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1. Abstract

Because of uncertainties on models and variables, deterministic multidisciplinary optimization may achieve
under-sizing (without design margins) or over-sizing (with arbitrary design margins). Thus, it is necessary
to implement multidisciplinary optimization methods that take into account the uncertainties in order to
design systems that are both robust and reliable. Probabilistic methods such as reliability-based design
optimization (RBDO) or robust design methods, provide designers with powerful decision-making tools
but may involve very time-consuming calculations. New optimization approaches have been developed
to deal with such complex problems. Auto-adaptive Multi-Agent Systems (AMAS) is a new approach
developed recently, allowing to take into account the various aspects of a multidisciplinary optimization
problem (multi-level, computation burden etc.). This approach was suggested for solving complex deter-
ministic optimization problem. Now, the question of the integration of uncertainties in this multi-agent
based optimization arises. The aim of this paper is to propose a new methodology for integrating the
treatment of uncertainties in an adaptive multi-agent system for sequential optimization. The developed
method employs a single loop process in which cycles of deterministic optimization alternate with evalua-
tions of the system reliability. For each cycle, the optimization and the reliability analysis are decoupled
from each other. The reliability analysis is carried out at agent level and only after the resolution of the
deterministic optimization, to verify the feasibility of the constraints under uncertainties. Following the
probabilistic study, the constraints violated (with low reliability) are shifted to the area of feasibility by
integrating adaptive safety coefficients whose calculations are based on the agent-level reliability infor-
mation. The method developed is applied to a conceptual aircraft design problem.
2. Keywords: Optimization, uncertainty, multi-agent, security coefficient, multidisciplinarity.

3. Introduction

The models which are used in preliminary design are often derived from empirical equations or simplified
physical models. Modeling uncertainties generated by the models are prevalent and the resulting system
following a deterministic optimization may not achieve the required performance when subjected to a
more detailed analysis in the following phases of the design. Therefore it is necessary to implement
methods taking into account the uncertainties since the early stages of design optimization in order to
design systems that are both reliable and robust and thus ensure the success of the project on time
and budget. Probabilistic methods such as reliability-based design optimization (RBDO) and robust
design methods [1] provide designers with powerful decision-making tools but imply sometimes very
time-consuming calculations, since the optimization procedure involves a double loop: iteration of the
deterministic optimization process followed by a probabilistic analysis. Indeed, in order to determine
the probabilistic characteristics of the system performances at a design point, it is necessary to perform
some analysis, either by using approaches such as Monte Carlo simulation, importance sampling, subset
simulations, or by using various analytical methods for probabilistic analysis as FORM, SORM. Many
studies have been conducted before on this basis leading to the development of efficient technics with
low computational time and to take into account the uncertainties in the design process of systems
engineering.

Alongside these developments, new optimization approaches have also been proposed to deal with large
industrial problems. Indeed, nowadays, systems are increasingly complex and design methods deployed



involve aspects of multilevel and multi-disciplines [2]. The classical optimization methods can be difficult
to implement in order to address these complex problems for which the number of variables and models
is too high [3]. The difficulties of solving such optimization problems have motivated the development of
new methods based on the adaptive multi-agent system (AMAS) approach. The multi-agent approach
has been especially proposed for solving complex problems such as aircraft preliminary design in which
we are particularly interested in this paper. The question of the integration of uncertainty in the multi-
agent framework arises. Our work attempts to give a first answer to this question by proposing a new
methodology for taking into account uncertainties in a sequential multi-agent optimization problem.

This paper is organized as follows. In the section 4, we explain the developped reliability design opti-
mization method which is based on a single loop calculations: in a cycle, a deterministic optimization is
solved, then a probabilistic analysis is conducted based on the determination of the reliability constraints.
The violated constraints will be shifted with the introduction of a global safety coefficient. After having
first explained the principle of solving a deterministic optimization problem by multi-agent method in
section 4.1, we explain the proposed method for taking into account uncertainties in a multi-agent system
in sections 4.2 and 4.3. In the section 5 we apply the developed method for managing uncertainty on a
preliminary aircraft design test case. Finally, conclusions and perspectives will be presented.

