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Abstract 

Assuming two positive overlapping signals, with 
known shapes, the proposed method estimates the 
distances between their mean positions, width and 
area ratios. The data are two profiles representing 
the component shapes: no parametric model is 
assumed. The algorithm seeks shape equality between 
a linear combination of observation and first 
component, and the second component, in function of 
the area ratio. At the minimum shape difference the 
three parameters (distance between components, 
scaling factor and area ratio) are estimated. After 
theory, simulations are presented on Gaussian 
signals. Then, the method was applied on ECG 
signals from BSPM device during exercise on healthy 
people. The aim is mainly to get time distance 
between each T-wave and the P-wave of the following 
beat, on a given lead, in case of overlapping. Shape 
and width of the T-wave were shown to be constant 
before P-wave interference, which allowed taking 
such a real T-wave as first component model. 
Assumption of the same shape for the second 
component gave good results, as can be viewed on the 
reconstructed signals.  
  
1.   Introduction 

In this paper we are interested in the observation of 
signals which are produced by the overlapping of two 
positive components. In two situations the estimation 
becomes very difficult or impossible: either when the 
components are much fused, i.e. with a bad 
separation, even with a high Signal to Noise Ratio 
(SNR), e.g. chromatography, spectroscopy [1], or 
when we have a poor SNR. The influence of noise is 
generally preponderant in biomedical signals like 
exercise ECG recordings. This case is illustrated in 
this paper, where a method is presented which is able 
to separate the T and P waves, in case of overlapping, 
with good reconstruction capability. In [2], a method 
to subtract the overlapping T-wave influence was 

proposed for a better estimation of PR interval 
durations, but the waves were not reconstructed. An 
alternative is proposed in our method which will 
check distances between signal shapes, without 
assuming any parametric model. In the following 
section, the method is presented.  

 
2.     Material and methods 

 After giving our hypotheses on shape analysis, the 
model of the observed signals and the assumed data, 
the theory of the proposed method is stated, followed 
by the description of the estimation algorithm. 

 
2.1.   Hypotheses and model 

Signal shape equality  
Signals s(t) and v(t), functions of the real variable 

t, will be the same shape if and only if we can write: 
                        (1) 

From (1) we can deduce the following equivalent 
relation: 

            (2)   

Often, in applications, when a base line is subtracted, 
the parameter c is assumed to be zero. 
 Shape difference 
    Measuring a difference between two shapes needs a 
distance, or at least a similarity criterion. A method 
based on shape analysis, the Distribution Function 
Method (DFM) has been proposed in [3]. Its ability to 
detect very small shape differences, between positive 
signals, has been applied to detect impurities by 
chromatography [4] and to analyze and model 
nonlinearity in chromatograph response [5]. It has 
also been applied in the biomedical domain [6-8].  

The data and the model 
The data consist of a real signal s(t), proportional 

to the first component, another one v(t) which is the 
same shape as the second component, and the 
observed signal y(t), all in discrete form. We also 
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assume the areas under s(t) and v(t) are equal. It is 
important to emphasize that no parametric model is 
assumed for s(t) and v(t). We need only their shapes 
represented by experimental records. So, the model 
can be defined by the following equation: 

                          (3) 

In this equation, C is a constant and n(t) a noise 
assumed to be zero mean and independent of the 
signals. The problem is to estimate parameters k, a 
and d which are respectively the area ratio, the scaling 
factor and the separation between components. In fact 
this last parameter is equal to the distance between the 
mean positions (gravity centres) of s(t) and v(t), when 
a=1 or when the mean position of s(t) is taken as the 
origin of variable t. Let us call δ this distance, the 
relation between δ, d, a, and the mean position of s(t), 
say tm(s),  is : 

                              (4) 
In this paper, tm(s) is always the origin of variable t, 
so d will be equal to δ. In the following, the proposed 
method for the separation of two overlapping signals 
is stated. 
  
