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Abstract. Degradation processes modelling is a key problem to perform any type of 
reliability study. Indeed, the quality of the computed reliability indicators and prognosis 
estimations directly depends on this modelling. Mathematical models commonly used in 
reliability (Markov chains, Gamma processes…) are based on some assumptions that can 
lead to a loss of information on the degradation dynamic. In many studies, Dynamic 
Bayesian Networks (DBN) have been proved relevant to represent multicomponent 
complex systems and to perform reliability studies. In a previous paper, we introduced a 
degradation model based on DBN named graphical duration model (GDM) in order to 
represent a wide range of duration models. This paper will introduce a new degradation 
model based on GDM integrating the concept of conditional sojourn time distributions in 
order to improve the degradation modelling. It integrates the possibility to take into 
account several degradation modes together and to adapt the degradation modelling in 
respect of some new available observations of either the current operation state or the 
estimated degradation level, to take into account an eventual dynamic change. A 
comparative study on simulated data between the presented model and the GDM will be 
performed to show the interest of this new approach. 
Keywords: Dynamic Bayesian Networks, Graphical Duration Models, semi-markovian 
degradation process modelling, Reliability analysis, Residual Useful Life estimation. 
 
1 Introduction 

 
For the last fifty years, the complexity of most of industrial systems has 
constantly increased. If at best, their failure can lead to a temporary poorer 
performance of the system, a complete shutdown can also occur, inducing some 
potentially strong security risks. If the system fails, some components can have 
to be replaced, making the system unavailable for quite a long time which can 
be very costly. For these reasons, the research of decision support tools for the 
reliability analysis has become a key issue. 
Many studies already dealt with this topic. Two approaches seems to be mainly 
used for degradation process modelling: the set of analytic degradation models 



derived from the mechanic of the system, Lemaitre and Demorat [1], sometimes 
quite difficult to validate, and the use of stochastic tools, Aven and Jensen [2]. 
In this second approach, some models are directly based on probability 
distributions such as Bertholon model, Bertholon et al. [3], Weibull Freitas et al. 
[4] or exponential distributions... These modelling generally aim to focus on the 
failure time of the system.  If one needs to evaluate the temporal behavior of a 
set of random variables, “dynamic” approaches will be preferred such as 
stochastic processes (Gamma process, Van Noortwijk [5], Poisson process, 
Hossain and Dahiya [6]...) or Probabilistic Graphical Models (PGM) such as 
Neuronal networks, Rajpal et al. [7], Petri nets, Volovoi [8], Dynamic Bayesian 
Networks, Weber and Jouffe [9]... In this paper, this last formalism was 
considered. Indeed, since some years, it has been proved as relevant to perform 
reliability studies since a degradation modelling based on discrete and finite 
states space is acceptable.  
The simplest model of degradation process of a system using the DBN 
formalism is based on its ability to model a simple Markov chain. Then, this 
approach implies the strong assumption of geometrically distributed sojourn 
times in each state. To overcome this limitation, a specific DBN named 
Graphical duration model (GDM) was proposed, Donat et al. [10], to model the 
degradation of a discrete states system using any kind of discrete sojourn time 
distribution.  
If this modelling provided some interesting results such as Bouillaut et al. [11], 
it assumes that sojourn times elapsed in each state are independent. The 
existence of several dynamics in the degradation process cannot therefore be 
identified neither taken into account. In this paper, an extension of the standard 
semi-markovian GDM modelling is proposed, managing the dependence 
between the sojourn times through the concept of conditional sojourn time 
distributions (CSTD). The aim is to be able to build a model that can describe a 
system whose dynamic is a mixture of some degradations modes and that can be 
adapted to observe changes in modes.  
In the next section, the formalism of DBN and MGD will be briefly introduced 
and compared. Then, the proposed GDM with conditional sojourn time 
distributions will be detailed. Finally, a comparative study of the standard 
markovian approach with DBN and semi-markovian modelling (with GDM and 
MGD with CSTD) will be proposed for reliability analysis before some 
conclusions and prospects. 
 
2 Probabilistic Graphical Models, a frame for reliability 
analysis 
 
2.1 From Bayesian Networks to Dynamic Bayesian Networks  
Formally, a Bayesian Network (BN) denoted by  is defined as a pair 

(,{pn}1≤n≤N) where: 



- =(X, ε) is a directed acyclic graph giving a qualitative description of the BN. 

