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Abstract

We propose a method employing mathematical programming and global
optimization techniques for solving inverse problems arising in biological
regulatory network (BRN) reconstruction. This problem consists in esti-
mating unknown parameters of a model that describe the structure and
dynamics of a biological system from a set of experimental observations
and can be naturally cast as an optimization problem: choose the param-
eter values minimizing a given distance between the observed and esti-
mated values of some observable variables. This minimization is subject
to constraints derived from the models.

Two significant examples are presented on how to handle different
kinds of dynamics: pattern formation occurring from diffusable and non-
diffusable gene products in the drosophila melanogaster morphogenesis
and reconstruction of the gene regulatory network of arabidospsis thaliana

based on the identification of stable sub-networks during morphogenesis.

1 Introduction

A typical problem in biological systems consists in the simulation of a biological
process, where from certain initial or boundary conditions one proceeds to solve
a system of equations describing the biological process and obtains trajectories
describing the system evolution in time and/or space. This is what is known
as a forward problem. An example of a forward problem is the computation of
the time evolution of a Gene Regulatory Network (GRN) configuration (values
associated to the genes and representing gene products concentrations) given an
initial condition and some local interaction rules. The GRN may be described in
a detailed-quantitative manner by a system of Nonlinear Differential-Algebraic
Equations (NDAE), where the values associated to the genes are real and di-
rectly represent the gene products concentrations, or in a coarse-qualitative
manner by a system of nonlinear Binary or Multivalued Difference Equations
(NBdE,NMdE) or by a system of Boolean or Multivalued Logical Equations
(LE,MLE), where the set of values represent discrete levels of gene products
concentrations such as abscence (0) or saturation (1) in the case of boolean
representations.
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That, however, presupposes that all “known values” (coefficients of the DAE
system, initial concentration of gene products) are known apriori, which is rarely
the case. Thus, pre-simulation methods addressing the problem of estimating
the unknown parameters from a set of experimental observations become of
paramount importance. Such problems are often termed inverse problems as
in some sense one needs to solve a problem having the same form, but where
the roles of known and unknown values are interchanged and because only the
model equations for the forward problem are known.

The usual approach developped in the context of molecular biology in order
to adress the problem is often based on simulation techniques. It requires first
to design specific heuristics that will infer values to the missing parameters
and then, in a second step, to simulate the evolution of the system in order
to compare the values generated by the simulation with the observed ones.
The gap between generated and observed values then defines the quality of the
estimation. As one might guess, the efficiency of this approach is directly related
to the heuristic used which induces generally to spend time and effort on tuning
the algorithms for each study. This remark has a great impact as soon as we
intend to cover a wide range of organisms.

The approach we propose in this paper relies on the remark that the prob-
lem of estimating unknown parameters from a set of experimental observations
can be naturally cast as an optimization problem: choose the parameter values
minimizing the sum of a given norm of the differences between the observed and
estimated values ofsome observables. Although designing specific algorithms for
a given organism could provide faster results, the approach we propose has the
advantage of generality: potentially any parameter estimation problem can be
modeled by mathematical programming and solved with corresponding general-
purpose algorithms. More precisely, we use the modeling language AMPL [2]
in order to describe the biological system and then apply different reformula-
tions (both exact and approximative) in order to ease the computation process
carried out by dedicated Non Linear Programs (NLP) and Mixed Integer NLP
(MINLP) numerical solvers [5]. The relevance of a general-purpose approach
that sacrifices some computational efficiency is to provide general modeling en-
vironments and software packages with solution methods that can easily adapt
to all (or at least most) models input by the user. This need is in our case
explicitly established by the EU Morphex project and its associated modeling
language.

The rest of the paper is organized as follow. In Section 2 we present the
basic concepts underlying mathematical programming. In Section 3 we show
how to use such a technique to reconstruct the GRN of Drosophila meloganaster

in the early development stage relying on NDAE. In Section 4 we test the same
approach but on the Arabidopsis thaliana modeled using BNdE. Finally, in
Section 5 we discuss the main advantages and drawbacks of our approach.

