
HAL Id: hal-01217855
https://hal.science/hal-01217855v1

Submitted on 20 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A simple calculus for proteins and cells
Cosimo Laneve, Fabien Tarissan

To cite this version:
Cosimo Laneve, Fabien Tarissan. A simple calculus for proteins and cells. Theoretical Computer
Science, 2008, Membrane Computing and Biologically Inspired Process Calculi, 404 (1-2), pp.127-141.
�10.1016/j.tcs.2008.04.011�. �hal-01217855�

https://hal.science/hal-01217855v1
https://hal.archives-ouvertes.fr

A simple calculus for proteins and cells

Cosimo Laneve, Fabien Tarissan,

Dipartimento di Scienze dell’Informazione, Università di Bologna

In memory of Nadia Busi

Abstract

The use of process calculi to represent biological systems has led to the design of
different formalisms such as brane calculi and κ-calculus. Both have proved to be
useful to model different types of biological systems. As an attempt to unify the
formalisms, we introduce the bioκ-calculus , a simple calculus for describing proteins
and cells, in which bonds are represented by means of shared names and interactions
are modelled at the domain level. In bioκ-calculus, protein-protein interactions have
to be at most binary and cell interactions have to fit with sort constraints.

In this contribution we define the semantics of bioκ-calculus, analyse its proper-
ties, discuss the expressivity of the calculus by modelling two significant examples
– a signalling pathway and a virus infection –, and study an implementation in
Milner’s π-calculus.

1 Introduction

One problem when dealing with molecular biology is to extract a functional
meaning out of the mass of current knowledge. This problem has pleaded for
the development of specific tools that describe biology in a faithful way. Among
these tools, process calculi have been proved powerful enough to formalise
some of crucial activities of biological systems, to render in a natural way the
massive parallelism and concurrency of interactions, and to analyse the overall
behaviour.

There are two features of process calculi that are particularly relevant to bio-
logical systems. The first one is about the syntax. In process calculi, the syntax
of the terms determines their capacity to interact with the environment. This
is in strong analogy with molecular biology, where the structure of an object
affects its activities. For instance, the three-dimensional structure of a pro-
tein, as well as the fact that it is part of an amino-acid sequence, may enable

Preprint submitted to Elsevier Science 16 January 2008

some reactions and disable other ones. The second feature is about the seman-
tics. Process calculi have models that have been thoroughly studied and that
support automatic verification tools. These models may turn out essential in
order to formalise the behaviour of biological systems (with qualitative mea-
sures, such as rate of reactions) and the reachability of problematics molecular
configurations.

Two different process calculi families have brought some interest and various
results. A first family is based on Milner’s π-calculus [1], following principles
proposed in [2]. According to these principles, bonds between proteins are
represented in π-calculus by shared channel names and protein interactions
are modelled by process communications. The κ-calculus [3] belongs to this
family and it has been showed convenient for representing mechanisms such as
signalling pathways or regulatory networks. The second family of calculi relies
on Mobile Ambient [4], following ideas proposed by Paun [5]. These calculi use
actions and co-actions capabilities located on the surface of cell membranes for
representing molecular transports and virus infections. The brane calculi [6]
and bio-ambients [7] belong to this family. As these two families turn out to
commit to different paradigms, it is compelling to develop a unique formalism
able to handle the two types of systems. The challenge is to enucleate few
basic realistic primitives that are expressive enough to cover mechanisms of
κ-calculus and brane calculi. Such a formalism is the aim of this contribution.

The calculus presented in this contribution – the bioκ-calculus – retains deno-
tations for proteins, cells, and solutions. Protein reactions are complexations
and decomplexations of two proteins. These reactions follow the same pattern
of those of κ-calculus. Actually, they are similar, but even simpler, to those of
mκ-calculus [3], an intermediate formalism introduced to ease the translation
of κ-calculus in π-calculus. Cells are compartments consisting of a membrane
and a cytoplasm – a solution contained into the membrane. Cellular reactions
permit to fuse two cells. Fusions open the cell to other cells. In particular,
the cytoplasms, whose interactions with the external solution are mediated by
the membrane, may directly interact with another solution – the cytoplasm
of the fusing cell – after the fusion. Complexations and decomplexations of a
reactant that belongs to a cell membrane may change the capability of the
membrane, thus preparing the cell to future fusions, endo- or exocytosis. The
formal rendering of these phenomena is done in bioκ-calculus by admitting
protein reactions with side-effects on membrane types. Other relevant cellu-
lar reactions are considered in bioκ-calculus, such as translocations, which
transport proteic material inside the cells, and phagocytosis, which allows a
cell, such as a virus, to enter other cells. Phagocytosis is particularly difficult
to model because the entering cell is enclosed into a membrane that is pull
out the host cell membrane. This means that the membrane of the host cell
must have enough material for the new one. This mechanism is modelled by
admitting matches of patterns of proteins.

2

The formal models of bioκ-calculus are labelled transition systems where la-
bels carry information about the reactants and the biological rule that is being
used. It is folklore in process calculi that such systems are too descriptive (too
intentional objects) because they separate solutions that no experiment may
distinguish. A number of equivalences over transition systems have been pro-
posed in the literature. In this paper we consider weak bisimulation [8] that
equates two systems if they simulate each other. We demonstrate that weak
bisimulation is a congruence in bioκ-calculus: two weakly bisimilar biological
systems behave in the same way when put in every solution.

The bioκ-calculus is simple. It has atomic elements – the proteins – and two
syntactic constructors – grouping of solutions and cells. Reactions are inter-
actions between two proteins or between two membranes. Notwithstanding
this simplicity, the calculus is expressive enough. It is possible to describe
significant biological examples: the RTK-MAPK pathway and a virus infec-
tion. This simplicity is also crucial for providing a faithful implementation
of core bioκ-calculus into π-calculus. The compilation proposed in this pa-
per encodes complexations and decomplexations into exactly one π-calculus
interaction; conversely, every interaction corresponds exactly to one reaction.

The contribution is structured as follows. In the next section we define a
core version of bioκ-calculus where reactions are restricted to be between two
proteins. We study the semantics of core bioκ-calculus and analyse a signal
transduction mechanism. In Section 3 we define an extensional semantics for
bioκ-calculus and study its properties. In Section 4 we extend the basic in-
teraction mechanisms with fusions that make structural modifications in the
hierarchical organisation of a system. In Section 5 we discuss other extensions
of the calculus for modelling translocations and phagocytosis. In Section 6 we
study an implementation of core bioκ-calculus in π-calculus. Section 7 draws
few concluding remarks and hints at possible future works.

2 The core of the bioκ-calculus

In this section we present a core version of the bioκ-calculus where interactions
never change the hierarchical organisation of biological solutions. We define its
syntax, its operational semantics, and the weak bisimulation. We also analyse
its expressiveness by encoding the RTK-MAPK pathway.

3

2.1 Syntax

Three disjoint countable sets of names will be used in bioκ-calculus. A set of
protein names P, ranged over by a, b, c, . . . to denote the type of a protein; a
set of edge names E, ranged over by x, y, z, . . . to describe the bonds between
proteins; a set of membrane names M, ranged over by m, n, . . . , to denote the
type of a membrane. Protein names are sorted according to the number of sites
they possess. Let s(·) be the function yielding the sites of proteins. The sites
of a protein a are indicated by the natural numbers in the set {1, · · · , s(a)}.

Sites may be in three possible states: bound to another site, sharing then
an element in E with this site, visible, i.e. not connected to other sites, or
hidden, i.e. not connected to other sites but not useful for interactions. Let s
be a site, we write sx if it is connected through the name x, s̄ if it is hidden,
and simply s if it is visible. Formally, the state of sites are defined by maps,
called interfaces. Interfaces, ranged over by σ, σ′, . . . , are partial functions
from naturals to E ∪ {v, h} (we are assuming that v, h /∈ E). For instance,
[1 7→ x; 2 7→ v; 3 7→ h] is an interface. In order to simplify the reading, we
write this map as 1x +2+3. In the following, when we write σ+σ′ we assume
that the domains of σ and σ′ are disjoint. We always assume that interfaces
are injective on E. The sites of a protein a are completely defined by interfaces
that are total on {1, · · · , s(a)}.