The graph nodes and the associated random variables are both represented by 
X={X1, …, XN}, with values in = 1 x …x N. ε is the set of edges encoding 

the conditional independence relationships among these variables. 

-{pn}1≤n≤N a set of Conditional Probability Distributions (CPD) associated with 
the random variables. These distributions aim to quantify the local stochastic 
behavior of each variable.  

Besides, both the qualitative (i.e. ) and quantitative (i.e. {pn}) parts of  can 

be automatically learnt, if some complete or incomplete data or experts opinions 
are available, Jensen [12]. Using BN is also particularly interesting because of 
the easiness for knowledge propagation through the network. Indeed, various 
inference algorithms allow computing the marginal distribution of any sub-set 
of variables.  
In a dynamic behavior modeling point of view, the time extension of BN 
provide a convenient formalism to represent discrete sequential systems. Indeed, 
DBNs are dedicated to model data which are sequentially generated by some 
complex mechanisms (time-series data, bio-sequences, number of mechanical 
solicitations before failure…). It is therefore frequently used to model Markov 
chains. Formally, a DBN is defined by a pair of BN (ini, →) where: 

- { }( )1
,ini ini

ini n n N
p

£ £
=  is a BN modeling the initial distribution of X, 

denoted pini.  

- { }( ), 2 ; 1
, t n t T n N

p  

£ £ £ £
=   defines the transition model of the considered 

process, i.e. the distribution of Xt knowing Xt-1, denoted p→. 

Figure 1 introduces a DBN modeling the Markov Chain of the sequence X=(X1, 
…, XN) taking its values in the set . This DBN is described by the pair: 

( ) ( ) ( )( )1 1, , , , sys
ini X p Q =   where sys denotes the transition matrix 

of a Markov Chain, quantifying the probability of Xt|Xt-1. 

 
Fig. 1. DBN modelling a Markov Chain 

 
If this approach is perfectly adapted to model the dynamic of systems, it induces 
a strong assumption on sojourn time distribution in each state of the system. 
Indeed, as all Markovian approaches, transition rates are assumed constant and, 
therefore, sojourn times are necessarily geometrically distributed. In many 



industrial applications, such an assumption can introduce strong bias in the 
degradation modeling that cannot be foreseen in a context of reliability based 
maintenance optimization. To overcome this drawback, a specific DBN, named 
Graphical Duration model, was proposed and will be briefly introduced in the 
next paragraphs. 
 
2.2 Graphical Duration Models 
The Graphical Duration Model is a specific DBN, using a semi-Markov 
approach. The main idea is to deal with the couple (Xt, St) rather than the single 
variable {Xt} where St denotes the remaining time in the current state of Xt. 
Figure 2 introduces the structure of a DMN modeling a GDM. The solid lines 
define the basic structure of the GDM; dashed lines indicate optional items and 
red bold edges characterize dependencies between time slices.  

 
Fig. 2. Specific structure of a DBN modelling a Graphical Duration Model. 

 

A GDM is therefore defined by the pair (ini, →) with: 

- ( )( )1 1, ,ini
ini Fa=  where α1 and F1 denote respectively the initial 

distribution of X1 and S1.  

- ( )( ), ,Q F   =   characterized by two transition distributions: Q→ is 

the natural states changes distribution and F→ is the sojourn time distribution, 
both described by the following equations (1) and (2). 
F→ is the distribution of the remaining sojourn times in the current state Xt. If a 
natural transition occurs at t (i.e. St-1=1), this distribution is defined by a given 
conditional probability distribution Fsys. On the other hand, F→=C where this 
matrix simply decrement the sojourn time of 1 unit at each iteration, until a 
natural transition occurs.   
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Q→ is the distribution of state transitions. If a natural transition occurs at t, this 
distribution is defined by the previously introduced transition matrix Qsys. On 
the other hand, Q→=I enforcing the variable X in the current state until a natural 
transition occurs. 
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Besides, the structure of a GDM introduced in figure 2 shows the process (Xt) 

(respectively (St)) is not Markovian since 1− ⊥⊥tX 1+t tX X
 

(respectively
1t

S
−

⊥⊥
1t t

S S
+

); where ⊥⊥A B  denotes that variables A and B are 

not statistically independent. On the other hand, the GDM structure leads to 

( )1 1,t tX S− − ⊥⊥( ) ( )1 1, | ,t t t tX S X S+ +                                     (3) 

