
HAL Id: hal-01217165
https://hal.science/hal-01217165

Submitted on 19 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A constraint-based WCET computation framework
Hajer Herbegue, M Filali, Hugues Cassé

To cite this version:
Hajer Herbegue, M Filali, Hugues Cassé. A constraint-based WCET computation framework. 7th
Junior Researcher Workshop on Real-Time Computing (JRWRTC 2013), Oct 2013, Sophia Antipolis,
France. pp. 33-36. �hal-01217165�

https://hal.science/hal-01217165
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12743

The contribution was presented at JRWRTC 2013:

http://jrwrtc.science.uva.nl/

To cite this version : Herbegue Bouhachem, Hajer and Filali, Mamoun and
Cassé, Hugues A constraint-based WCET computation framework. (2013) In:
7th Junior Researcher Workshop on Real-Time Computing (JRWRTC 2013),
16 October 2013 - 18 October 2013 (Sophia Antipolis, France).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

A Constraint-Based WCET Computation Framework

Hajer Herbegue Mamoun Filali Hugues Cassé

CNRS IRIT
Université de Toulouse, France
first_name.last_name@irit.fr

ABSTRACT

OTAWA is a tool dedicated to the WCET computation of
critical real-time systems. The tool was enhanced in or-
der to take into account modern micro-architecture features,
through an ADL-based approach. Architecture constraints
are expresses such that they can be solved by well known ef-
ficient constraint solvers. In this paper, we present how we
could describe some complex architecture features using the
Sim-nML language. We are also concerned by the validation
and the animation point of views.

1. INTRODUCTION
OTAWA is a tool dedicated to the analysis of critical

real-time systems. The worst case execution time (WCET)
computation is one of the crucial analyses it provides. In
a previous paper [12], we have shown how to enhance this
tool in order to take into account modern micro-architecture
features and complex instruction set architectures. An ap-
proach based on architecture description language (ADL)
for the execution time analysis considers the architecture de-
scription in the Sim-nML language [11]. We have surveyed
how to express architecture constraints such that they can
be solved by well-known efficient solvers. In this paper, we
present an extension of the Sim-nML language that allows
to handle a set of complex features of modern processors.
We are also concerned by a validation point of view. Since
the validation of almost all currently used solvers is out of
reach, we extended the OTAWA framework to allow the
validation of the results returned by these solvers. This ap-
proach is not new: it is already used in assistant theorem
provers [7, 16] where results provided by other less reliable
but more efficient tools [2] are established again, i.e., vali-
dated. The inclusion of the validation layer is a novelty of
OTAWA since it represents an easy and fast way to verify if
analysis results meets the initial architecture specification.

The rest of our paper is organized as follows: Section 2 is
an overview of the related works. Section 3 recalls the con-
text of our work. We present the OTAWA tool and the
constraint-based approach for WCET computation. Sec-
tion 4 presents the Sim-nML language and its extension to
describe some complex features of modern processors. Sec-
tion 5 presents another contribution of the paper related
to validation and animation aspects. Section 5 draws some
conclusions.

2. RELATED WORKS
Over the last years, many studies have been undertaken

with respect to WCET computation for pipeline architec-
tures. Among them, we mention the work of [15] concerned
by verifying structural properties related to the wellformed-
ness of the architecture. A graph-based model of the pro-
cessor is generated from an ADL-based description. Archi-
tecture structural properties are validated using algorithms
applied on the graph. With respect to dynamic aspects, the
model checking approach has been experimented with miti-
gated results [9]. The basic timed automata model enhanced
with game theory aspects [4] seems promising. Nevertheless,
abstract interpretation based approaches [19] are today well
established. In this paper, we are interested in the AI based
approach on constraint satisfaction [6] and its validation.