The following figure illustrates the all the possible state of protein domain and
the notation for the complexes:

Fig. 1. Graphical notation for the complex a(1x + 2 + 3) , b(1x)

Biological reactions modify interfaces, thus altering proteins’ capabilities. In
addition to the creation or suppression of a bond between proteins, reactions
may also modify sites that are either hidden or visible to visible or hidden, re-
spectively. In order to model these changes, let a v-h-map, ranged over φ, ψ, · · ·,
be every partial interface onto {v, h}. Let the swap of a v-h-map φ, written
φ, be the v-h-map:

φ(i) =

h if φ(i) = v

v if φ(i) = h

Definition 1 The syntax of the core-bioκ-calculus defines (biological) solu-

4

tions S by the grammar:

S,T ::= 0 | a(σ) | mL S M[T] | S , T

(empty) (protein) (cell) (group)

Solutions can be either empty, or a protein a(σ) indicating a protein name

and its interface, or a cell mL S M[T], that is a solution T, called cytoplasm 1 ,
surrounded by another solution S, called membrane, or a group of solutions S,
T. The following figure illustrates the syntactical notation for a cell:

Fig. 2. Graphical notation for the cell mLb(1x) M[a(1x + 2 + 3)]

Three auxiliary functions will be applied to solutions and interfaces:

en(·) returns the set of edge names occurring in the argument;
de(·) returns the set of dangling edge names of the argument, namely those

names that occur exactly once;
be(·) returns the set of bound edge names of the argument, namely those

names that occur at least twice.

Clearly de(S) = en(S) \ be(S) and similarly for σ. For instance, in S =

mLc(1y +2) M[a(1x+2+3),b(1+2x)] the set en(S) is {y, x} and the set de(S)
is {y}. We abbreviate the group a1(σ1) , · · · ,an(σn) with

∏
i∈1..n ai(σi).

In the whole paper, we identify solutions that are equal up to a renaming of
edge names that are not dangling (called alpha-conversion) and we assume
that all solutions meet the following well-formedness conditions:

• (edge-condition) in every solution, edge names occur at most twice;
• (membrane-condition) every membrane is a group of proteins, that is cells

do not occur in membranes;

1 With the term “cytoplasm” we refer to every material surrounded by a structure
forbidding any interaction with the external environment. Thus, a nucleus of a cell
is a cytoplasm, as well as a DNA strand surrounded by a capsid.

5

• (cytoplasm-condition) the dangling edges of nuclei of cells are connected to

the corresponding membrane, that is, for every mL S M[T], de(T) ⊆ de(S).

For example mLc(1x + 2) M[a(1x + 2 + 3),b(1 + 2x)] does not meet the edge
condition because the edge x has three ends (it is a multi-edge). The solution

mL b(1+2) ,c(1+2) M[a(1+2x +3)] does not meet the cytoplasm condition
because the cytoplasm a(1 + 2x + 3) has a dangling edge that is not con-
nected to the membrane. In the following, solutions that are membranes will
be addressed by M,N, · · ·.

2.2 Semantics

Biological reactions that we consider in this section are of two types: com-
plexations, which create edges between possibly disconnected proteins, and
decomplexations, which remove edges. For instance a complexation reaction is
(we are assuming s(a) = 4, s(b) = 3)

a(1x + 2 + 3 + 4) ,b(1 + 2 + 3) −→ a(1x + 2y + 3 + 4) ,b(1y + 2 + 3)

that creates an edge y connecting the site 2 of a and the site 1 of b. These
two sites, in order that this reaction be executed, must be visible. This means
that the application of a complexation must check whether the sites being
connected are visible or not. For example the above reaction cannot be applied
to the group a(1x + 2 + 3 + 4) ,b(1 + 2 + 3) because the site 2 of a is hidden.
Reactions in bioκ-calculus may also change the state of sites that are visible or
hidden in the reactants, switching them into hidden and visible, respectively.
In the example above, this happens to the sites 3 of a and 2 of b. This partial
interface is then used as a test to check whether the interactions is possible
and at the same time, it is used to describe the effect of the interaction on
the internal sites of the proteins. These serve however two different purposes.
Then it seems natural to add the possibility to describe a part of the interface
used as a test but keeping unchanged by the interaction. This is the case of
the site 4 of a if we suppose that the interaction is impossible as soon as this
site is hidden. A concise way for defining the above reaction is the schema

r : ((a, 2, 3, 4), (b, 1, 2, ∅))

that makes explicit the reactant proteins – the first items of the triples –, the
corresponding sites to be complexated – the second items – and the part of
the interface which is tested, separating the sub-part which is permuted from
the one which keeps unchanged – third and fourth item. For example, the rule
r also applies to a(1+2+3+4) ,b(1+2+3) or a(1+2+3+4) ,b(1+2+3x)
yielding solutions a(1+2y +3+4) ,b(1y +2+3) and a(1+2y +3+4) ,b(1y +

6

2 + 3x), respectively. In general, the shape of a reaction schema is

r : ((a, i, ψ1, ψ2), (b, j, φ1, φ2))

that is a reaction name r and two tuple containing a protein name, a site and
two v-h-maps. A generic application of the schema r may be written as

a(i+ ψ1 + ψ2 + ψ′) ,b(j + φ1 + φ2 + φ′)

↓

a(ix + ψ1 + ψ2 + ψ′) ,b(jx + φ1 + φ2 + φ′)

where x is a fresh edge name and i+ψ1+ψ2+ψ and j+φ1+φ2+φ are total on
[1 .. s(a)] and [1 .. s(b)], respectively. It is worth to observe that the interfaces
σ and σ′ are not mentioned in the schema. This means that the interaction
occurs what ever the states of the sites of these interfaces are.

Decomplexations are complexations in the other way round. For instance a
decomplexation reaction is

a(1x + 2y + 3 + 4) ,b(1y + 2 + 3) −→ a(1x + 2 + 3 + 4) ,b(1 + 2 + 3)

that removes the edge y. The schema describing decomplexations is similar to
that of complexations:

r′ : ((a, i, ψ1, ψ2), (b, j, φ1, φ2))

The application of the decomplexation rule is different from complexation: in
this case the two reactants must be connected by an edge between the site i
of a and the site j of b. So, for example, a generic application of r′ is

a(ix + ψ1 + ψ2 + ψ′) ,b(jx + φ1 + φ2 + φ′)

↓

a(i+ ψ1 + ψ2 + ψ′) ,b(j + φ1 + φ2 + φ′)

In order to separate complexations from decomplexations we consider two
functions, C for complexations and D for decomplexations, from rule names
to tuples ((a, i, φ1, φ2), (b, j, ψ, ψ2)). These functions C and D are assumed
with disjoint domains, therefore a rule name uniquely defines whether it is
a complexation or a decomplexation. Let R range over C and D and let
also write (a, i, φ1, φ2) ∈left R(r) if R(r) = ((a, i, φ1, φ2), (b, j, ψ1, ψ2)) and
(a, i, φ1, φ2) ∈right R(r) if R(r) = ((b, j, ψ1, ψ2), (a, i, φ1, φ2)). Finally, let also
(a, i, φ1, φ2) ∈ R(r) if either (a, i, φ1, φ2) ∈left R(r) or (a, i, φ1, φ2) ∈right R(r).

7

The operational semantics of core bioκ-calculus we are going to define use
labels. A label is either a triple (a, x, r), also written ax

r , where a is a protein
name, x an edge name and r a rule name, or τ . We use µ to range over labels.
Let diff(S, S′) be the set (en(S′)\en(S)) ∪ (en(S)\en(S′)).