2 Mathematical programming and optimization

A mathematical programming problem is formulated as follows:

minx f(x)
subject to g(x) ≤ 0,

}

(1)
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where x ∈ R
n are the decision variables and f : R

n → R is the objective func-

tion to be minimized subject to a set of constraints g : R
n → R

m which may
also include variable ranges or integrality constraints on the variables. Global
Optimization is concerned with the solution of problems (1) where f, g are non-
convex nonlinear forms. A problem where f, g are nonlinear is known as a Non-
linear Programming problem (NLP); if some integrality constraints are present
on the variable bounds the problem is known as a Mixed-Integer NLP (MINLP).
A mathematical programming problem which has some integer variables but
whose objective function and constraints are linear forms is called a Mixed-
Integer Linear Programming (MILP) problem. There exists general-purpose
solution algorithms, both exact and heuristic, for all problem forms in NLP,
MINLP, MILP. Currently, MILP solution methods are the most advanced, and
the de facto standard solver is the ILOG CPLEX [3] solver. MINLPs and non-
convex NLPs can be solved by many different global optimization methods such
as BARON [8]. Most frequently, NLPs and MINLPs undergo a reformulation
stage before being solved [5, 6].

3 Reproducing a continuous regulation of genes

The motivation of the present section is to test the relevancy of this framework
on a first biological case study. We focused here on the Gap-Gene formation
in the early development of Drosophila melanogaster. At this stage (between
cycle 13 and 14A), the embryo contains static nuclei which can diffuse their
gene products within their neighborhood. The model [4, 7] uses a discrete
representation of the space (linear topology) but a continuous regulation of the
genes in time. The differential equation that describe this continuous regulation
is as follows:

dgia(t)

dt
= RaΦ(uia(t)) − λagia(t) + Da(gi+1,a(t) − 2gia(t) + gi−1,a(t)), (2)

where gia(t) is the concentration of gene a (belonging to the set of genes Nγ)
in nucleus i (belonging to the set of nuclei N ι) at time t, Ra is the production
rate for gene a, Φ(y) is the sigmoid regulation function

Φ(y) =
1

2

(

y
√

y2 + 1
+ 1

)

(3)

defined for all y, uia(t) is a function defined as follows:

uia(t) =
∑

b∈Nγ

Wbagib(t) + magbcdi + ha (4)

where Wba is the weight on the arc (b, a) in the digraph representation G =
(Nγ , A) of the gene regulatory network, ma is the regulatory influence of the
maternal gene bcd, ha is the activation threshold for Φ; λa is the decay rate
and Da is the diffusion coefficient for gene a.

The solution method proposed in [7] is a Global Optimization (GO) evolu-
tionary algorithm applied to the following unconstrained optimization problem:

min
∑

i∈Nι

∑

t

(gia(t) − gdata

ia (t))2 + ΠR + Πλ + ΠD + Πu, (5)
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where gdata

ia (t) is a set of experimentally observed values for the concentration
level of gene a in nucleus i at time t; ΠR is a penalty function that helps
restricting Ra to lie in a pre-determined range [RL

a , RU
a ] (Πλ and ΠD are similar

to ΠR); and finally, Πu is defined as

Πu = eΘ − 1 (6)

(where Θ = Λ(
∑

(b,a)∈A(Wbavmax

b )2 +(mav
max
bcd

)2 +h2
a)) if Θ > 0 and 0 otherwise,

and vmax

b and vmax
bcd

are the maximum values for gene b ∈ Nγ and bcd respectively.
We remark straight away that since Θ is a sum of squares, it is neces-

sarily nonnegative, which implies that it suffices to describe Πu simply as
eΘ −1 without any need for conditional definitions. Consider now the functions
α1(y) = y + 1 and α2(y) = log(y) for all y > 0. Since both are monotonically
increasing, the minimization of Πu determines the same set of optimal solutions
as the minimization of α2(α1(Πu)). Hence (5) is equivalent to:

min
∑

i∈Nι

∑

t

(gia(t) − gdata

ia (t))2 + ΠR + Πλ + ΠD + Θ. (7)