4. Methodology for managing uncertainties in a problem solving by multi-agent

4.1. Principle for solving a deterministic problem by a multi-agent system
Nowadays, most of design problems are complex multidisciplinary optimization problems involving both
the optimization of design parameters (masses, geometries, etc..) and performance optimization (for ex-
emple the maximum takeoff length in the case of an airplane). The use of appropriate methodologies of
MDO type (Multidisciplinary Design Optimization) facilitates the convergence and reduces the compu-
tational time to obtain a performant optimal solution. In the current work conducted within the ID4CS
project (Integrated Design for Complex System ), a specific theory called Adaptive Multi-Agent System
(AMAS) is applied to carry out the solving of an MDO problem. The goal of the project is to develop
a system which permits to take into account all MDO aspects and help engineers in solving complex
optimization problems, with applications being implemented in the domain of aeronautical design.

The AMAS system is a system composed of several autonomous entities called agents. An agent has one
or more local targets and interacts with other agents to meet its objectives. Studies have shown that this
type of system can be used for solving optimization problems [3].

We explain the principle of a multi-agent system with a simple test case: a study case inspired by
Alexandrov [4]. This study case 1 is representative of a multidisciplinary optimization problem (feedback
loops between the disciplines):











minl1,l2,s
1

2
(a1➨+ 10a2➨+ 5(s− 3)➨)

s− 10l1 − 1 ≤ 0

−s+ l2 + 2 ≤ 0

(1)

with a1 = l1−a2

2
and a2 = l2−a1

2
. This problem can be decomposed as shown on figure 1 (It’s one of the

possible solution, it could be decomposed in different ways).

Each of the elements introduced in the multidisciplinary optimization problem can be encapsulated in an
independent entity: an agent. There are different types of agents (see figure1):

❼ a model agent: represents the model of a discipline. A model agent takes the values of its variable
agents connected as input (i.e. l1 and a1 for m1) in order to compute one or several output values.
Those values are sended to the corresponding agents connected as output (i.e. a1 for m1). In
order to satisfy the requests receved from its output variables, the model agent is able to determine
the necessary modification of its input variables (by any mean, such as an internal optimisation
algorithm). These modifications are then requested to its corresponding input variables.

❼ an objective agent: represents an optimisation objective (minimise or maximise a value of the
problem, i.e. o1). This kind of agent is a specialisation of a model agent where there is only one
ouput value. The agent sends directly some requests to its outputs in order to minimise or maximise
this output value.



Figure 1 – Decomposition of Alexandrov test case

a constraint agent: represents a constraint of the MDO problem (i.e. c1). Like the objective agent,
it is a specialisation of a model agent and it computes only one ouput value. It acts in order to keep
this value greater or lower than a constant value (generaly 0). The agent sends directly requests to
its input variables in order to achieve this goal.

a variable agent: represents the variables of the problem. A variable agent can be connected as an
input of one or several model, constraint or objective. In this case, the variable provides its value
which enable connected agents to figure out their own ouput values. A variable agent can also be
connected to one (and only one) model agent as an output. Its value is then the output value of
the model agent. When a variable agent is only connected as an input, it is able to satisfy any
value modification request by directly changing its internal value. When the agent is connected as
an output of the model m, and because it’s own value depends on the value computed by m, it will
be only able to change its value indirectly by sending a request to m.