Definition 2 The transition relation S
µ

−→ T is the least relation satisfying
the following rules:

(com)

(a, i, φ1, φ2) ∈ C(r) x /∈ en(σ)

a(i+ φ1 + φ2 + σ)
ax

r−→ a(ix + φ1 + φ2 + σ)

(dec)

(a, i, φ1, φ2) ∈ D(r)

a(ix + φ1 + φ2 + σ)
ax

r−→ a(i+ φ1 + φ2 + σ)

(sol-l)

S
µ

−→ S′ diff(S, S′) ∩ en(T) = ∅

S ,T
µ

−→ S′ ,T

(sol-r)

T
µ

−→ T′ diff(T,T′) ∩ en(S) = ∅

S ,T
µ

−→ S ,T′

(mem)

M
µ

−→ M′ diff(M,M′) ∩ en(S) = ∅

mLM M[S]
µ

−→ mLM′ M[S]

(cyto)

S
τ

−→ S′ diff(S, S′) ∩ en(M) = ∅

mLM M[S] τ
−→ mLM M[S′]

(react)

S
ax

r−→ S′ T
bx

r−→ T′ a 6= b

S ,T
τ

−→ S′ ,T′

(ms-react)

M
ax

r−→ M′ S
bx

r−→ S′ a 6= b

mLM M[S] τ
−→ mLM′ M[S′]

Rules (com) and (dec) respectively define complexations and decomplexa-
tions capabilities of proteins by lifting these information to labels of transi-
tions and, at the same time, updating the proteins. Rules (sol-l), (sol-r)
and (mem) lift transitions to groups and membranes; it is crucial that edge
names created or deleted do not occur elsewhere. Rule (cyto) lift internal
transitions of the cytoplasm to the whole cell; as before, edge names created
or deleted must not occur elsewhere. We observe that (cyto) bans complex-
ation or decomplexation between cytoplasms and the solution external to the
cells. Rule (react) and (ms-react) define reactions, both complexations and
decomplexations, in groups and cells. In particular (react) also accounts for
reactions between membranes of different cells. It is worth to notice that the
constraint a 6= b bans reactions between same proteins (cf. self complexation
in [3]). This is for simplicity sake: in case reactants are proteins with a same
name we need to carry more information on the labels to separate them.

8

It is worth to notice that the semantics of bioκ-calculus adhere to a style
that is different than the one used for defining the transitions of mκ-calculus
in [3]. The mκ-calculus has been equipped with an unlabelled reduction relation
→. This relation corresponds to the foregoing rules (com), (dec), (sol-g),
(sol-d), and (react). We have preferred a labelled transition relation for
simplicity sake: the number of rules for defining a relation → equivalent to

µ
−→ should have been larger than that of Definition 2 because of the presence
of membranes.

The transition relation preserve well-formedness of solutions.

Proposition 1 If S is well-formed and S
µ

−→ T then T is well-formed as well.

It is worth to observe that membrane names do not play any role at this
stage. They will be relevant in the complete system with complex membrane
reactions presented in Section 4.

2.3 Modelisation of the signal transduction

The so-called RTK-MAPK pathway are intensely used and studied in many
approaches modelling and simulating biological systems [2,3]. We therefore
model the first steps of such a pathway in bioκ-calculus, thus providing a
touchstone for our calculus.

The receptors tyrosine kinase (RTKs) are receptors located at the surface of
some cell membranes. After binding with some ligand (insulin, EGF, VEGF,
etc . . .), they are activated and lead to a specific cellular response (growth
of the cell, proliferation, etc . . .). There exists actually many different types
of RTKs which are gathered into different families. They don’t provide the
same reaction and the cellular response depends on the type of RTK which is
activated. After the binding with a ligand, the RTKs may self-phosphorylate
(adding a phosphate group to a binding domain). This modification is detected
by specific proteins which will bind to the RTK and recruit other proteins
which will be activated or inhibited and will lead eventually to the cellular
response. Another possibility for the RTKs to mediate their reaction is to
phosphorylate other proteins (besides self-phosphorylation). These activated
proteins lead to a cascade of signalisations too. This cascade results mainly
in the activation or the inhibition of transcription factors which adjusts gene
expressions. The generic schema of an RTK-MAPK cascade is then the follow-
ing: the RTKs, after binding with a ligand (the signal), induce some changes
into the cell (ex. gene expression) in order to mediate a biological effect (ex.
entering the cell cycle).

The example we are developing here is that of the response induced by the

9

signal carried by an epidermic growth factor protein (egf). The dimeric form
(1) of egf can bind to its associated receptor egfr (2), a transmembrane
protein with an extracellular ligand-binding domain located on the plasmic
membrane of some cells. This binding activates egfr by phosphorylating an
internal domain of the protein (3 and 4). This activation leads to multiple
interactions with cytoplasmic complexes of proteins by successive binding-
phosphorylations, starting with the adapter protein shc (5). The cascade of
interactions ends with the activation of the extracellular signal-regulated ki-
nase erk. Once phosphorylated, this protein can then be transported into the
nucleus by means of a translocation mechanism and will thereafter modify the
gene expression, stimulating the cell to enter mitosis. This causes the cell to
divide and proliferate.

After the biological description egf, rtk, and shc have respective arities 3,
4, and 2. We give here the formal rendering of the five first steps described
above:

r1 : ((egf, 1, 2, ∅), (egf, 1, 2, ∅)) ∈ C

r2 : ((egf, 2, ∅, ∅), (egfr, 1, 4, ∅)) ∈ C

r3 : ((egfr, 2, 3 + 4, ∅), (egfr, 2, 3 + 4, ∅)) ∈ C

r4 : ((egfr, 2, ∅, ∅), (egfr, 2, ∅, ∅)) ∈ D

r5 : ((egfr, 3, ∅, ∅), (shc, 1, 2, ∅)) ∈ C

A possible run of those rules is presented in Figure 3, showing that our lan-
guage is expressive enough to define the inherent causality involved in the
transduction in a precise yet natural way.

A couple of problems of our notation deserve to be discussed though. Consider
the initial solution:

egf(1 + 2) , egf(1 + 2) , egf(1 + 2) , egf(1 + 2) ,

mLegfr(1 + 2x + 3 + 4) ,egfr(1 + 2x + 3 + 4) ,M M[shc(1 + 2) ,S]

After two applications of rule r1, we obtain the solution

egf(1x + 2) ,egf(1x + 2) ,egf(1y + 2) ,egf(1y + 2) ,

mLegfr(1 + 2x + 3 + 4) ,egfr(1 + 2x + 3 + 4) ,M M[shc(1 + 2) ,S]

that reduces, after two application of rule r2 to the wrong solution

egf(1x + 2) ,egf(1x + 2u) ,egf(1y + 2v) ,egf(1y + 2) ,

mLegfr(1u + 2x + 3 + 4) ,egfr(1v + 2x + 3 + 4) ,M M[shc(1 + 2) , S]

10

egf(1 + 2) , egf(1 + 2) ,

mL egfr(1 + 2+3 + 4) , egfr(1 + 2+3 + 4) ,M M[shc(1 + 2) , S]
τ

−→ egf(1z + 2) , egf(1z + 2) ,

mL egfr(1 + 2 + 3 + 4) , egfr(1 + 2 + 3 + 4) ,M M[shc(1 + 2) , S] (r1)

τ
−→ egf(1z + 2y) , egf(1z + 2) ,

mL egfr(1y + 2 + 3 + 4) , egfr(1 + 2 + 3 + 4) ,M M[shc(1 + 2) , S] (r2)

τ
−→ egf(1z + 2y) , egf(1z + 2u) ,

mL egfr(1y + 2 + 3 + 4) , egfr(1u + 2 + 3 + 4) ,M M[shc(1 + 2) , S] (r2)

τ
−→ egf(1z + 2y) , egf(1z + 2u) ,

mL egfr(1y + 2x + 3 + 4) , egfr(1u + 2x + 3 + 4) ,M M[shc(1 + 2) , S] (r3)

τ
−→ egf(1z + 2y) , egf(1z + 2u) ,

mL egfr(1y + 2 + 3 + 4) , egfr(1u + 2 + 3 + 4) ,M M[shc(1 + 2) , S] (r4)

τ
−→ egf(1z + 2y) , egf(1z + 2u) ,

mL egfr(1y + 2 + 3t + 4) , egfr(1u + 2 + 3 + 4) ,M M[shc(1t + 2) , S] (r5)

Fig. 3. The first steps of the RTK-MAPK cascade.

where two different dimeric forms of egf connect to a same pair of egfr recep-
tors. Our notation is too simple to rule out such configurations. In mκ-calculus,
this expressiveness issue is solved by the use of reaction ids and pattern match-
ing over them. Actually, this issue is related to a more general question named
self-assembly problem and worth to be studied independently [9].