So, the set (Xt, St) engendered by a GDM is Markovian, despite (Xt) is not.  
On the practical point of view, this approach allows specifying arbitrary state 
sojourn time distributions by contrast with a classic Markovian framework in 
which all durations have to be exponentially distributed. This modeling is 
therefore particularly interesting as soon as the question is to capture the 
behavior of a given system subjected to a particular context and a complex 
degradation distribution. More details on this GDM (quantitative description, 
optional context description …) can be found in Donat et al. [10]. 
As an illustration of the contribution of GDM for reliability analysis, the simple 
and “standard” academic 3 serial-parallel components system will be 
considered. C2 and C3 are parallel components, taking their values in {ok, 
failed} whereas the serial component C1 takes its values in {ok, small defect, 
failed}. The system fails when C2 and C3 are simultaneously failed or when C1 
fails. 
Figure 3 introduces the sojourn time distributions, considered in this example, 
for all “not failed” states. Parameters of a DBN modeling a Markov Chain and 
of GDM are learnt for the three components, using a database with 1000 sojourn 
times in each state. This learning phase provides transition rates for the standard 
DBN modeling and discretized sojourn time distributions for the GDM 
modeling, conditioned by the parameter Tmax, defined as the higher bound of 
sojourn times. The settlement of this parameter is a fundamental point in the 
GDM approach. Indeed, if it is underestimated, the learning of sojourn time 
distributions can be strongly biased. On the other hand, the complexity of the 
considered bayesian network can induce algorithmic problems. In this paper, 
Tmax=200. 



 

 

Fig. 3. Sojourn time distributions in non failure states for components C1, C2 
and C3. 

 
When all parameters are learnt, all kind of reliability indicators can be easily 
estimated, such as instantaneous availability, reliability, cumulative distribution 
function… The following figure introduces the estimation of this last indicator 
by both modeling “standard” DBN and GDM for the 3 components system.  
 

 
Fig. 4. Sojourn time distributions in non-failure states for components C1, C2 

and C3. 



The red line introduces the theoretical behavior of the considered reliability 
indicator. One can note that, due to the stochastic properties of the sojourn time 
distributions characterizing our system, a Markovian approach cannot fit the 
exact behavior of the system when the GDM provides a good formalism. This 
first result focuses on the impact of the assumptions made during the 
degradation modeling on the accuracy of our reliability analysis. 
In the next section, an extension of GDM is introduced, allowing taking into 
account several dynamics in the degradation process modeling. Indeed, as we 
can note in figure 3, the sojourn times distributions seems to consist in the 
merging of different dynamics. This is particularly identifiable on figure3-a 
where two behaviors can be observed. With the standard GDM, this information 
cannot be taken into account…  
 
3 Introduction of conditional sojourn time distributions in 
GDM  
 
3.1 Structure and main properties of GDM-CSTD 
Figure 5 shows the graphical structure of the DBN modeling a GDM with 
conditional sojourn time distributions. A variable encoding the current 
degradation mode, denoted Mt, is added to the couple (Xt,St) used by the 
standard MGD. This change induces updating the transition distributions 
introduced in (1) and (2). 

 

Fig. 5. Specific structure of a DBN modelling a GDM integrating conditional 
sojourn time distributions. 

 
Since Mt-1 does not influence Xt, the state transition distribution introduced by 
(2) will not be modified. The impact of the modes variable on the sojourn time 
variable St leads to the following adaptation of (1).  
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If no natural transition occurs between t-1 and t, the matrix C decrements the 
remaining sojourn time by 1 unit whereas if s’=1, the state of the system 
changes between t-1 and t. Then, the sojourn time in the new current state is 



chosen in respect Fsys, the probability distribution of the sojourn time for each 
state, in each mode. 
Finally, (5) quantifies the transition of modes. If the state of the system does not 
change between t-1 and t, the considered mode at t-1 is conserved using the 
matrix I. If a state transition occurs, the distribution Wsys defines, through the 
elapsed time in the previous state, the most probable mode for the current state. 
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The learning of CSTD consists in three phases. First, the number of modes, 
denoted nm, has to be determined. This can be done either by expert’s advice or 
using a criterion such as BIC - Bayesian Information Criteron, Schwarze [13], 
that will determine, through a return of experience (REX) database DX, the 
optimal number of mixtures. Then, through DX, the EM algorithm, Dempster et 
al. [14], is used to estimate the sojourn time distributions in the initial state for 
each of the nm modes. This learning also provides a segmentation of DX in nm 
sub-bases dedicated to each mode, denoted m

XD with m∈[1..nm]. Finally, the 

sojourn time distributions for each mode in all other states are learnt using the 
right m

XD . 