As the function of the different agents was introduced, we can briefly introduce now the resolution ap-
proach for solving multidisciplinary optimization problem through a multi-agent system. In this simple
example it is assumed that the variables and the input parameters have arbitrary initial values. We
also assume that the objective-function agent (in which the performance to minimize is encapsulated)
decides based on some internal decision algorithm to ask the variable a2 to take another value in order
to improve the system performance. The approach followed by the multi-agent system is now explained.
a2 is a variable associated with a model, it can not choose to change its own value, it must forward the
request to the model. A local optimization is then performed at the level of the model agent to meet this
demand. The optimizer returns the values of the model (a1 and l2) which are solutions of the problem.
Then the model agent sends the necessary queries to its inputs. To simplify the explanations we assume
that l2 has the correct value (therefore no query is sent). Because the variable a1 can not change the
value itself, a query is sent to its model. The model uses the optimizer (which may be different from
the one previously used) to process the request. The optimizer returns a value for a2 and l1 (again, we
chose to simplify the example, a2 has the required value). The model sends a message to the entry l1. l1
is a parameter, it may itself decide to change its value. It accepts the request and informs the entities
related to him that there is a change. The model can now calculate the new value of a1. As a1 changes
its value, it informs the entities related to it. The model can now calculate the new value of a2. Since the
value of a2 is changed, the model agent informs the entities related to him that there is a change. Thus,
the model must calculate a new value for a1, etc.. This behavior is repeated up to a stopping criterion,
generally up to stabilization of the system.

4.2. Sequential optimization methods implemented
To incorporate uncertainty management in an optimization problem solved by this multi-agent system,
we opt in this paper for a single loop strategy. We adapt classical methods based on adaptive safety
factors [5]. The implementation approach has the advantage of being easily coupled to the logic of a
multi-angent resolution as discussed in more detail in this section. We present below a description of this
approach.



In a probabilistic design, most calculations are performed in order to allow the assessment of the system
reliability. Therefore, to improve the overall efficiency of the probabilistic optimization we need to
minimize the number of reliability evaluations. To achieve this goal, we use a single loop method: a
series of cycles of deterministic optimization and reliability assessment. Each cycle of the optimization
process includes two decoupled analysis: a deterministic optimization and an analysis of the reliability of
the system at the deterministic optimum point. The reliability study permits to verify if each constraint
is met with a certain level of reliability which is imposed. In the approach we propose, the optimization
problem is solved by a multi-agent system (see 4.1) then the reliability of the obtained optimum is
measured (analytically or by Monte Carlo simulations according to the problem being addressed). If the
performance is not achieved, we introduce a global safety factor in the calculation of the limit states,
so that the constraints are met with a level of reliability at least equal to 90%. Then, we start a new
determinist optimization cycle from the last obtained point (used for uncertainty propagation). We can
notice that it is possible that the new constraints (with safety factors) are not satisfied at this point of
the search space. If it could be a problem for standard optimisation methods like Pattern Search, the
mutli-agent optimization approch used in this study doesn’t need such kind of constraint satisfaction
for the starting point. This method requires fewer iterations of the optimization process and reliability
assessments in order to converge, thus making the process more efficient than double loops reliability
methods. This process of probabilistic optimization problem solving is detailed in the following sections.

The proposed approach begins with a deterministic optimization cycle. In mathematical terms, the
optimization can be expressed as follows [6]:

{

minxf(x) x ∈ S

gi(x) ≤ 0, i = 1, ..., p
(2)

with S the search space. Following this deterministic cycle, uncertainties are incorporated by introducing
the reliability problem formulation:

{

minxE[f(x, δ)] x ∈ S

Prob(gi(x, δ)) ≤ P gi
fi

i = 1, ..., p
(3)

We assume that the random variables are gaussian or can be approximated by normal distributions.
Once the optimum point associated with the equation 2 is determined, the reliability of the different
constraints is measured by Prob[gi(x, δ) ≤ 0] i = 1, ..., p where δ is the random vector representing
the uncertainties involved in the problem. The reliability analysis of the system allows the proposal of
coefficients (called safety factors) which will be used in a deterministic approach to ensure a certain level
of reliability during the design phase for the system holding [7]. The use of the safety factor is a common
practice in optimization [5].