The second problem is manifested at the end of the RTK-MAPK pathway. The
pathway causes a phosphorylation of a particular protein (erk) that enters
in the nucleus, which is represented as cell, as well. At this stage we have
no mechanism that make entities enter in the cell. Such mechanisms will be
discussed in detail in Section 5.

3 Extensional semantics: weak bisimulation

The transition relation of Definition 2 associates solutions to graphs where
nodes are solutions and µ-labelled edges model the transitions S

µ
−→ T.

The induced equivalence on bioκ-calculus is graph isomorphism: two terms
are equivalent provided their associated graphs are isomorphic. Graph iso-
morphism is however too strong as a biological semantics because it dis-

11

tinguishes solutions that differ for τ -transitions. For instance, let C(r) =
((a, 1, ∅), (b, 1, ∅)) = D(r′), that is r and r′ are reversible reactions. Then
the solutions a(1y + σ) ,b(1y + σ′) and a(1 + σ) ,b(1 + σ′) have underly-
ing graphs that are not isomorphic. The failure of the isomorphism is due
to τ -transitions: every solution may be reduced to the other by means of a
τ -transition.

The following equivalence corrects the above criticism. It adapts weak bisim-
ulation [1] to our setting. We write S

τ
=⇒ S′ if S

τ
−→

∗
S′ and S

µ
=⇒ S′, with

µ 6= τ , if S
τ

−→
∗ µ
−→

τ
−→

∗

S′.

Definition 3 A (weak) bisimulation is a symmetric binary relation R be-
tween solutions such that S R T implies:

(1) if S
τ

−→ S′ then T
τ

=⇒ T′ and S′
R T′;

(2) if S
ax

r−→ S′ then T
ax

r=⇒ T′ and S′
R T′.

S is bisimilar to T, written S ≈ T, if S R T for some bisimulation R .

With this notion of equivalence, it is possible to show the following properties
for the core-bioκ-calculus:

Proposition 2 (1) “ , ” is an abelian monoidal operator with identity 0. Na-
mely S ,T ≈ T ,S and (S ,T) ,R ≈ S , (T ,R) and S ,0 ≈ S.

(2) ≈ is preserved by injective renamings that are identities on dangling edge
names. Namely, let ι be an injective renaming on en(S) such that ι is the
identity on de(S), then S ≈ ι(S).

(3) ≈ is preserved by reversible rules. Namely, let C(r) = ((a, i, ψ), (b, j, φ))
and D(r′) = ((a, i, ψ), (b, j, φ)) then a(i+ψ+σ) ,b(j+φ+σ′) ≈ a(ix +
ψ + σ) ,b(jx + φ+ σ′).

Another relevant property of ≈ is that every two bisimilar systems behave in
the same way when plugged in a same context.

Theorem 1 ≈ is a congruence.

Proof: We must prove that, if S ≈ T then

(1) S ,R ≈ T ,R,

(2) mL S M[R] ≈ mLT M[R]

(3) mLM M[S] ≈ mLM M[T]

when these solutions are well-formed. We demonstrate (1), the other cases are sim-
ilar. Let R be the bisimulation containing the pair (S,T) and let (S′ ,R) R

′ (T′ ,R)
if

12

(1) S′
RT′,

(2) and S′ ,R and T′ ,R are well-formed.

To demonstrate that R
′ is a bisimulation one has to prove that if S′ ,R

µ
−→ U then

there exists U′ such that T′ ,R
µ

=⇒ U′ and U R
′U′. There are two cases:

µ = ax
r. Then either U = S′ ,R′ with R

ax
r−→ R′ or U = S′′ ,R with S′

ax
r−→ S′′. The

first case is immediate. In the second case, T′
ax

r=⇒ T′′ and S′′
RT′′. By definition:

(S′′ ,R)R
′(T′′ ,R).

µ = τ . The interesting case is when S′ and R interact (the other cases are dealt as

above) by the rule (react). Suppose U = S′′ ,R′ with S′
ax

r−→ S′′ and R
bx
r−→ R′.

Since S′
RT′, there exists T′′ such that T′

ax
r=⇒ T′′ and S′′

RT′′. Then, by (react),
T′ ,R

τ
=⇒ T′′ ,R′ and (S′′ ,R′)R

′(T′′ ,R′) by definition of R
′.

The substitution property of Proposition 2 owned by ≈ might be too strong
in biology, thus making this equivalence not realistic. In this context, one
usually wants to prove that two parts behave in the same way when plugged
under a certain number of contexts, rather than every possible one. Therefore,
a semantics owning a parametric congruence property might fit better with
biology. However what these parameters are and what are the properties owned
by a “good” extensional semantics for biology remains unclear to us and is
left as an open issue.

We finish this section by a series of remarks concerning ≈. It is worth noticing
for example that S ≈ T does not imply de(S) = de(T). For two reasons: First of

all, by bisimulation, S
ax

r−→ S′ may be matched by T
ay

r−→ T′ with x 6= y. Second,
taking empty biological relations – i.e. C = ∅ and D = ∅ –, then a(1x) ≈ 0 but
their dangling edges are different. Nevertheless, one might establish a relation
between subsets of dandling edges of two bisimilar solutions. Let oe(S), called
the observable edges, be the set

oe = {x | S
ax

r−→ S′ and r in domain of D}

It is easy to prove that if S ≈ T then there is an injective renaming ι such
that oe(S) = ι(oe(T)).

Finally, as an illustration of Definition 3, one may note that a cell whose
membrane cannot interact with elements outside is equivalent to the empty

solution. Let M be a group of proteins. M is said to be inert if M 6
ax

r=⇒ for every
ax
r . It is possible to verify that, if M is inert, then mLM M[S] ≈ 0.

13

4 Cell interactions

The calculus of Section 2 is not very different from mκ-calculus. Cells, in par-
ticulars, do not play any relevant role since their structure is preserved by
the transition. In this section we explore an extension with brane primitives,
thus being able to model merging and splitting of cells such as the following
endosomes fusion:

esmLM M[S] , esmLN M[T] τ
−→ esmLM ,N M[S ,T]

The extension of core bioκ-calculus we are going to design retains higher-
order mechanisms, following higher-order π-calculus, a similar extension al-
ready studied for π-calculus [10].

4.1 Mreagents

We begin by augmenting the syntax with membrane reagents:

Definition 4 The syntax of the bioκ-calculus defines the solutions S by the
grammar:

M, S,T ::= 0 | a(σ) | mLM M[S] | S , T | HM ;SI · T

(empty) (protein) (cell) (group) (mreagent)

An mreagent HM ;SI ·T is an intermediate (unstable) solution that is used for
manifesting the capability of a membrane M, isolating a solution S from the
environment T, to fuse with another membrane. This remark leads to consider
the elements M and S as the components of a cell mLM M[S] and, as such, the
following well-formedness constraints are put on their structure:

• M is a multiset of proteins;
• de(S) ⊆ de(M), namely the dandling edges of S are connected to proteins

located in the membrane M;
• mreagents do not contain other mreagents.

Two operations involve membranes: fusions, which put together in a unique
cell two cytoplasms separated by two membranes, and activations which change
the type of a membrane as a consequence of a complexation or a decom-
plexation. Fusions are defined by a function F from rule names to triples
((m,m′),n). We write (m ⊗ m′,n) = F(r) if either F(r) = ((m,m′),n) or
F(r) = ((m′,m),n). We also write m ∈ F(r) if (m ⊗ m′,n) = F(r), for some
m′ and n. We assume that the domains of F , C and D are disjoint. Activations

14

are defined by a function A that takes pairs (ar,m) and returns membrane
names. The intuition is that a reaction involving a transmembrane protein
may activate the membrane it belongs to, thus preparing the cell to a possible
fusion.

