. 4.

Test PSNR (dB) PSNR (dB)
images Non-linear Threshold
Lena (512 x 512) 30.33 29.84
Peppers (512 x 512) 36.07 35.76
Cameraman (512 x 512) 32.32 32.05
Gold Hill (512 x512) 27.83 27.70
TABLE I

PSNR BETWEEN GROUND TRUTH IMAGES AND THEIR RECOVERED
VERSIONS. & = {0.05,0.3,0.8,0.95} WAS USED FOR OUR NON-LINEAR
STRATEGY (COLUMN 2) AND FOR DAI’S METHOD (COLUMN 3), THE
THRESHOLD WAS CHOSEN BASED ON THE APPROXIMATION IMAGE [7].
IN BOTH CASES, THE SR WAS FIXED TO 10 %.

Moreover, the set of percentages & also allows us to con-
trol the ratio of sampled coefficients in each decomposition
level where it is impossible with the thresholding strategy.
Finally, any wavelet (orthogonal and biorthogonal) can be
used with our technique, the only limit being the DMD’s
positivity restriction.

VI. CONCLUSION

We presented in this paper a strategy to acquire images
with a SPC. Using an adaptive approach, we avoid the
computation overhead of compressed imaging to reconstruct
an image via /j-minimization. Instead, we obtain an image
in the wavelet domain using a progressive non-linear approx-
imation strategy. This allows us to directly restore an image

with the inverse wavelet transform. Simulation tests of the
proposed methodology show both good visual and numerical
results. In future work, we plan to use this optical setup for
fluorescence lifetime imaging of biological tissues. In such
imaging, SPC allows for a low cost time-resolved imaging
device using only one TCSPC board.
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