We implement a first sequential method based on two levels. The solving of the reliability based optimiza-
tion is composed of two independent steps. The first one searches the deterministic optimal parameters in
the physical space of the optimization variables and the second one allows to incorporate the uncertainties
by solving the reliability problem given by the equation 3. The transition between the deterministic op-
timization and the reliability based optimization is performed once detecting a change in the constraints
and in the objective function below a certain treshold ∆ during a number n of consecutive steps.

A second more advanced approach is also proposed. This technique is inspired by the sequential method
SORA [8].Our approach is based on the use of global safety factors [5], which lead to a better integration
in the multi-agent solving approach developed in the ID4CS project. In the developed method we employ
a single loop process [9] wherein a series of cycles of deterministic optimization and reliability system
evaluation succeed each other. For each cycle, the optimization and the reliability are decoupled and
the evaluation of the reliability is only carried out after the resolution of the deterministic optimization
problem in order to verify the feasibility of the constraints under uncertainties. When the reliability
constraints of the optimization problem are not satisfactory, we introduce an adaptative safety factor
in the calculation of the limit states, so that the constraints are met with a level of reliability equal to
a target value (in our case this value is often taken as equal to 90%). In our study, the global safety
coefficient sfi is determined under the assumption of normality as follows:

{

Prob[gi(x, δ)− sfi ] ≤ αi

sfi = E[gi(x, δ)] + Φ−1(αi)σgi

(4)



where αi is the required level of reliability and σgi the standard deviation of the studied constraints. An
illustration is given in 2a. The new agent-level search point of the next optimization cycle K + 1 is then
the last evaluated search point which was used for updating the safety factors sK+1

fi
. We consider that

the algorithm has converged to a solution when the evolution of all the sfi is becoming relatively small,
that is to say:

|sKfi − sK+1

fi
| ≤ ǫ, ∀i (5)

where ǫ is the convergence detection threshold. A flowchart of this method is given in figure 2b.

(a) Modification of the constraint (b) Flowchart of the reliability optimization method

Figure 2

For the first cycle (K = 1), the value of the current point is arbitrarily imposed and the safety factor is
equal to zero. Following the resolution of the equation 2 (deterministic optimization), some constraints
can be active. For an active constraint g, the optimum point X is located on the boundary of this
deterministic constraint. When considering the random nature of X, the current reliability (probability
that the constraint are respected) may be inferior to the imposed threshold. Thus, if after assessing the
reliability, the deterministic optimum does not meet the required reliability threshold, we modify the
deterministic constraints by introducing a global safety factor to ensure the feasibility of the constraints.
For the next cycle (K = 2), we start a new deterministic optimization where each constraints gi are
updated with a new safety factor sKfi . This optimisation starts from the last evaluated point of the search
space. These steps are repeated until convergence. The sequential single loop method requires fewer
iterations of the optimization process and reliability assessments, in order to converge (no reliability as-
sessment at each current point of the optimization), thus making the process more efficient than double
loop reliability methods.

4.3. Agent level uncertainty propagation and management
Since a multi-agent system is a set of agents operating in a common environment, our goal is to propagate
uncertainties through this set of agents, from the inputs to the outputs and define a strategy permitting
the multi-agent system to satisfy the new constraints which are formulated in terms of reliability and
robustness. Uncertainties can be of two different types: the modeling uncertainty and the parameter
uncertainties. Modeling uncertainties are due to the difference between the model predictions and the
reality. Another potential source of uncertainty in the outputs of our system comes from the uncertainty
in the input parameters. In preliminary aircraft design for example, these variations can result from the
differences between the idealized models which are used and the final design system at the end of the
various design phases.