With abuse of notation, we use µ to also range over labels of the form mr.

Definition 5 The transition relation
µ

−→ is the least one that includes the
rules in Definition 2 where (mem) and (ms-react) have also the premise
“(ar,m) not in the domain of A” and the following reductions:

(open)

m ∈ F(r)

mLM M[S]
mr−→ HM ;SI · 0

(grasp)

S
µ

−→ HM ; S′′I · S′

S ,T
µ

−→ HM ; S′′I · (S′ ,T)

(fuse-h)

S
mr−→ HM ;S′′I · S′ T

nr−→ HN ;T′′I · T′

F(r) = (m ⊗ n,m′)

S ,T
τ

−→ S′ ,T′ ,m′LM ,N M[S′′ ,T′′]

(fuse-v)

S
nr−→ HN ;TI · S′

F(r) = (m⊗ n,m′)

mLM M[S] τ
−→ m′LM ,N M[S′] ,T

(mem-a)

M
ax

r−→ M′

A(ar,m) = n diff(M,M′) ∩ en(S) = ∅

mLM M[S]
ax

r−→ nLM′ M[S]

(ms-areact)

M
ax

r−→ M′ S
bx

r−→ S′

a 6= b A(ar,m) = n

mLM M[S] τ
−→ nLM′ M[S′]

Rule (open) prepares a cell to be fused with an enclosing cell or with a peer
cell; the precondition guarantees that the cell may participate to a fusion. Rule
(grasp) lifts the fusion capability to groups by freezing them in a mreagent.
Rules (fuse-h) and (fuse-v) define fusions between peer and nested cells,
respectively. The new cell is created with the membrane name returned by
the function F . Rule (mem-a) is a refinement of (mem). It models possible
side-effects on the membrane name due to interactions between membrane
proteins and proteins outside the cell. Such interactions may activate mem-
branes by changing their fusion capability, which is encoded in our formalism
by membrane names. In a similar way, rule (ms-areact) refines (ms-react).

15

4.2 Viral infection

A virus is an intracellular parasite that uses the infected cell replication ma-
chinery in order to duplicate its own genetic material. Usually, a virus consists
of a genetic material (DNA or RNA), a proteic structure called capsid pro-
viding protection for the genetic material – we use the term of nucleocapsid
to denote both the capsid and the genetic material –, and a possible envelope
(usually extracted from a former infected cell and used later on to infect other
cells).

Below we encode in bioκ-calculus an influenza-like virus relying on similar
descriptions in [6,11]. We focus on the infection part, as we cannot express
any creation of new material. This part consists of the following steps:

(1) a protein-protein interaction between a virus membrane protein – the
hemagglutinin ha – and a receptor – a glycoprotein gly – on the cell’s
membrane; this activates gly and prepares the cell to the phagocytosis;

(2) the phagocytosis of the virus occurs thus creating a new vesicle ves
engulfing the virus;

(3) a fusion occurs between the new vesicle and an endosomal membrane
(edsm) in the cytoplasm; this makes the virus enter the endosome;

(4) a further fusion occurs between the endosome and the virus that is now
part of the cytoplasm; this leads to an exocytosis that eventually releases
the virus nucleocapsid into the cytoplasm.

We consider the following rules:

r3 : ((edsm,ves), edsm) ∈ F

r4 : ((edsm,vs), edsm) ∈ F

The initial solution is Virus ,Cell where the components are as follows:

Virus := vsLha(1) M[Nucaps]

Cell := cllLgly(1) ,Mc M[Endosome ,Cytosol]

Endosome := edsmLMe M[Es]

We describe the last part of the infection pathway, assuming that the virus
has already been engulfed in the host cell. We skip the first steps because we
cannot express the phagocytosis of the virus. In Section 5 we will analyse the
missing part. Therefore, let

cllLMc M[Endosome ,vesLgly(1) M[Virus] ,Cytosol]

16

be the initial solution. A possible run is:

cllLMc M[edsmLMe M[Es] ,vesLgly(1) M[Virus] ,Cytosol]
τ

−→ cllLMc M[edsmLMe ,gly(1) M[Virus,Es] ,Cytosol] (r3)

≡ cllLMc M[edsmLMe ,gly(1) M[vsLha(1) M[Nucaps] ,Es] ,Cytosol]
τ

−→ cllLMc M[edsmLMe ,gly(1) , ha(1) M[Es] ,Nucaps ,Cytosol] (r4)

4.3 An extensional semantics for cells

The extensional semantics of Definition 3 must be refined in order to ac-
count with new transitions and mreagents. This refinement should for instance
equate solutions such as a(1x) ,mLb(1x) M[S] and a(1) ,nLb(1) M[S] when
C(r) = ((a, 1, ∅), (b, 1, ∅)) D(r′) = ((a, 1, ∅), (b, 1, ∅)) and A(br,n) = m′ and
A(br′ ,m

′) = n. This case is very similar to that of reversible reactions dis-
cussed in the previous section.

The notations S
τ

=⇒ T and S
µ

=⇒ T, µ 6= τ , are defined in the same way as in
Definition 2.

Definition 6 A context bisimulation is a symmetric binary relation R be-

tween solutions such that it is a bisimulation and if S R T and if S
mr−→

HM ;S′′I · S′ then T
mr=⇒ HM′ ;T′′I · T′ and, for every N, R, and n such that

F(r) = (m⊗ n,n′), we have both:

•
(
S′′ ,n′LM ,N M[S′]

)
R

(
T′′ ,n′LM′ ,N M[T′′]

)

•
(
S′ ,n′LM ,N M[S′′ ,R]

)
R

(
T′ ,n′LM′ ,N M[T′′ ,R]

)
.

S is context bisimilar to T, written S ≈c T, if S R T for some context bisimu-
lation R .

Context bisimulation retains the same substitutivity property of ≈ stated in
Proposition 2. Besides, we have the following theorem:

Theorem 1 ≈c is a congruence.

Proof: The proof is similar to that of Theorem 1. We only discuss the case of con-
texts [·] ,R. Let R be a context bisimulation such that S RT and let (S′ ,R) R

′ (T′ ,R)
if

(1) S′
RT′,

(2) and S′ ,R and T′ ,R are well-formed.

17

To demonstrate that R
′ is a bisimulation one has to prove that if S′ ,R

µ
−→ U

then T′ ,R
µ

=⇒ U′ and U R
′U′. Among the possible cases we discuss the case when

S′ ,R
τ

−→ U is due to a rule (fuse) between an mreagent of S′ and another of R.

Let S′
mr−→ HM ; S′′′I · S′′, R

nr−→ HN ;R′′I · R′, and F(r) = (m ⊗ n,m′). Then

U = S′′ ,m′LM ,N M[S′′′ ,R′′] ,R′. Since S′
RT′ then T′

mr=⇒ HM′ ;T′′′I · T′′ and

U′ = T′′ ,m′LM′ ,N M[T′′′ ,R′′] ,R′. By definition of R :

(S′′ ,m′LM ,N M[S′′′ ,R′′])R (T′′ ,m′LM′ ,N M[T′′′ ,R′′])

Therefore U R
′U′ follows because of the R

′-closure with respect to contexts [·] ,R′.

Context bisimilarity retains a universal quantification that is hard to check in
practice. One might wonder whether it is possible to simplify the definition.
For example, instead of quantifying on cells, one may simply require the bisim-
ilarity of components of mreactants, namely M ≈c M′, S′′ ≈c T′′, and S′ ≈c T′.
It is easy to demonstrate that the induced equivalence, which we note ≈+

c , is
a congruence and ≈+

c ⊆≈c. At the time we write this note it is not clear to us
whether this containment is strict or not. This issue actually requires further
investigations.