3. ADL-BASED APPROACH FOR WCET

COMPUTATION
OTAWA [3] is a framework dedicated to WCET compu-

tation founded on an abstraction layer that describes the
target hardware and the instruction set architecture (ISA),
as well as the binary code under analysis. The instruc-
tion set architecture (ISA) specification is expressed in the
Sim-nML language. The hardware architecture is described
through an XML format. Yet only some architectures can
be handled by such a model. A pipeline analysis consists
in modeling the execution of basic blocks1 on the pipeline
and then computing the corresponding execution costs [18].
A constraint-based approach, presented in [12], is based on
ADL processor descriptions and uses constraint specification
languages and resolution methods to compute the time cost
of a basic block. The target processor is described using the
Sim-nML language [10, 17]. In addition to the ISA level,
the architecture description includes the hardware compo-
nents and the execution model of instructions. Sim-nML
was extended to support such a description of the proces-
sor. The carried analysis aims to estimate the time cost of
basic blocks of a program. Using the processor description
in the Sim-nML language and the basic block, we generate
a constraint-based description. The execution time of a ba-
sic block is described as a Constraint Satisfaction Problem
(CSP) [6]. This approach handles complex processors with
out-of-order execution, superscalar stages, pipelined func-
tional units, etc. This is done within an automated work
flow, presented in Figure 1.

4. THE SIM-NML LANGUAGE

1A basic block is a sequence of instructions, without any
branch, which makes up the execution path of a program.

Sim-nML

Architecture and

Instruction path models

Analysis

Binary file Basic block GLISS

Hardware

description

ISA

description

CFG Constructor

OTAWA

Constraint

based description

WCET analyzer

Constraint solver

�����

�����	�
��

�	�	���	

��
��	�

���������

����
����

UPPAAL Checker

Time replay

�		
����

CSP Generator

�		
����

Figure 1: ADL-based work flow for WCET analysis

A representation of an architecture consists of the descrip-
tion of its hardware components and the supported instruc-
tion set. Sim-nML [11] is a hierarchical and a highly struc-
tured language able to perform such a description. From
this, it provides the ability to generate processor specific
tools. In Sim-nML, the processor model is described at
instruction level, as a hierarchical structure using an at-
tributed grammar. The instructions and the addressing
modes are described by pre-defined attributes. The syntax
attribute defines the assembly representation of the instruc-
tion. The attribute image gives the binary representation
and the attribute action defines the semantics of the in-
struction. See lines 15-18 of listing 1.

Listing 1: Sim-nML processor description
1 s tage FE , DE , IS , ALU[2] , MEM , CM
2 extend FE , DE , IS , CM
3 capac i ty = 2 / / d e g r e e o f s u p e r −

s c a l a r i t y

4 i no rde r = true / / i n − o r d e r s t a g e s

5 extend ALU , MEM
6 i no rde r = f a l s e / / o u t −o f − o r d e r s t a g e s

7

8 / / F e t c h B u f f e r a n d Re− o r d e r B u f f e r

9 bu f f e r FBuf [4] , RoB [8]
10

11 reg PC [1 , card (32)] / / 32− b i t PC r e g i s t e r

12 reg R [32 , card (32)] / / 3 2 r e g i s t e r s o f 3 2 b i t s

13 mem M [32 , card (8)] / / a m em o r y o f 2 ˆ 3 2 8− b i t w o r d s

14

15 op add (d : card (2) , s1 : card (2) , s2 : card (2))
16 syntax = format (”add r%d r%d r%d” ,d , s1 , s2)
17 image = format (”00%2b%2b%2b” ,d , s1 , s2)
18 action = {R[d] = R[s1] + R[s2] ;}
19 uses = FE & FBuf ,DE, IS & RoB,ALU[0] & R[s1] . read

& R[r2] . read & R[d] . wr i t e & RoB #{1} , CM
20

21 op load (d : card (2) , s : card (2))
22 . . .
23 uses = FE & FBuf ,DE, IS & RoB,MEM & R[d] . wr i t e &

R[s] . read & M. read & RoB #{10} , CM

We extended the Sim-nML language such that we can de-
clare the hardware structure of the processor2. Precisely,
the extended language provides the syntax to define the
pipeline stages, the resources accessed by the instructions
when they execute on the pipeline. The properties of these
hardware components are specified as attributes. So, we can
declare stages, buffers, registers and memories as hardware
resources. Lines 1-13 of Listing 1 describes the processor in
the Figure 2. The instruction definition is extended with
an attribute uses that describes the execution model of the

2Extensions are underlined in the listings.