To propagate uncertainties we integrate additional information in each agent. The random variables
can be represented in different ways: by a cloud of sample points or by their probability distribution.
To keep a relatively generic approach for uncertainty representation we have chosen the beta-mystique
distribution developed at Airbus which allows to represent through four parameters the most commonly
used probability laws: the uniform law, the normal law, the Gumbel distribution and the triangular



distribution as well as possible variations in these laws. We describe now how to manage the uncertainties
for each type of agent. There are different types of agents that are involved in the propagation:

❼ The model agent: a model representing a certain physical system is encapsulated. The agent takes
a vector of random parameters xc as input. Each random parameter xi component of the vector xc

is characterized by its mean xmi
at the current optimization point and its random characteristics

(eg its standard deviation σxi
or the four parameters of the beta-mystique law, etc.). The output of

the agent is then written: f(xi)+ δmodel where δmodel is the modeling uncertainty. The uncertainty
δmodel is characterized by one of the representation given above (a cloud of sample points, and
various probability laws can be for example represented thanks to the beta-mystique law) and
obtained by the uncertainties propagator associated with this representation. These can be either
exact propagators in simple cases, or propagators that give an approximation based on first order
calculation. It is then sent to the rest of the multi-agent system (variable agents taking as input
the agent output: the consumers agents).

❼ The objective-function agent: the specific objective of this agent is to minimize the objective func-
tion of the system (this agent encapsulates the performance function of the optimization problem).
It ensures that the obtained performances are consistent with the requirements of the problem. The
agent takes as input a vector of random parameters xc with their associated uncertainty representa-
tion. The output of the agent is E[f(xi)]. The mean of the function f is calculated on the basis of
the results of the uncertainty propagation which also permits to determine the standard deviation
of the objective function (we can then obtain information about the robustness of the system).

❼ The constraint agent: the constraint agent can determine the level of reliability reached by each
constraint. It takes as input a vector of random parameters xc. Each random component xi has an
associated uncertainty representation (cloud of sample points or probability distribution). The agent
checks internally whether the constraint is satisfied by measuring the level of reliability. This proba-
bility can be written as Prob[gi(xi) ≤ 0] and obtained directly from samples for an uncertainty rep-
resentation by a cloud of sample points or it can be calculated by Prob[gi(xi) ≤ 0] = Φ(−µcontrainte

σcontrainte
)

under the hypothesis of normality for uncertainties represented by probability distributions. For
non-Gaussian variables, such expressions may still represent a good approximation for the reliabil-
ity evaluation, considering the central limit theorem and the fact that for complex problems the
constraint agent usually depends on a large number of uncertainty source. A normality test can
be implemented prior to the estimation of the probability in order to test this hypothesis. If the
constraints do not meet reliability thresholds which are imposed αi, a global safety factor sf is
introduced (see equation 4) in order to take into account the dispersion of the constraint (see figure
2a): Prob[gi(xi)− sKfi ≤ 0] = αi where αi is the required level of reliability. The new search point
for the following optimization cycle is then the last point used for reliability study. As already
said before, it is possible that the safety factor implies that the new constraints are not satisfied
at this point of the search space. If it could be a problem for standard optimisation methods like
pattern search, the mutli-agent optimization approch used in this study doesn’t need such kind of
constraint satisfaction for the next optimization cycle. The interactions defined in the constraint
agent are shown on figure 3.

Note that when uncertainties are modeled by normal laws characterized by variance σ and mean µ,
the uncertainty propagation can be simplified. According to the available information at the output of
the agent (accessibility of the gradient or the structure model), the uncertainty propagation is different.
Then, we differentiate two cases:

❼ The encapsulated model is linear or quadratic: mean and standard deviation of the agent output
are determined analytically.

❼ The encapsulated model is ordinary: if the gradient is available or can be evaluated the propaga-
tion is performed analytically using a first order approximation. Otherwise, we use Monte Carlo
simulations in order to define the characteristics of the uncertainties on the agent output.

In this section a method for managing uncertainty for solving optimization problems by multi-agent sys-
tem was introduced. In the next section we set up a test case to validate the proposed approach. Thus,



Figure 3: Uncertainty propagation through a constraint agent

the methods described in this section are applied in section 5 in the context of a preliminary aircraft
design problem.