5 Translocation and phagocytosis

The bioκ-calculus presented in Sections 2 and 4 has a limited expressive
power: mechanisms such as translocation, where a single protein may enter
a cell, or phagocytosis, where a cell may enter another cell cannot be de-
scribed. For this reason we overlooked the first steps of the virus infection in
example of Section 4.2. The integration of translocation and phagocytosis in
bioκ-calculus is not simple and admits several design choices. We discuss few
possible formalisations below.

5.1 Translocation

Translocation is a mechanism enabling the transport of proteins through a
membrane. This mechanism is very specific and controlled by particular mem-
brane proteins that are different for each type of membrane.

Translocations usually do not transport the full proteins in one step because
they are too big for traversing the membrane. This problem is solved in two
ways. One way is that the mRNA containing the genetic code of the protein
interacts with a ribosome – big proteic complex in charge of translating the

18

code. This interaction translates part of the code in the cell and, at the same
time, creates the encoded protein. Alternatively, ad-hoc proteins, called the
chaperons, are used to unfold the entering protein during the process (this
is actually what happen at the end of the RTK-MAPK cascade described in
Section 2).

We abstract from this low level mechanisms and assume that proteins may
safely traverse the membrane. A first approximative definition of translocation
might only check that the entering protein be disconnected and retains a
suitable interface:

a(φ+ ψ) ,mLM M[S] τ
−→ mLM M[a(φ+ ψ) , S′]

According to our notation, both φ and ψ are v-h-maps, therefore en(φ +
ψ) = ∅. This description is not satisfactory for it makes the membrane play a
passive role while this process is on the contrary highly specific. As such, it is
impossible to represent the effects provided by the chaperon proteins.

A better way is to model translocation as a decomplexation rule between an
external protein already connected to the membrane (and nowhere else) and
a membrane protein. To avoid the confusion of two different phenomena –
simple decomplexations and decomplexations with translocations – we use a
further function T from rule names to tuples ((a, i, φ, φ′), (b, j, ψ, ψ′),m,n).
As usual we assume that there is no clash between rule names in the domain
of T and the other functions that have been used in the paper. The two rules
controlling translocations are:

(trs-p)

T (r) = ((a, i, φ, φ′), (b, j, ψ, ψ′),m,n)

a(ix + φ+ φ′)
ax

r−→ 0

(trs-m)

M
bx

r−→ M′

T (r) = ((a, i, φ, φ′), (b, j, ψ, ψ′),m,n)

mLM M[S]
bx

r−→ nLM′ M[a(i+ φ+ φ′) ,S′]

Fig. 4. Reduction rules for translocation

In rule (trs-p) the interface of a has exactly one site bound because the
interfaces ψ and ψ′ are v-h-maps according our notation. The interface ψ is
being turned into ψ during the translocation, ψ′ is unchanged. The protein
a disappears during (trs-p). Dually, the protein a appears during (trs-m).
The translocation will be the effect of the synchronisation (react).

19

5.2 Phagocytosis.

As stated in the introduction, endocytosis is a mechanism allowing a cell to
engulf new material. There exists of course many different types of endocyto-
sis. We focus in particular on the active endocytosis which is a phenomenon
arising as a response to an activation or, more generally, to an external signal.
In order to distinguish it from the general endocytosis and since we intend
to use this phenomenon to engulf complex structures (such as a virus), we
use the term of phagocytosis, after the name of the associated brane prim-
itive. The phagocytosis of mLM M[S] – usually a small cell – by nLN M[T]
– usually a big cell – transports the former into the cytoplasm of the latter
by surrounding mLM M[S] with a new membrane that is part of N. This sur-
rounding mechanism is the problematic one because it amounts to split the
host cell membrane in some “not local” way. For example the transition

mLM M[S] ,nLN M[T] τ
−→ nLN M[n′L0 M[mLM M[S]] ,T]

is not very appropriate because the new membrane n′ is empty. As we don’t
have any mechanism for feeding the membrane yet, the solution ban complex-
ations of the new membrane with proteins.

Actually, phagocytosis should be possible provided the membrane of the host
cell had enough material for a new membrane. We therefore model phagocy-
tosis as a decomplexation of two proteins in the membranes of the reactant
cells with the side effect of splitting the host cell according to some predefined
pattern. As for translocations, we use a new functions from rule names to tu-
ples ((a, i, φ, φ′), (b, j, ψ, ψ′),m,n,n′,n′′,N′), where de(N′) = ∅. The meaning
of this tuple is the following: (a, i, φ, φ′) and (b, j, ψ, ψ′) are the two proteins
that decomplexate and are located in two membranes m and n, respectively.
The name n′ is the one given at the new membrane surrounding the phago-
cytosed cell, N′ is the membrane material of the new cell.

In the following rules, transition labels are extended with mx
r and still ranged

over by µ. Let ⊎ denote disjoint union of sets. The rules defining phagocytosis
are the one of Figure 5.

Rule (open-p) defines the transition of the phogocytosed cell. The label ax
r of

the membrane transition becomes mx
r in the cellular transition. This exposes

the phagocytosis to the label. Similarly for the rule (open-c). In (open-c)
the material needed for the new membrane surrounding the phagocytosed cell
is removed from the host cell membrane. This material is restored in the rule
(phago).

It is not clear to us how close the above rules are to the biological phagocytosis.
It is worth to observe that (open-c) is computationally expensive, at least if

20

(open-p)

M
ax

r−→ M′ P(r) = ((a, i, φ, φ′), (b, j, ψ, ψ′),m,n,n′,n′′,N′)

mLM M[S]
mx

r−→ HM′ ; SI · 0

(open-c)

M
bx

r−→
∏

k∈I⊎J bk(σk) P(r) = ((a, i, φ, φ′), (b, j, ψ, ψ′),m,n,n′,n′′,
∏

j∈J bj(σj))

nLM M[S]
nx

r−→ H∏
i∈I bi(σi) ;SI · 0

(phago)

S
mx

r−→ HM ;S′′I · S′ T
nx

r−→ HN ;T′′I · T′

P(r) = ((a, i, φ, φ′), (b, j, ψ, ψ′),m,n,n′,n′′,N′)

S ,T
τ

−→ S′ ,T′ ,n′LN M[n′′LN′ M[mLM M[S′′]] ,T′′]

Fig. 5. Reduction rules for phagocytosis

compared to the other operations described in the paper. According to (open-
c), extracting a pattern of proteins out of a membrane amounts to a long sequel
of checks that lock the membrane, thus inhibiting other interactions. It is an
open question whether it is possible or not to design simpler and more basic
mechanisms for phagocytosis.

Then we could finish the modelling of the example of Section 4.2. We present
Figure 6 the complete set of rules used to make evolve the solution Virus ,Cell

to the state in which the nucleocapsid is released into the cytoplasms of the
infected cell.

r1 : ((ha, 1, ∅), (gly, 1, ∅)) ∈ C

r′1 : (glyr1
,cll) 7→ acll ∈ A

r2 : ((ha, 1, ∅), (gly, 1, ∅)),vs,acll,cll,ves, (gly(1)) ∈ P

r3 : ((edsm,ves), edsm) ∈ F

r4 : ((edsm,vs), edsm) ∈ F

Fig. 6. Set of interactions rules modelling the virus infection

The formal rendering of the example of Section 4.2 can now be stated from
the beginning, namely before that the phagocytosis occurs. This is what is
presented in Figure 7.

21

vsLha(1) M[Nucaps] ,cllLgly(1) ,Mc
M[Endosome ,Cytosol]

τ
−→ vsLha(1x) M[Nucaps] ,acllLgly(1x) ,Mc

M[Endosome ,Cytosol] (r1 − r′1)

τ
−→ cllLMc M[vesLgly(1) M[vsLha(1) M[Nucaps]] ,Endosome ,Cytosol] (r2)

τ
−→ cllLMc M[edsmLMe ,gly(1) M[Virus ,Es] ,Cytosol] (r3)

≡ cllLMc M[edsmLMe ,gly(1) M[vsLha(1) M[Nucaps] ,Es] ,Cytosol]
τ

−→ cllLMc M[edsmLMe ,gly(1) ,ha(1) M[Es] ,Nucaps ,Cytosol] (r4)

Fig. 7. Run of the first steps of the virus infection

6 Implementing the core bioκ-calculus

In this section we discuss an implementation of core bioκ-calculus in π-
calculus [12]. The encoding below is simpler than the one in [3], because rules
in core bioκ-calculus have always two interacting proteins. In particular, the
implementation below do not change the granularity of reactions: every bio-
logical reaction is translated into single π-calculus transitions.