Thus, the model used in this example contains two different kinds of ele-
ments: the description of the equations (rules 2, 3, 4) that control the evolution
of the parameters and the description of the criterion that allows to establish
if the estimated values are close the real ones (rule 7). This distinction will be
naturally reflected in the model described in AMPL. The rule 5 is for instance
clearly the objective function we are looking for whereas all the equations that
describes the dynamic of the model will be stated as constraints. In order to
ease the reading, we don’t present the complete model in AMPL in this section
but in the appendix 6.1 . The only main difference between the two versions
that worth being noticed is related to the way we model the terms ΠR, Πλ and
ΠD. Since those functions corresponds to specific boundaries for the parameters
R, λ and D, it is natural to use constraints as follow:

∀a ∈ Nγ







RL ≤ Ra ≤ RU

λL ≤ λa ≤ λU

DL ≤ Da ≤ DU

It induces in particular that the objective function will have a form slightly
different from the equation (7):

min
∑

a∈Nγ

i∈Nι

t∈T data

(ga
i (t) − gdata

a
i (t))2 +

∑

a∈Nγ

b∈Nγ

(Wa
b vb

max
)2 +

∑

a∈Nγ

((mavbcd
max

)2 + h2
a). (8)

4 Using fixed points for GRN reconstruction

In the previous section, we showed an example where the objective function
derived from the equation (7) used to establish the quality of the estimated
values can easly be translated into AMPL (8). This is of course directly related
to the way the model is presented. In order to validate our approach, it is
necessary to experience the same process on another kind of criterion. This
is what this section is devoted to. More precisely, we solve here an inverse
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problem consisting in the determination of the parameters of a GRN in such a
way that the reconstructed network show observed states at given development
stages. Those transitory states of the GRN are expressed as stable states of
sub-networks such that the activities of the nodes involved in a sub-network
do not change anymore as soon as the stable state is reached and the sub-
network is isolated from the rest of the network. The case of study chosen here
is the Arabidopsis thaliana floral meristem GRN and the expression patterns
observed at the very first development stages. This network is still poorly
understood, even if data concerning genes and morphogenes involved, single
regulatory interactions and small circuits exist in the literature [1].

Given a directed graph G = (V, A), a discrete set of time instants T , a set
of development stages S (both of which we suppose to be an initial contiguous
proper subset of N) and the following functions:

• a function α : A → {+1,−1} called the arc sign function;

• a function ω : A → N called the arc weight function;

• a function x : V × T → {0, 1} called the gene activation function;

• a function ι : V → {0, 1} called the initial configuration;

• a function θ : V → Z called the threshold function,

A gene regulatory network (GRN) is a 7-tuple (G, T, α, ω, x, ι, θ) such that:

∀v ∈ V x(v, 1) = ι(v) (9)

∀v ∈ V, t ∈ T r {1} x(v, t) =

{

1 if
∑

u∈δ−(v)

α(u, v)ω(u, v)x(u, t − 1) ≥ θ(v)

0 otherwise,
(10)

where δ−(v) = {u ∈ V | (u, v) ∈ A} for all v ∈ V . Eqns. (9)-(10) to-
gether are called the evolution rules of the GRN. For any particular t ∈ T ,
x(·, t) : V → {0, 1} is called a configuration. Since the evolution rules relate a
configuration at time t with a configuration at time t − 1, if x(·, t) = x(·, t − 1)
then x(·, t′) = x(·, t) for all t′ > t: such configurations are called fixed points of
the GRN.