Buffers and queues Registers Cache memoriesStages and functional units

ALU

Re-order

Buffer

Instruction

Cache

Fetch

Buffer
PC

MEM

ALU
mul

Data

Cache

FE DE CM

instr 0

Register

File

instr 1

instr 0

instr 1

instr 0

instr 1

instr 0

instr 1

instr 0

instr 1
DE

Figure 2: An out-of-order superscalar processor

instruction. The execution model represents the instruction
behavior in terms of resources allocation. For example, to
begin executing on a stage, an instruction has to wait for
its resources to be available. Therefore, the execution time
of an instruction is impacted by the general resources state.
The uses attribute defines, in a timed sequence called clause,
the resources used by an instruction in each step of its exe-
cution. A sequence is defined using commas. Every clause
in a sequence represents a step of the instruction execution.
In every step, one or more resources are required, and access
can be in a read or a write mode. Parallel access is expressed
by an operator &. Access to some resources can take a fixed
duration t that can be specified as #{t}. An example of
uses attribute is given in lines 19 and 23 of Listing 1.

Listing 2: Specialized execution with different laten-
cies

1 s tage FE , DE , IS , ALU[2] , MEM , CM
2 extend DIV
3 uses = FE , DE , IS , ALU[1] & R[rn] . read &
4 R[rd] . wr i t e & R[rm] . read #{25} , CM
5 extend MUL
6 uses = FE , DE , IS , ALU[1] & R[rd] . wr i t e &
7 R[rm] . read & R[rn] . read #{5} , CM

Listing 3: Multiple load instruction
1 extend l oad mu l t i p l e
2 uses = FE , DE , IS ,
3 (i f r e g l i s t <0..0> == 1 then MEM & M. read & R

[0] . wr i t e . . e nd i f) ,
4 (i f r e g l i s t <1..1> == 1 then MEM & M. read & R

[1] . wr i t e . . e nd i f) , . . . , CM

The language was extended to handle some complex fea-
tures of recent architectures. In fact, modern architectures
present complex pipelines and instructions with complex
execution models. We were able to handle pipelines with
specialized execution units, micro-coded instructions and
pipelined functional units (like floating point pipelines). For
example, we assume having a pipeline with 2 out-of-order
ALU units, among which only one executes multiplication
instructions. This feature is relevant in execution time com-
putation. Multi-cycle instructions and the micro-coded in-
structions as the load/store multiple are handled by our de-
scription language. Listing 3 presents a load multiple in-
struction where the reglist parameter is a bit sequence. A

bit is set to one if the corresponding register is loaded. Dif-
ferent latencies can be specified for every stage and are taken
into consideration when generating temporal constraints.
The example of Listing 2 considers the same architecture
in Figure 2. We assume that multiplication and division in-
structions are executed by the second ALU unit, which is
the specialized functional unit. However, different latencies
are specified for the two instructions on that functional unit
(see Listing 2). These clauses, specified for every instruction
supported by the processor, will be used, with the stages
attributes to generate the instructions constraints [12]. In
fact, we use temporal intervals to represent the lifetime of
instructions on the pipeline stages and the resource alloca-
tions. The instruction dependencies within a basic block are
expressed with constraints on the time intervals. The con-
straint description captures the architecture and instruction
semantics such as the resource allocation strategy, the data
dependencies, the structural dependencies, contentions on
shared resources, etc. The constraints are combined to for-
mulate a CSP, which resolution provides the time cost of
basic blocks of a program.

5. VALIDATION AND ANIMATION
The aim of the OTAWA tool is to provide an environment

for the hardware architect. In this section, we consider two
tools related to validation and animation. These tools are
based on an internal representation modeling the architec-
ture and the instructions behavior.