5. Preliminary aircraft design test case

5.1. Presentation of the problem
The preliminary aircraft design problem that we consider (inspired from [10] [11]) involves the ratio
power/weight PTO

mTO
and the wing loading mMTO

SW
as aircraft variables. The objective of this problem is to

minimize the weight of the aircraft at takeoff mMTO and get the lowest possible power/weight ratio and
the highest possible wing loading. The deterministic optimization problem is formulated as follows:

{

MinmMTO

SW
,

PTO

mMTO

mMTO(
mMTO

SW
, PTO

mMTO
)

gi(
mMTO

SW
, PTO

mMTO
) ≤ 0 i = 1, 2, 3

(6)

where the constraints gi are only the active constraints: the cruise speed(block 1, figure 4a), the landing
field length (block 2) and the takeoff field length (block 3).

We first determine the optimum point of our problem without uncertainty through a standard algorithm.
The algorithm used is of Pattern Search type, which provides the optimum in 110 evaluations of the
objective function: mMTO

SW
= 377kg/m ; PTO

mMTO
= 187W/kg and mMTO = 20945kg.

The preliminary design is a design phase which proves to be crucial but complex for several reasons:
decisions are made in a context where few things are defined and the data of the problem are still
poorly known. The search space of the solutions must remain general enough to not exclude potential
solutions, and finally the models used are often relatively coarse. At this stage of the design, uncertainties
are significant and are mainly modeling uncertainties. We wish to design a system weakly sensitive to
changes and having statistically the best performance. To this end the deterministic problem is modified
to include reliability constraints. The problem is as follow:

{

MinmMTO

SW
,

PTO

mMTO

E[mMTO(
mMTO

SW
, PTO

mMTO
, δ)]

Prob[gi(
mMTO

SW
, PTO

mMTO
, δ) ≤ 0] ≥ 90% i = 1, 2, 3

(7)

Uncertainties are introduced on the following parameters: the maximum lift coefficient during landing
CL,max,L, the maximum lift coefficient during the takeoff phase CL,max,TO, the lift to drag ratio E and
the propeller efficiency ηP,CR. These random variables were chosen on the advice of experts.

5.2. Result obtained by the multi-agent method
The deterministic problem defined by the equation 6 is solved by a multi-agent method, the optimum is
represented by a black dot on the figure 4b.



(a) Description of the simplified conceptual aircraft phase (b) Resolution of the probabilistic optimization by Monte Carlo
simulation with the multi-agent method

Figure 4

These results are validated by comparison with a standard optimization method (see table 1). The
results obtained through the two different methods are close, however there is a difference in the number
of iterations required to achieve convergence: the multi-agent method requires 42 iterations while the
classical optimization algorithm (Pattern Search) requires 110 iterations, or about 3 times more. The
convergence is considered as reached once detecting a change in the constraints and in the objective
function below a certain treshold during a number ms of consecutive steps.

Table 1: Comparison of the results between the multi-agent method and the classical optimization in the
case of the deterministic optimization

We now take into account the uncertainties and solve the problem given by equation 7. Different cases
are implemented in order to test the developped methods. Thus the uncertainties are taken into account
by:

Monte-Carlo simulations (50 000 draws are done), the variables are modelized by normal distribu-
tions with constant mean and standard deviation which are specific to each uncertain variable.

Analytic calculations, the mean and the standard deviation of each random variable are determined
analytically. We assume that all the random variables are uncorrelated. This approximation will
be verified by implementing the same method but with Monte Carlo simulations.

The different results obtained are presented in table 2a and compared to a classical optimization method
in table 2b.