2.2.   Theory 
 

Neglecting the noise, equation (3) becomes: 
                             (5) 

Capital letters will be used for the integral functions. 
The adjunction of a star to a function means this 
function is normalized by the integral of the signal. 
For example: 

 

 

Writing (5) on normalized integral functions gives:    
                         (6) 

Putting , it is a convex combination of 
the form: 

                         (7) 

The involved signals being positive on their supports, 
these normalized integral functions are distribution 
functions (DF).  
Equation (6) can be written in the form:

                      (8) 

where:    . 
 Putting, 

                               (9)  

let us consider this right hand side of (8) as a function 
with parameter β: this linear combination of two DFs, 
which is not convex (β >1), can be shown to be a DF 
if 1< β <βsup, βsup depending on the involved signals. 
There exits one value β* so that this function and V* 
are linked by an affine function whose parameters 
give estimates of a and d. Checking this link is 
equivalent to check the both functions whose 
normalized integrals are V* and Hβ are the same 
shape.  Then the problem becomes the minimization 
of a shape difference, measured using DFM, which is 
recalled in the next section.  
 
2.3.   Estimation algorithm 

 
The power of the method is first shown by 

simulation, assuming the two components are the 
same shape. The aim of the paper is not to give a 
detailed study of the estimation accuracy when the 
three parameters (a, d, k) are made to vary in large 
sets of values, and for a lot of SNRs. The simulation 
study is coherent with the application.   

Computing the shape difference 
Assuming Hβ is a DF and recalling DFM, for any 

value z, 0< z <1, we can write:
                             (12) 

This function is an increasing function, depending on 
β which can be written as the composition of the 
inverse function of S* and Hβ : 

                             (13) 
This function is an affine function in case of shape 
equality, i.e. β = β*, whose equation is: 

                           (14) 
In any case, fitting the least mean square line on 

 gives a root mean square error (r.m.s.e.) 
which will represent our shape difference.  
Practically, interval (0, 1) is sampled with the values 
i/100, i being an integer going from 0 to 100, leading 
to the corresponding abscissas ti and ti’. In fact the 
fitting will be done for the index values i going from 
5 to 95, to avoid problems of inversion when the 
slopes of de normalized integral functions are too 
small.  

Synchronization of the first component 
Coming back to the model and hypotheses 

(sections 2.1, 2.2) we assume to have a profile s(t) 
which is proportional to the first component, i.e. with 
the same mean position and the same width. In fact, 
the hypothesis that the position of the first component 
is exactly known is realistic in some applications like 
chromatography or spectroscopy. It is not true in our 
application. Only the hypothesis of constant width, 
checked before overlapping, was assumed. For this 
reason, a new parameter was added in the shape 
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minimization that is a possible error, ε, in the position 
of s(t). So s(t) becomes s(t- ε), and S*(t) becomes S*(t- 
ε) in the computation of equation (9). 

The main steps of the estimation  
Assuming equal shape components, a Gaussian 

profile is used for this shape, in the simulation study. 
Then, equation (8) becomes for a given delay error ε: 

                        (8’) 

Now, let us consider the right hand side of (8’) as a 
parameterized function given in equation (9’).

                           (9’) 
For each ε value, we are looking for the value of β 
which minimizes the shape difference, designed by 
variable DELTA1, between this function (more 
precisely its derivative) and the reference signal s(t-ε). 
So, the simulation program is built on three loops. 
The first, indexed by I (going from 1 to 30) allows 
producing sequences of a random Gaussian noise with 
a given SNR, added to the observation signal y(t). 
Inside this first loop the second one, indexed by K 
(going from 1 to 101), introduces the delay ϵ on the 
first component model, varying in the range of one 
standard deviation. Lastly, for each value of I and K, 
the shape distance DELTA1(β,ε) between Hβ,ε and S* 
is computed when parameter β is increased from 1 to 
a value where Hβ,ε remains a DF, by steps of 0.01. As 
explained before, this shape difference needs to 
compute the inverse function (S*)-1 designed by t’ and 
the inverse function (Hβ,ε)-1 designed by t, and to 
make a linear fitting:  t = a1 t’ + a2.  
When the r.m.s.e. reaches a minimum value attributed 
to β*, the parameters a1 and a2 of the least mean 
square line are respectively the estimations of 
parameters “a” and “d”, for the delay ε defined by 
index K, and for the noise sequence numbered by 
index I. The minimization of DELTA1 in function of 
K, obtained for K=K*, gives an estimation of the 
scaling factor and the distance between the 
components. Renewing these estimations for several 
noisy trials, allows obtaining statistics on the 
estimations. Coming to the last parameter k, its 
relation with β*, i.e. the β value where a and d are 
estimated, leads to a natural estimation, given by: 

