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Abstract. With the generalization of real-time traveler information, the
behavior of modern transport networks becomes harder to analyze and to
predict. It is now critical to develop simulation tools for mobility policies
makers, taking into account this new information environment. Informa-
tion is now individualized, and the interaction of a huge population of
individually guided travelers have to be taken into account in the sim-
ulations. However, existing mobility multiagent and micro-simulations
can only consider a sample of the real volumes of travelers, especially for
big regions. With distributed simulations, it would be easier to analyze
and predict the status of nowadays and future networks, with informed
and connected travelers. In this paper, we propose a comparison between
two methods for distributing multiagent travelers mobility simulations,
allowing for the consideration of realistic travelers flows and wide geo-
graphical regions.

1 Introduction

Transport systems are more and more complex and they have to evolve to inte-
grate more connected entities (mobile devices, connected vehicles, etc). Indeed,
we can now provide optimal routes for the travelers but we are also able to
update these routes in real time based on new network status (congestions, ac-
cidents, bus down, canceled carpooling, etc). Giving information to the traffic
network users is generally good and allows the improvement of the global net-
work traffic flows. However, without control, the massive spread of information
via billboards, radio announcements and individual guidance may have perverse
effects and create new traffic jams. Indeed, with this generalization of real-time
traveler information, the behavior of modern transport networks becomes harder
to analyze and to predict. It is then important to model and simulate a realistic
number of travelers to correctly observe these effects.

The ability to run a traffic simulator with real volumes of travelers at a city,
a region or a country scale, would allow to observe the consequences of different
information strategies on the status of multimodal traffic before implementing



them in the real world. The management of millions of travelers in real time
requires considerable computational power and current mobility simulations do
not scale up in a way that would make it possible to predict the effects of
regulation and information actions on the network. Our main objective in this
paper is to test the scalability of this kind of simulators and develop scenarios
at actual city scale. For this purpose, we aim to split the simulation between
several servers on a grid and balance the load optimally between the servers
while minimizing inter-server communications.

To have a generic distribution pattern, we propose a reference mobility simu-
lator based on the multiagent paradigm. The multiagent paradigm is relevant for
the modeling and simulation of transport systems [1]. This is why the multiagent
approach is often chosen to model, solve and simulate transport problems. This
approach is particularly relevant for the simulation of individual travels since the
objective is to take into account human behaviors that interact in a complex,
dynamic and open environment.

The remainder of this paper is structured as follows. In section 2, we present
the previous proposals for travelers mobility simulation and the existing dis-
tributed multiagent platforms. Section 3 presents a formal definition of the
multiagent environment. In section 4, we describe two methods for distribut-
ing simulations over several hosts. Section 5 explains our experimental setup
and provides a comparison of the two proposed methods, before concluding and
describing some further work we are pursuing.

2 Related work

There exists several multiagent simulators for travelers mobility. For instance,
MATSim [2] is a widely known platform for mobility micro-simulation. However,
the mobile entities in MATSim are passive and their state is modified by cen-
tral modules, which limits its flexibility and its ability to integrate new types of
(proactive) agents. Transims [3] simulates multimodal movements and evaluates
impacts of policy changes in traffic or demographic characteristics while Miro [4]
reproduces the urban dynamics of a French city and proposes a prototype of
multiagent simulation that is able to test planning scenarios and to specify in-
dividuals’ behaviors. AgentPolis [5] and SM4T [6] are also multiagent platforms
for multimodal transportation. Finally, SUMO [7] is a widely used microscopic
simulator mainly focused on traffic. However, none of these proposals considers
the distribution problem.

Some general-purpose multiagent platforms have been specifically developed
for large scale simulation in the last years. RepastHPC [8], a distributed version
of Repast Simphony, uses the same concepts of projections and contexts and
adapts them for distributed environments. Pandora [9] is close to RepastHPC
and automatically generates the code required for inter-server communications.
GridABM [10] is based on Repast Simphony but takes another approach and
proposes to the programmer general templates to be adapted to the communi-
cation topology of his simulation.