In the various studied cases we observe that the multi-agent approach provides solutions close to those
obtained by a conventional optimization method. Nevertheless, we can notice a slight difference between
the results obtained through the two algorithms for the propagation of uncertainties by Monte-Carlo
simulations when they are modeled by log-normal law. Indeed the Pattern Search algorithm does not
provide stable results (for the same initial point) as opposed to multi-agent. The Pattern Search algorithm
is sensitive to noise caused by the Monte-Carlo draws, and this sensitivity to uncertainty is even more
important when the variables follow a log-normal law. We also note that the assumptions made in order
to perform an analytical uncertainty propagation are validated. Indeed, in the table 2a we can see that



(a) Results obtained by the multi-agent method for the reliability optimization

(b) Results obtained by a classical algorithm for the reliability optimization

Table 2

we get the same results when the uncertainties are propagated analytically or by Monte-Carlo simulations
(the uncertainties are modeled by log-normal law).

The multi-agent approach appears to significantly reduce the number of simulations. On the other hand,
whatever the initial selected point, the multi-agent method also appears more robust because it permits
to obtain the same optimum point each time, which is not the case for the Pattern Search algorithm.

When we compare the deterministic optimization results with those obtained for the reliability opti-
mizations we see an increase in the cost function (see table 1 and figure 4b): the takeoff weigth is more
important in the case of the reliability optimization (normal tendency when setting up a reliability and/or
robust optimization problem: the presence of margins in reliability optimization causes the moving of
the optimum). The constraints represented in 4b are deterministic constraints. The takeoff weigth of
the airplane increased but we have taken into account the uncertainties impacting the parameters which
generate the greater sensitivity of the objective function and performances, we are now able to guarantee
a design satisfying a certain level of reliability (the active constraints have a reliability threshold equal
to 90%) in contrast to the deterministic optimization.

In this first solution of the preliminary design problem, probabilistic uncertainties are taken into account
from the beginning of the optimization. Thus, if the initial point of the optimization algorithm is far from
the reliability optimum and when Monte-Carlo simulations are required, the management of uncertainties
can be very expensive. So, we now want to implement the previously developed method using a single
loop procedure in which a series of cycles of deterministic optimization and reliability assessments of
the system succeed each other. This method is thus applied and compared with a two loop sequential
method. The results are given in table 3. As for the analytical test case, the optima which are obtained
by the two methods are close and despite of a higher number of deterministic evaluations, the sequential
single loop method is more efficient because it requires only three reliability assessments.

Table 3: Sequential optimization results

The developed methods were used to take into account the uncertainties of different natures (modeling
uncertainties and parameter uncertainties) and in order to set up a system having statistically the high-
est level of performance in a multi-agent method. The multi-agent system is very promising for solving
complex problems (multidisciplinary problem with interrelated disciplines). This resolution can be very
complicated when implementing a standard optimization method (computation time, important problems
of convergence etc..).



6. Conclusion

Nowadays systems to optimize are more and more complex: the number of parameters to be determined is
high, sometimes several interrelated disciplines are involved, as well as different levels of granularity. The
classical optimization methods (algorithm based on the calculation of gradients, research methodology
etc..) can thus be difficult to implement in order to solve such complex problems. This motivates the
development of new methods to address optimization problems with a large number of variables which
may have multi-level and multi-disciplines aspects. Methods based on the use of adaptive multi-agent
systems (AMAS) are interesting alternatives to address this problem. The question of the integration of
uncertainties in the multi-agent problem-solving approach arises. In this paper we detail a new methodol-
ogy we developed which allows the consideration of uncertainties in a sequential multi-agent optimization
problem. Thus we have proposed several methods for managing uncertainty, based on the calculation of
adaptive safety factors. The proposed approach solves the problem sequentially (deterministic resolution
then optimization under uncertainty) in order to accelerate the convergence in most cases. Finally, the
last proposed method reduces even more the computation time by developing a sequential approach with
adaptive criterion for assessing the level of reliability. These three approaches have been tested and
validated on a preliminary aircraft design test case. Future work will be dedicated to test our method on
a more detailed preliminary aircraft design.
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[7] M. Pendola. Fiabilité des structures en contexte d’incertitudes statistiques et d’écarts de modélisation.
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