In this section we address the following problem:

Stable Subnetworks Reconstruction of a GRNs (SSRGRN).
Given a digraph G = (V, A), a time instant set T , a set S of devel-
opment stages, a set Rs of observed cellular types at each stage, an
arc sign function α, a set of initial configurations for each stage and
for each observed cellular type Irs

: V → {0, 1}, a set Us ⊆ V deter-
mining the nodes of the (induced) subnetwork Gs at each stage to
be reconstructed (Us ⊆ Us+1 ⊆ V ) and the observed configurations
Ors

: Us → {0, 1}, find an arc weight function ω and a threshold
function θ with the property that for all s ∈ S and all ι ∈ Irs

there
exists a gene activation function x such that (Gs, T, α, ω, x, ι, θ) is a
GRN subnetwork whose fixed points are at a minimum distance to
the observed data Ors

.
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In other words, we attempt to estimate the arc weights and threshold func-
tions of a GRN from the knowledge of the digraph topology G, the induced
subnetwork topology U and the arc sign function α in such a way that (a) the
GRN evolution rules are consistent with respect to a certain set of initial con-
figurations and (b) the fixed points in the subnetwork induced by the estimated
values are as close as possible to the given ones.

Our primary concern in solving the SSRGRN is thus modellistic rather than
algorithmic. One of the foremost difficulties is that of employing a static mod-
elling paradigm — such as mathematical programming — in order to describe
a problem whose very definition depends on time. Another important difficulty
resides in expressing the necessary and sufficient conditions for a configuration
to be a fixed point as constraints suitable for use in a formulation like (1). In
appendix 6.2, we present a simplified version in which only one targeted config-
uration S is used.

5 Conclusion

As seen in this paper, the approach we propose present the advantage of pre-
senting a unified framework able to handle two different kinds of organisms.
The chosen organisms are such that both the dynamics induced by the net-
works (continuous in the case of drosophila and discrete in arabidopsis) and
the criterion used to drive the way the values are infered tends to prove that
this approach covers any parameter estimation problem as soon as the evolu-
tion rules can be described as constraints. This provides therefore an attractive
environment for solving inverse problems in general.

However, the arabidopsis case showed that the definition of the objective
function must be delt carefully in order to render properly the dynamics that one
wants to capture. It is then compelling to try to automatize the way we define
the objective function given a set of crieria (mimicking continuous regulation,
identifying sub-networks which are stable, etc. . . ). We are already engaged in
this direction.

Besides, the description in AMPL of the model might also rise problems for
the solvers (the definition of Φ in (3 for instance) and it is then tempting to
automatize the reformulation (both exact and approximative) of the models in
order to ease the solving part. This is also a promising extension we intend
to perform in order to improve significantly the efficiency of this approach. In
particular, we intend to rely on [6] to implement the reformulations.
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6 Appendix

6.1 Drosophila model in AMPL

We present in this appendix how the model presented in Section 3 is written
in AMPL. One may see in particular that the formulation is very close to the
biological model as it is proposed in [4, 7].

• Sets:

1. set N ι ⊂ N of nuclei;

2. set Nγ ⊂ N of genes;

3. set T ⊂ N of time instants.

4. set T data ⊆ T of time instants which we have observed data for.

• Parameters:

1. ∆t ∈ R: interval length for time discretization;

2. for i ∈ N ι, a ∈ Nγ let gdata
a
i (t) ∈ R

|T data| be the observed data: for
t ∈ T data, gdata

a
i (t) is the observed concentration level of gene a in

nucleus i at time t;
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3. for a ∈ Nγ , va
max

is the maximum value for gene a

4. vbcdmax is the maximum value for gene bcd;

5. for i ∈ N ι, t ∈ T data, gdata
bcd

i (t) ∈ R is the observed data with respect
to gene bcd;

6. λL, λU : lower and upper bounds for λ;

7. RL, RU : lower and upper bounds for R;

8. DL, DU : lower and upper bounds for D;

9. for all a ∈ Nγ , i ∈ N ι, init
a
i ∈ R is the concentration level of gene a

at the first time instant (boundary conditions for time=0).