However, these distributed platforms do not offer fine controls on how the
communications between hosts are performed. Indeed, the communication layer
is transparent for the programmer, which makes it easier for him to develop
distributed simulations, but prevents him from optimizing the distribution. The
best way to manage the communications depends of the application and using
such general platforms for a travel simulator would not produce optimal results.
More theoretical works study general methods to address this problem. In [11]
and [12] the authors propose to relax some synchronization constraints to achieve
a better scalability by reducing the time the hosts wait for each other. In [13]
and [14] the authors discuss the issues related to multiagent simulation in a
distributed virtual environment. In the present paper, we propose specific ap-
proaches to distribute traffic-based simulations, which could be of great benefit
to the work on travelers mobility simulations.

3 The Multiagent Environment

3.1 The model

The multiagent environment of a travel simulation is made of the transportation
network in which the traveler agents evolve. We model the transport network
with a graph G(V,E) where E = {e1, ..., en} is a set of edges representing the
roads and V = {v1, ..., vn} is a set of vertices representing the intersections. A
set of agents A is traveling in this network from origins to destinations trying to
minimize their travel time. The travel time of an edge at time t depends on the
number of agents using it. To calculate this time, we use a triangular fundamental
diagram of traffic flow that gives a relation between the flow q (vehicles/hour)
and the density k (vehicles/km). The fundamental diagram suggests that if we
exceed a critical density of vehicles kc, the more vehicles are on a road, the slower
their velocity will be. Here is the equation we use to model this phenomena:

Fig. 1. Fundamental diagram with α = 6, β = 8 and kc = 15 (left). Speed in function
of density (right).



q =

{
αk if k ≤ kc

−β(k − kc) + αkc if k > kc
(1)

This equation is parametrized with α the free flow speed on this road, β the
congestion wave speed and kc the critical density. As v = q

k :

v =

{
α if k ≤ kc

−β(k−kc)+αkc
k if k > kc

(2)

Thus we can define a cost function that returns a travel time per distance
units (1/v) in function of the number of agents |Ae| on this edge:

cost(|Ae|) =

{
1
α if |Ae| ≤ kc
|Ae|

−β(|Ae|−kc)+αkc if |Ae| > kc
(3)

Both edges and vertices are weighted with positive values evolving dynami-
cally with the number of agents present on them. Given Av, the set of agents on
a vertex v, and Ae, the set of agents on a edge e, we have |v| = |Av| representing
the weight of a vertex and |e| = |Ae| the weight of an edge. |V | =

∑
v∈V |v| is

the weight of a subset of vertices. In the same way, if |e| is the weight of a vertex,
|E| =

∑
e∈E |e| is the weight of a subset of edges.

3.2 The simulator

We have developed a reference simulator where each agent represents a traveler
evolving in a multiagent environment as described in the previous paragraph.
Agents appear nondeterministically with an origin and a destination vertex.
They compute the shortest path based on the current status of the network
before to start traveling. They ask for a new shortest path each time they reach
a vertex in their path, to check wether a new shortest path becomes possible,
following the dynamics of the network. At each time step of the simulation, if the
agents are currently on an edge, they go forward as far as the road state (current
mean speed) allows them to go. The simulation ends when all the travelers have
reached their destinations or when a time step threshold is reached.

4 Proposed Approach

To launch our simulation at a city scale, we need a large memory and computing
power. This is why we aim to deploy it on several machines. A simulation run-
ning on a cluster is typically SPMD (Single Program Multiple Data), i.e. each
processor runs the same program but owns only a part of the program data in its
private memory, and all the processors are connected by a network. Communica-
tions are explicitly declared by the programmer. The advantage of this approach
is its high scalability; it can be implemented on most parallel architectures and
we can deploy the same simulation on larger systems if we need more power.