We begin with a brief introduction to π-calculus, and then detail the compi-
lation of bioκ-calculus.

6.1 The π-calculus

The π-calculus uses a countable set of names N , ranged over by x, y, z, . . . ,
and agent names, ranged over by A, B, Tuples of names are noted x̃.
Processes P are defined by the grammar:

P := 0 | x z̃.P | x (z̃).P | (x)P | P + P | P |P

| [x = y]P | A(x̃)

where process names are defined by a set of equations A(z̃) := P .

A process can be the inert process 0, an output x z̃.P that produces a message
x z̃ and behaves like P ; an input x (z̃).P that consumes a message x ũ and
behaves like P{ũ/z̃}; a restriction (x)P that behaves as P except that messages
on x are prohibited; a choice P + Q that behaves either as P or as Q; a
parallel composition P |Q of two processes; a match [x = y]P that behaves as
P provided x and y are equal; an agent invocation A(x̃). The input x (z̃).P ,
restriction (x)P , and agent definition A(z̃) := P are binders of names z̃, x, and
z̃, respectively. The scope of these binders are the processes P . We use the

22

(inp)

x (z̃).P
x (z̃)
−→ P

(out)

x z̃.P
x z̃
−→ P

(new)

P
µ

−→ Q x 6∈ fn(µ)

(x)P
µ

−→ (x)Q

(open)

P
(ỹ)x z̃
−→ Q z′ 6= x z′ ∈ z̃ \ ỹ

(z′)P
(z′ỹ)x z̃
−→ Q

(sum)

P
µ

−→ P ′

P +Q
µ

−→ P ′

(par)

P
µ

−→ P ′ bn(µ) ∩ fn(Q) = ∅

P |Q
µ

−→ P ′|Q

(match)

P
µ

−→ Q

[u = u]P
µ

−→ Q

(app)

A(x̃) := P P{z̃/x̃}
µ

−→ Q

A(z̃)
µ

−→ Q

(com)

P
(ỹ)x z̃
−→ P ′ Q

x (w̃)
−→ Q′ ỹ ∩ fn(Q) = ∅

P |Q
τ

−→ (ỹ)(P ′|Q′{z̃/w̃})

Fig. 8. Operational semantics of the π-calculus.

standard notion of α-equivalence, free and bound names of processes, noted
fn(P) and bn(P), respectively. In the following we let

∑
i∈I Pi be the choice

between the processes Pi. We also let
∏

i∈I [xi = yi] be the sequence of matches
[xi = yi].

Figure 8 collects the semantics of π-calculus, except for the symmetric forms
of rules (sum) and (par) that are omitted. The semantics is described as a
transition system on syntactic processes with transitions labelled by actions.
These actions, written µ, are of three types: internal actions τ , inputs x (ũ),
and outputs (ỹ)x ũ. Outputs (ỹ)x ũ are bounded when ỹ is not empty. Bounded
outputs, (ỹ)x ũ, generated by the transitions above all satisfy: 1) ỹ ⊆ ũ and
2) x 6∈ ỹ.

One defines:

fn(τ) = ∅ bn(τ) = ∅

fn(x (ũ)) = {x} bn(x (ũ)) = ũ

fn((ỹ)x ũ) = {x} ∪ (ũ \ ỹ) bn((ỹ)x ũ) = ỹ

Rules (par), (com), (new) and (open) have side-conditions controlling bounded
output and involving fn(µ) and bn(µ). Specifically, these conditions ensure
that 1) the exported bounded names do not capture any variables when they

23

finally appear in the right hand side of the conclusion of rule (com), 2) it is
not possible to input or output on a restricted name.

6.2 The compilation

We distinguish three names, v, h, and b, in the set N . These names are consid-
ered constants. Our compilation is “protein-centric”, that is to say proteins are
translated as processes whose behaviour is obtained from all the interactions
they participate to. In particular, the behaviour of a protein a is specified by
a (unique) process definition

A(ũ; x̃; r̃) := P .

where the arguments of A have been partitioned using semicolons because they
play different roles. The tuples ũ and x̃ have length s(a). Names ũ are always
instantiated by v, h, or b, according to the corresponding site is visible, hid-
den, or bound, respectively. The tuple x̃ is instantiated by names representing
bindings between proteins. These names are meaningful provided the corre-
sponding name in the tuple ũ is b. When names are meaningless, they are set
to h. The tuple r̃ has length twice the number of complexation rules where a
is a reactant (r̃ may be seen as a sequence of pairs). Let r be a complexation
with a reactant a and let ri, re be the pair in r̃ corresponding to such a rule.
The two names ri and re are used for interacting with proteins outside the
cell and with proteins in the cytoplasm by means of r. This distinction is sig-
nificant for proteins in membranes; the two names are identical for the other
proteins. In the following we assume that complexation rules are enumerated.
Therefore, there is a first complexation rule, a second one, etc.

The A(ũ; x̃; r̃) := P requires the following notational conventions:

prji(x̃) is the i-th element of x̃.
♯c(r) gives the ordinal of the complexation rule r. It is undefined if r is a

decomplexation.
♯d,a(r) gives the bound site of the protein a in the decomplexation rule r. It

is undefined if r is a complexation or a is not a reactant of r.
test(ũ, φ) gives the sequence of matches

∏
j∈dom(φ)[prjj(ũ) = φ(j)].

24

set(ũ, i, φ) , where i 6∈ dom(φ), is defined elementwise as follows:

prjj(set(ũ, i, φ)) :=

prjj(ũ) if j /∈ {i} ∪ dom(φ)

b if i = j and prji(ũ) = v

v if i = j and prji(ũ) = b

h if φ(j) = v

v if φ(j) = h

setx(ũ, i) is defined elementwise as follows:

prjj(setx(ũ, i)) :=

x if i = j

prjj(ũ) otherwise

Every preliminary notion is set for the definition of A(ũ; x̃; r̃).

A(ũ; x̃; r̃) :=
∑

a(i+φ+φ′)∈leftC(r) test(ũ, i+ φ+ φ′) (z)
(

prj2♯c(r)(r̃) z. A(set(ũ, i, φ); setz(x̃, i); r̃)

+ prj2♯c(r)+1(r̃) z. A(set(ũ, i, φ); setz(x̃, i); r̃)
)

+
∑

a(i+φ+φ′)∈rightC(r) test(ũ, i+ φ+ φ′)
(

prj2♯c(r)(r̃) (z). A(set(ũ, i, φ); setz(x̃, i); r̃)

+ prj2♯c(r)+1(r̃) (z). A(set(ũ, i, φ); setz(x̃, i); r̃)
)

+
∑

a(i+φ+φ′)∈leftD(r) [prji(ũ) = b]test(ũ, φ+ φ′)

prj♯
d,a(r)(x̃) . A(set(ũ, i, φ); seth(x̃, i); r̃)

+
∑

a(i+φ+φ′)∈rightD(r) [prji(ũ) = b]test(ũ, φ+ φ′)

prj♯
d,a(r)(x̃) (). A(set(ũ, i, φ); seth(x̃, i); r̃)

Every branch of the choices in A(ũ; x̃; r̃) verifies whether the interface fits
with a left-hand side of some rule having A as a reactant or not. The test is
implemented by the operation test(ũ, φ), following our encoding of sites in
the arguments ũ of A. We notice that, the branches of A(ũ; x̃; r̃) corresponding
to decomplexation rules have an additional test [prji(ũ) = b] verifying that the
i-th site is actually bound.