To illustrate this modeling, a four states system is considered, taking its values 
in ={ok, state2, state3, failed}, with two degradation modes, periodically 

observed (Tobs). To set a 1000 trajectories learning database, each sojourn time 
distribution follows a Weibull distribution that parameters are under mentioned:  

- ok: mode 1~(2,15) and mode 2~(6,33) 

- state2: mode 1~(6,10) and mode 2~(9,25) 

- state3: mode 1~(6,5) and mode 2~(15,15) 

Then, considering the previously introduced learning procedure, conditional 
probability distributions are learnt from the sampled database for both MGD and 
MGD-CSTD approaches. This learning phase underlined the bias that might be 
introduced in the estimation of the failure time of a periodically observed 
system when the coexistence of several dynamics in the degradation process is 
not taken into account. Indeed, if these sojourn time distributions are used to 
estimate the remaining useful life of our system, in the standard MGD approach, 
the observation of a short sojourn time in the first state does not impact the 
estimation of the sojourn time in the next states. The following subsection will 
introduce some illustrative results on this point. 
 
3.2 Estimation of the remaining useful life of periodically observed systems 
In this last illustration, the 4 states system introduced in section 3.1 will be 
considered with a Tobs periodic monitoring, providing the current state of the 
system each 5 time step. 



Aiming to estimate the remaining useful life (RUL) of the system and to update 
it when a new observation is available, the structure of the MGD-CSTD 
introduced in figure 5 was adapted, adding two variables Dt and δt that represent 
respectively the diagnosis of Xt by the monitoring device, taking its values in 
{∅} and an activation variable controlling if the diagnosis is active or not.  

In the considered example, δt is Tobs periodically activated. In the other cases, 
the monitoring device is not active and Dt returns no information on Xt through 
the state ∅. Figure 6 introduces the structure of this new DBN.  

 

Fig. 6. Structure of the DBN used to estimate the RUL of a periodically 
observed system with a GDM-CSTD approach. 

 
During the initialization phase, a sojourn time in state ok is obtained with F1, 
determining the most probable current mode m1. Then, knowing m1, sojourn 
time distributions (or conditional sojourn time distribution in the MGD-CSTD 
approach) in states state2 and state3 (contained in Fsys) provide the initial 
estimation of the RUL. 
When a new diagnosis is available, if a natural transition is observed, in the 
MGD-CSTD approach, the current mode is eventually corrected in respect of 
the most probable mode knowing the elapsed time in the previous state. Then, 
with the same reasoning that in the initialization phase, the RUL is uploaded.  
Before trying to integrate this RUL estimation algorithm in a wider specific 
DBN, the proposed methodology has to be briefly evaluated. This was the aim 
of the results introduced in this end of paper. 
Figure 7 introduces two illustrative results, underlying the behavior of MGD 
and MGD-CSTD approaches for the RUL estimation of the periodically 
observed 4 states system. 
The first one focuses on the interest of using the conditional sojourn time 
distributions concept. Indeed, one can observe that the information contained in 
the degradation mode (approach MGD-CSTD) allows using a more accurate 
sojourn time range to estimate the RUL. This is the reason why the estimation is 
closer to the real value of the remaining useful life that when the standard MGD 
is considered. 



In the second draw, another interest of MGD-CSTD is underlined. Indeed, in 
this run, the MGD based estimation looks better in the first observations since it 
is closer to the real RUL. The explanation of this unusual situation is that, 
during the initial phase, the mode m1 was chosen when the right one was m2. For 
this reason, the wrong part of the sojourn times was used in the MGD-CSTD 
approach, explaining the less precise estimations. We can note that at t=35, the 
situation changes. Between 30 and 35, the state turns from ok to state2. Then, 
knowing the elapsed time in ok, the algorithm is able to correct its initial 
mistake by correcting the most probable mode. Then, the MGD-CSTD uses the 
right part of the sojourn time range while the MGD approach still work with the 
complete sojourn time domain. 