In mobility simulations, traveler agents are moving on a transport network.
To distribute such simulations, we have to split the workload between the avail-
able servers efficiently. In our model, the main workload is generated by the
calculation of the shortest path. An agent’s path has to be recalculated each
time this agent reaches a new intersection (because the travel times evolve dy-
namically), thus an agent can be considered as a unit of workload. Therefore, in
order to distribute this model we need to split the agents between the servers.
To do so, we can either distribute the environment, or the agents.

4.1 Agent distribution

One approach would be to cut the set of agents in k equal parts (with k the
number of available servers), distribute each subset on a server and run the
simulation. As the travel times depend on the number of agents on each arc, all
the agents need to know at every step how many agents there are on each arc
in order to compute their shortest path. In our implementation, at each time
step, if an agent managed by a server quits or arrives on an edge, this server
communicates the information to all other servers. Thus at any time step, all
the servers know the state of the entire network. At the moment, it is the only
communication needed for the simulation, so the total communication cost is
k|E|I, with I representing the size of an integer1.

4.2 Environment distribution

The second distribution pattern tries to keep agents that are close in the graph
on the same server. Instead of distributing the agents, we distribute the vertices
and the outgoing edges (and thus the agents located on these vertices and edges)
so the agents that are in the same place of the graph are on the same server.

Each server is only aware of what is happening on the part of the graph that
it is managing. So at each time step, before the agents act, all the servers need
to synchronize with the servers running in other processes. There are now two
types of communications: the servers have to communicate the weight of their
edges (the number of agents on it) and when an agent moves to a vertex that is
not on his current server he has to move to that vertex’s server. Let C be the cost
of the edge communications and M the agents migration cost. At each step, the
total communication cost is given by T = C +M . The cost of the edges weight
communications is: C = |E| × I. An agent could be coded with three integers
(ID, current location and destination). Let n be the number of migration for
one step. Thus the agents migration cost is: M = 3In. There are on average
|A|/|E| agents per vertex. So with Ec the set of edges between different servers
we have on average n = |A|/|E| × |Ec|. Thus T = I(|E| + 3|A|/|E| × |Ec|). As
we could expect, the less edges there are between two servers and the less the
communication cost there is.

1 Coding the number of agents arriving or leaving an edge



Fig. 2. The graph is parted and each part are distributed between the available pro-
cesses.

So for the environment distribution method to be effective, we need to split
the vertices into k disjoint sets such that each set has approximately the same
vertex weight and such that the cut-weight, the total weight of edges cut by
the partition, is minimized. This problem is known as the (k, 1 + ε)-balanced
partitioning problem, that is the problem of finding a collection of disjoint subsets
V1, . . . , Vk that cover V , i.e., V = V1 ∪ ... ∪ Vk such as each part contains at

most (1 + ε) |A|k and |Ec| is minimized.
The problem of partitioning a network has been widely studied in the sci-

entific literature. As demonstrated in [15] this is a NP-hard problem so trying
to find an optimal solution with, for example, integer programming is not an
option for large graphs. This is why some heuristics have been proposed to solve
this problem in reasonable time. The multilevel partitioning method has been
recognized as a very powerful method that offers a more global vision on graphs
than traditional techniques. As the complexity of the partitioning problem is
dependent on the size of the partitioned graph, the simple idea of multilevel
partitioning is to regroup the vertices and to work with the groups instead of
the independent vertices. The multilevel partitioning has been formalized in a
generic framework by Walshaw in [16]. To distribute the environment, we use a
slightly modified version of the Differential Greedy algorithm [17]. We modified
this algorithm to use it with weighted vertices and to produce more connected
partitions.

5 Experiments and Results

5.1 Implementation

To test the effectiveness of our approach, we have implemented our model and
deployed it on an actual cluster. We choose Python to develop the model since
this language is efficient for quick prototyping. Python is a mature portable



language with a lot of well tested scientific libraries and is along with C and
Fortran one of the most used languages for high performance computing [18].