• Variables: For all gene a ∈ Nγ , we define:

1. for all b ∈ Nγ such that (b, a) ∈ A, Wa
b is the weight on (b, a);

2. ma is the influence of gene bcd on gene a;

3. ha is the threshold parameter for the sigmoid regulation function;

4. λa is the decay coefficient for gene a;

5. Ra is the production rate for gene a;

6. Da is the diffusion coefficient for gene a;

7. for all i ∈ N ι, t ∈ T gi
a(t) ∈ R represents the estimated data: ga

i (t)
is the concentration level of gene a in nucleus i at time t;

8. for all i ∈ N ι, t ∈ T , ua
i (t) ∈ R is an auxiliary function.

• Objective function:

min
∑

a∈Nγ

i∈Nι

t∈T data

(ga
i (t) − gdata

a
i (t))2 +

∑

a∈Nγ

b∈Nγ

(Wa
b vb

max)
2 +

∑

a∈Nγ

((mavbcdmax)
2 + h2

a).

(11)

• Constraints:

1. the discretized differential equation (2): ∀i ∈ N ι
r {0, |N ι| − 1}, t ∈

T r {0}

ga
i (t)−ga

i (t − 1) = ∆t

(

Ra

2
(

ua
i (t)

√

ua
i (t)2 + 1

+ 1) − λaga
i (t) + Da(ga

i+1(t) − 2ga
i (t) + ga

i−1(t))

)

;

(12)

2. the definition of ui:

∀i ∈ N ι, t ∈ T ua
i (t) =

∑

b∈Nγ

Wa
b gb

i (t) + magbcdi (t) + ha; (13)

3. the initial conditions and ranges:

∀a ∈ Nγ , i ∈ N ι ga
i (0) = init

a
i ;

∀a ∈ Nγ







RL ≤ Ra ≤ RU

λL ≤ λa ≤ λU

DL ≤ Da ≤ DU
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6.2 Arabidopsis model in AMPL

• Sets:

1. set V of genes in the network;

2. set A of arcs in the network;

3. set T of time instants.

4. set U ∈ V of genes involved in the stable sub-network.

• Parameters:

1. C0 : V → {0, 1} is the initial configuration of the network (vector of
boolean values assigned to the genes).

2. α : A → {+1,−1} is the sign of the arc weights;

3. θL, θU are the bounds on the threshold values;

4. S : U → {0, 1} is the targeted configuration of the sub-network
composed by U .

• Variables:

1. for all i ∈ V , t ∈ T , xt
i ∈ {0, 1} is the activation status of gene i at

time t;

2. s : T → {0, 1} is a decision variable indicating that the sub-network
is stable during at least two successive time steps.

3. y : T → {0, 1} is a decision variable that indicates the first time the
sub-network reaches a stable state.

4. θ : V → Z is the threshold function;

5. w : A → N is the arc weight function.

• Objective function:

min
∑

t∈T\{1}

(

(yt−1 − yt)
∑

u∈U

|xt
u − Su|

)

.

• Constraints:

1. evolution rule:

∀t ∈ T \ {1}, v ∈ V

θvx
t
v − |V |(1 − xt

v) ≤
∑

u∈δ−(v)

αuvwuvxt−1
u ≤ (θv − 1)(1 − xt

v) + |V |xt
v (14)

2. fixed point conditions:

∀t ∈ T \ {1}
∑

u∈U

|xt
u − xt−1

u | ≤ |U |st (15)

∀t ∈ T \ {1} st ≤
∑

u∈U

|xt
u − xt−1

u | (16)

∀t ∈ T \ {1, |T |} yt = styt−1 (17)

∀t ∈ T \ {1, |T |}
∑

r>t

yr ≤ (|T | − t)yt; (18)
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3. boundary conditions:

∀v ∈ V x0
v = C0(v).
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