                             (15) 
For high levels of noise or small values of parameter 
d, the curve of DELTA1, in function of K (i.e. ε) is 
flat: the value of the minimum is quite constant in a 
large range around K*, but the error on the position 
K* is high. To reduce this error, another minimization 
was done. For each K value, we can obtain the 
reconstructed signal yrec(K)  and compute the 
difference in shape DELTA2(K) between yrec(K) and 
the observation y. The second minimization, in 
function of parameter K, sensitive to the 

synchronization of the first component with its model, 
gives significantly better results, as can be checked in 
our simulation study. Minimizing DELTA1 in 
function of the both parameters β and ε is referred as 
“Method 1”; using DELTA1 in function of β, for a 
given ε, and then DELTA2 for the final estimation is 
referred as “Method 2”. 
 
3.    Simulation results 

 The following examples have been chosen to 
illustrate the power of the proposed method first when 
the separation is very poor (d=0.9) with high SNR 
(Table 1), and then when SNR is low (10 and 5 dB) 
with values of the parameters in ranges corresponding 
to our application on ECG (Table 2, Table 3).  
 
Table 1. Parameter estimation when k=1, a=1, d=0.9, 
SNR=40 and 30 dB: Means M1, M2, and Coefficients 
of Variation (in %) CV1, CV2 using “Method 1” and 
“Method 2” (see in the text). 
 

SNR P. M1 CV1 M2 CV2 
40 k 1.07 19.7 1.00 2.17 
 a 1.00 1.31 1.00 0.37 
 d 0.90 2.54 0.90 0.88 

30 k 1.20 77.5 1.00 6.04 
 a 1.00 3.30 1.00 1.15 
 d 0.91 6.09 0.90 2.44 

 
Table 2. See legend Table 1 with k=0.6, a=0.8, d=2.2, 
SNR=10 and 5 dB. 

 
SNR P. M1 CV1 M2 CV2 
10 k 0.62 15.4 0.60 5.69 
 a 0.81 7.82 0.80 4.92 
 d 2.21 1.90 2.21 1.04 

5 k 0.67 28.4 0.60 12.2 
 a 0.80 13.7 0.78 8.93 
 d 2.23 3.26 2.21 2.68 

 
Table 3. See legend Table 1 with k=0.6, a=1.2, d=2.7, 
SNR=10 and 5 dB. 

 
SNR P. M1 CV1 M2 CV2 
10 k 0.61 10.9 0.60 7.35 
 a 1.20 7.57 1.19 5.37 
 d 2.68 2.18 2.69 2.17 

5 k 0.64 17.3 0.60 8.60 
 a 1.22 9.64 1.19 6.85 
 d 2.67 4.00 2.70 3.19 

 
In Table 3, parameters d and a were changed from 
Table 2, with the same resolution proportional to 
d/(1+a). Method 2 is clearly the better. 
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4.  Application to exercise ECG 
 

The following results come from records of High 
Resolution ECG obtained on lead V5 during an 
exercise test on healthy people. In a first step, the 
differences in shape and width of the T wave, from 
beat to beat, were found constant in mean, until T and 
P waves remain separated. Thus, the last T wave 
(number 680) was taken to model the first component. 
The width and the shape of the second component, 
i.e. the P wave, vary along the test. Due to high noise 
level the shape was assumed to be the same as T wave 
shape.  
 

 
Figure 1. T-P interval in function of beat number 
(dotted line) and RR curve minus 200 ms. 
  

  

 
Figure 2. Examples of signal reconstruction when the 
component separation is around 2.9 (up) and 2.0 
(bottom); unity=half width at half height of T wave. 
 

In Figure 1, the variation of T-P interval is presented: 
the curve built from 30 estimations (dotted line) can 
be compared to the RR curve (minus 200 ms) at the 
same beats. For this preliminary study, the signal 
segmentation was made by hand. In Figure 2, two 
examples of such estimations are shown on the 
reconstructed signal and the estimated components.  
 
5.  Conclusions 

 On one hand, the simulation study showed that the 
presented method has potential application domains 
going from spectroscopy to biomedical signal 
analysis. On another hand, the preliminary results 
obtained on an exercise ECG show potential 
applications to stress test analysis. The separation of 
P wave from T wave could bring valuable 
information hidden by the overlapping, and could also 
improve the estimation of PR interval duration. 
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