For the inter-process communications we use MPI, that is the de facto stan-
dard language for parallel computing with a huge community of users. MPI offers
a simple communication model between the different processes in a program and
has many efficient implementations that run on a variety of machines. Moreover
MPI4PY is an efficient interface that allows to use MPI with Python.

5.2 Results

We have launched the distributed simulations on the Cardiff University cluster.
For our tests, we used eight hosts under CentOS Linux (kernel version 2.6.32-
220) on a processor Intel Xeon CPU E5-2620 (12 cores at 2Ghz) with 32GB of
memory. We ran the simulation on three configurations: the first is a sequential
version of the program on a single host (conf1), the second is a distributed version
on the eight hosts (conf2), and the last is run on the eight hosts using the 12
cores of each one (conf3). The simulation is performed for 100 time steps on a
200 nodes power-law graph generated with the Barabasi-Albert model [19]. We
compared the two methods of distribution (agent-based and environment-based
distributions) on the different configurations with an increasing number of agents
(from 1,000 to 40,000).

number of agents 1000 5000 10000 20000 30000 40000

conf1 (1 core) 10 27 43 67 104 140

conf2 agent distribution (12 cores) 3 6 8 12 17 23
conf3 agent distribution (96 cores) 2 3 3 4 4 5

conf2 environment distribution (12 cores) 6 13 17 22 31 41
conf3 environment distribution (96 cores) 5 10 11 11 15 17

Table 1. Computational times (in seconds) for a 100 time steps simulation on a 200
nodes scale free graph.

As we could expect, the agent-based distribution is more effective than the
environment-based distribution with the proposed simulation model2. Indeed,
at the moment we have not defined any local interactions in our model. As a
consequence, we are in an perfect case for the agent base distribution since the
amount of inter-server communications will be limited. But with the further
implementation of local interactions (for example pursuit model or vehicle to
vehicle communications) the environment-based approach will be able to take

2 The computational times are not strictly growing with the number of agents for the
environment-based method. This is more likely due to the random origins and des-
tinations of the agents. Therefore the simulation could sometimes be more complex
with fewer agents.



Fig. 3. Comparison of computational times between the different distribution methods
with conf3.

advantage of the collocation in the same server of physically close agents. Fur-
thermore, there is at the moment no dynamic load balancing mechanism for the
environment distribution. Indeed, if an important number of agents are concen-
trated in the same part of the network, they will be nevertheless in the same
server. It will hence take more time for this server to calculate all the short-
est paths and, all the other servers will have to wait for it. Thus, if a server is
overloaded it can slow down all the simulation.

The speedups between the sequential run and the two distribution methods
performed on conf3 are shown on figure 4 and 5. The speedup is a measures of
how much faster the simulation is on conf3 (96 cores) than on conf1. As we can
see on these figures, with 40000 agents for example, the simulation is 8 times
faster with the environment based distribution and 28 times faster with the
agent based distribution. Both of these methods improve largely the execution
time of our multiagent traffic simulator. As explained above, the agent-based
distribution method shows better results due to the relative simplicity of the
current model but after adding inter-agents communications the difference in
performance between the two methods should shrink.

6 Conclusions and perspectives

In this paper, we have presented two distribution methods of a multiagent travel
simulation over several hosts. The two methods are efficient to scale the simu-
lation up with the number of agents. With our current simulation model, the
agent-based method is more efficient than the environment-based distribution
method. Our simulation model is very general, our proposals and findings are
applicable to all the state-of-the-art travel simulators.



Fig. 4. Speedup between conf1 and
conf3 with environment distribution.

Fig. 5. Speedup between conf1 and
conf3 with agent distribution.

Our future works will deal with two aspects. The first concerns the simu-
lation model. We will tackle more specific travel simulation models, where all
types of communications are present (local, global and community-based com-
munications). We expect the environment-based distribution method to show
better performance than with the current model. The second aspect concerns
the environment-based distribution method. The distribution is currently done
statically at the beginning of the simulation and we believe that the speedup
could be largely improved by adding dynamic load balancing mechanisms.
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