 
Fig. 7. Examples of RUL estimations using GDM and GDM-CSTD approaches. 
 
To be complete, we have to point on some possible situations that will have to 
be investigated in further works. Figure 8 introduces what can happen when the 
sojourn time in a given state is located exactly in the intersection range of two 
modes. In that example, the mode was correctly initialized in m1. Then the first 
estimations with MGD-CSTD are very satisfactory. But, when the transition to 
state state2 is detected at t=30, the probability of such a sojourn time in state ok 
for mode m1 is so weak that an inappropriate mode change is adopted. Then, 
during the two next observations, the RUL estimation by MGD-CSTD is really 
poor. Fortunately, in that case, the transition state2-state3 allows correcting the 
mode and therefore improving the last RUL estimation. 
To give a better idea of the global behavior of the proposed approach, figure 9 
introduces the RUL estimation error in respect of time for the trajectories of the 
considered database obtained with the MGD-CSTD approach, respectively for 
the 500 trajectories in mode 2 and 93.2% of the 500 trajectories in mode 1. The 
considered time indices in these drawings correspond to the number of 
observation before the system fails.  



 

Fig. 8. Examples of RUL estimations using GDM and GDM-CSTD approaches 
- Unfavourable case. 

 
One can note that, for mode 2 trajectories, the initial estimation of the RUL is 
quite poor. This is due to the fact that, in the current version of the algorithm, 
the variable Mt is systematically initialized in mode 1. Then, the first estimations 
are based on the wrong sojourn time distributions, inducing strong errors. In 
most of cases, when the first natural state transition is observed, the most 
probable degradation mode is uploaded and the RUL estimation is improved.  
We also can note than the confidence in the estimation increases when the 
failure time comes and the RUL estimation becomes quite informative. Only 
very few trajectories are long enough to have more than 14 observations, this is 
the reason why there are a weak number of points for temporal indices upper 
than 15. 
For mode 1 trajectories, i.e. faster degradation scenarios, we can observe the 
same global behavior of the RUL estimation algorithm. Nevertheless, this case 
also illustrates the drawback of the proposed approach, introduced through 
figure 8 that might be improved in further works. Globally, 34 of the 500 
trajectories in mode 1 have at least one sojourn time in the intersection range of 
two modes, inducing a wrong estimation of the most probable degradation 
mode, such a way that the adaptation ability of the algorithm, underlined in 
figure 8, cannot process in these cases and the RUL estimation is absolutely 
unusable.  
Nevertheless, even if the proposed algorithm shows some interesting adaptation 
abilities when mode estimation errors occur, this final example points out some 
improvements that will have to be investigated in further works, to make more 
robust the proposed approach. 
 



 

Fig. 9. Global behaviour of the RUL estimation algorithm. Estimation error for 
each degradation mode in respect of time 

 
Conclusions 
 
In this paper, the formalism of Probabilistic Graphical Models was investigated 
to determine degradation process modeling for systems with discrete and finite 
states space. If the “classic” Markovian approach consisting in the modeling of a 
Markov Chain by a Dynamic Bayesian Network induces necessarily the 
assumption of sojourn times in each state exponentially distributed, a semi-
Markovian approach was proposed using a specific DBN structure, named 
Graphical Duration Model, that allows considering all kind of sojourn time 
distribution without any assumption on the stochastic properties of the 
degradation process. 
In this approach, sojourn times in each state are supposed independent. In some 
applications, especially when the degradation process is the merging of several 
dynamics, such an assumption can induce strong bias in the estimation of 
reliability indicators. To illustrate this problem, an example was introduced 
dealing with the estimation of the remaining useful life of a periodically 
observed system.  
Then, an extension of the standard GDM approach was proposed, integrating the 
notion of conditional sojourn time distributions by a new random variable 
managing the most appropriate degradation mode, knowing the elapsed time in 
the previous state. Then, both MGD and MGD-CSTD were used and compared 
for the estimation of the remaining useful life of a multi-states system. If the 
MGD-CSTD approach offers a very interesting global behavior, its main 
drawback lies in the existence of intersection ranges for several modes, inducing 
some potential wrong degradation mode estimations and, in the worst cases, an 
inability of the algorithm to readjust the RUL estimation before the failure time. 



Some improvements of the proposed algorithm are currently in progress on this 
key point.  
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