Once a branch has been chosen, a biological reaction is compiled into a single
π-calculus interaction, where the left reactant plays the role of sender and the

25

right reactant plays the role of receiver. The sender of a complexation has to
create a new name representing the biological edge created by the rule. This
name is communicated during the interaction to the other reactant and will
be used to decomplexate the two proteins. The new state of the protein a is
obtained by updating the sites as prescribed by the rule – see the definition
of set.

Few other notational conventions are useful for the definition of the com-
pilation. Let JσKa be function yielding a tuple of length 2 × s(a) defined
elementwise as follows:

prji(JσKa) =

v if σ(i) = v

h if σ(i) = h

b otherwise

prj2i(JσKa) =

x if σ(i) = x and x /∈ {v, h}

h otherwise

For example
q
1x + 2 + 3

y
a = (b, v, h; x, h, h). We notice that JσKa is undefined

if σ is not total on 1..s(a). Let also (x1, y1) · · · (xn, yn) |a be the subsequence
containing (xi, yi) provided a is a reactant of the i-th complexation rule. Fi-
nally, let n be the number of complexation rules of the biological system. The
compilation of a solution S is given by JSK(r1,r1),···,(rn,rn), where r1, · · · , rn are
pairwise different names:

J0Kℓ := 0

Ja(σ)Kℓ := A(JσKa ; ℓ|a)

JS ,TKℓ := JSKℓ | JTKℓr
mLM M[S]

z
(r1,r′

1
)···(rn,r′n)

:= (r′′1) · · · (r
′′
n)

(
JMK(r′

1
,r′′

1
)···(r′n,r′′n) | JSK(r′′

1
,r′′

1
)···(r′′n,r′′n)

)

The compilation schemas are simple except that of mLM M[S], which is dis-
cussed below. As regards cells, one has to ban reactions between proteins in
the cytoplasm and those that are external to the cell. This may be enforced
in π-calculus by picking a fresh set of names for complexation rules. For this
reason the compilation creates a fresh set of complexation names r′′1 , · · · , r

′′
n

and allows them to occur in proteins of S and M. On the contrary, proteins in
the membrane M may interact both with the external environment and with
the cytoplasm. The compilation supports this feature by encoding proteins in
M with the set of complexation names of the external environment and the
fresh set of complexation names of the cytoplasm. It is worth to notice that

26

decomplexations are not an issue because their correctness follows from the
well-formedness of the solution.

The following proposition states the correctness of the compilation. The proof
is a standard induction on the structure of S.

Proposition 2 Let C = {r1, · · · , rn}, and let r1, · · · , rn and r′1, · · · , r
′
n be two

tuples of pairwise different names. Let ℓ = (r1, r
′
1) · · · (rn, r

′
n). The following

reductions are in core bioκ-calculus.

(1) S
ax

rk−→ T, where a is the left reactant (resp. right reactant), if and only

if either JSKℓ

(z)rk z
−→ JTKℓ or JSKℓ

(z)r′
k

z
−→ JTKℓ (resp. either JSKℓ

rk (z)
−→ JTKℓ or

JSKℓ

r′
k

(z)
−→ JTKℓ);

(2) S
ax

r−→ T, where r is a decomplexation rule and a is the left reactant

(resp. the right reactant), if and only if JSKℓ

z
−→ JTKℓ (resp. JSKℓ

z ()
−→

JTKℓ);
(3) S

τ
−→ T if and only if JSKℓ

τ
−→ JTKℓ.

We conclude by commenting on the extension of the encoding to the full bioκ-
calculus. The problematic rules of bioκ-calculus are fusions because they allow
interactions between proteins that were banned. For instance, the fusion be-
tween two cells in a same solution allows interactions between the proteins in
the two cytoplasms. So, a local interaction has global effects in a given envi-
ronment. This situation is usually hard to encode into π-calculus. A way out
is to use formalisms permitting simple modellings of such global effects, such
as the fusion calculus [13]. In this calculus, a communication equates names,
thus causing communications on names that were not possible before. In the
foregoing compilation, a fusion should equate tuples of names r1, · · · , rn, thus
allowing complexations between proteins using such names. We are currently
investigating the soundness of this idea.

7 Conclusions

We have presented a unique framework for modelling proteins and cells inter-
actions – the bioκ-calculus. Protein interactions in bioκ-calculus are of two
types: complexations and decomplexations; cell interactions in bioκ-calculus
describe fusions. All interactions are “local” in the sense that they always
involve two proteins. Fusions have been modelled by using an higher order
semantics in the style of [10]. We have studied the operational semantics of
bioκ-calculus and an extensional semantics of its – the bisimulation. The
expressiveness has been analysed by modelling two significant systems and

27

comparing them with similar ones that have been proposed in other algebraic
approaches.

Some extensions of bioκ-calculus rules may be done without difficulties. In
this paper we have discussed rules modelling translocations and phagocytosis,
even if the latter ones are not very satisfactory. Other biological reactions have
not yet been considered and are left to future work, such as those in [6] or
in [11].

Extensional semantics of bioκ-calculus are an intriguing issue we plan to in-
vestigate in the future. In particular we are interested in mathematical tools
and techniques that help in assessing properties of biological solutions. Such
tools might include stochastic measures in the style of [14] and might be ex-
tensively used to predict outputs of experiments in vitro.

Acknowledgements. We thank Gianluigi Zavattaro for the discussions and
the suggestions on the encodings of the bioκ-calculus into π-calculus.

References

[1] R. Milner, Communicating and mobile systems: the π-calculus, Cambridge
University Press, Cambridge, 1999.

[2] A. Regev, W. Silverman, E. Shapiro, Representation and simulation of
biochemical processes using the π-calculus process algebra, in: R. B. Altman,
A. K. Dunker, L. Hunter, T. E. Klein (Eds.), Pacific Symposium on
Biocomputing, Vol. 6, World Scientific Press, Singapore, 2001, pp. 459–470.
URL http://www.smi.stanford.edu/projects/helix/psb01/ regev.pdf

[3] V. Danos, C. Laneve, Formal molecular biology, Theoritical Computer Science
325 (1) (2004) 69–110.

[4] L. Cardelli, A. D. Gordon, Mobile ambients., Theoritical Computer Science
240 (1) (2000) 177–213.

[5] G. Paun, Membrane computing. an introduction., Springer-Verlag, Berlin, 2002.

[6] L. Cardelli, Brane calculi., in: CMSB, 2004, pp. 257–278.

[7] A. Regev, E. M. Panina, W. Silverman, L. Cardelli, E. Shapiro, Bioambients: an
abstraction for biological compartments, Theoretical Computer Science 325 (1)
(2004) 141–167.

[8] R. Milner, Communication and Concurrency, International Series on Computer
Science, Prentice Hall, 1989.

28

[9] V. Danos, F. Tarissan, Self-assembling graphs, in: J. Mira, J. R. Álvarez (Eds.),
Mechanisms, Symbols, and Models Underlying Cognition, Vol. 3561 of Lecture
Notes in Computer Science, Springer, 2005, pp. 498–507.

[10] D. Sangiorgi, From π-calculus to Higher-Order π-calculus — and back, in: M.-
C. Gaudel, J.-P. Jouannaud (Eds.), Proc. TAPSOFT’93, Vol. 668 of Lecture
Notes in Computer Science, 1993, pp. 151–166.

[11] V. Danos, S. Pradalier, Projective brane calculus., in: CMSB, 2004, pp. 134–148.

[12] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, Journal of
Information and Computation 100 (1992) 1–77.

[13] J. Parrow, B. Victor, The fusion calculus: Expressiveness and symmetry in
mobile processes, in: Proceedings of LICS ’98, IEEE, Computer Society Press,
1998, pp. 176–185.

[14] A. Credi, M. Garavelli, C. Laneve, S. Pradalier, S. Silvi, G. Zavattaro,
Modelization and simulation of nano devices in nanoκ calculus, in: CMSB, Vol.
4695 of Lecture Notes in Computer Science, Springer, 2007, pp. 168–183.

29