ISA level tasks: Step level tasks:

〈ISA〉
〈interval〉
〈instruction〉

〈Step〉
〈interval〉
〈instruction〉,〈step〉

Basic tasks (leaves):

〈occurrence|?〉〈Stage〉
〈interval〉
〈instruction〉,〈step〉

|

[r|w]
〈occurrence|?〉〈Resource〉

〈interval〉
〈instruction〉,〈step〉,〈index〉

〈Stage〉 , 〈Resource〉 ::= 〈Register | Buffer | Memory〉

Table 1: Collected clauses syntax

5.1 The internal representation
Since we are concerned by modeling concurrency of in-

structions, we have chosen an OCCAM based representa-
tion [8, 13]. We consider the following basic constructors:

• USES : This is the terminal case in which a basic re-
source request and an access are specified.

• SEQ : This is a sequential behavior. Each element of
this sequence is specified recursively by a clause. Intu-
itively, the SEQ constructor will allow us to specify the
execution path of an instruction. Each clause of this
path will specify the local behavior with respect to a
stage of the processor, what we called a step.

• PAR. This is a concurrent behavior. Each element is
specified recursively by a clause. Intuitively, we ex-
press as such the simultaneous use of resources during
a step.

• ATTR. These are general attributes superposed to a
clause, e.g., timing ones. Actually, our internal rep-
resentation is decorated with the resolved constraints.

Our internal representation is based on generic attributed
clauses. For our validation purposes, we instantiate the at-
tribute type as the corresponding time interval. With re-
spect to our concerns, the collected clauses can be described
through the light DSL (Domain Specific Language) given
by the syntax in Table 1. For instance, if we consider the
load instruction : ldr r3 , [r11 , -#20] executed on
the architecture of Listing 1, the following clause represents
the effective resources access of the instruction.

i0 clause = 0FE
[0,1]
0,0 & ?

?FBuf
[0,1]
0,0 & r

15R
[0,1]
0,0 , 0DE

[1,2]
0,1 ,

0IS
[2,3]
0,2 & ?

?RoB
[2,3]
0,2 , 0MEM

[3,4]
0,3 & r

0M
[3,4]
0,3 & r

11R
[3,4]
0,3

& w
3 R

[3,4]
0,3 & ?

?RoB
[3,4]
0,3 , 0CM

[4,5]
0,4

5.2 Validation.
We have studied two kinds of validation:
• Instruction constraints validation. It consists in check-

ing that the results are coherent with respect to the
initial representation. For example, we validate that
the intervals of instruction steps respect the data haz-
ard constraints.

• Architecture validation. It consists in checking that
the results are coherent with respect to the studied
architecture. For instance, we validate that, in an in-
order pipeline, an instruction steps occurs before its
successors.

∀ s
[l,u)
i,s ∈ STEP. ∀ s

[l′,u′)

i′,s′
∈ STEP. i < i

′ ⇒ u ≤ l
′

Although, theoretically these validations should not be
necessary, our experiments have shown that they are of great
help. Actually, it is much easier to assess these validations
than those on the usual execution graphs [14] that can be
huge.

5.3 Animation.
The aim of the ”animated” views is to assist the architect

to better understand instruction behaviors. For that pur-
pose, we consider a well known formal model: that of timed
automata [1] for which verification tools like UPPAAL [5]
implement the decision procedure. As a matter of fact, the
UPPAAL framework is by now a mature tool which offers
a powerful simulator in order to interact dynamically with
the architecture under study. Currently, we generate au-
tomatically the instruction view and the stage view. Also,
architects can use the UPPAAL query language to express
temporal predicates. Then, such predicates will be decided
automatically. Moreover, if some property is not verified a
counter example is exhibited. To summarize, the architect
user can step along the execution of his model and validate
general dynamic properties.

Behavior specification: from timed clauses to timed au-
tomata.
Basically, to each clause, we associate a timed automata

location. Thanks to an invariant, control remains in such
a location starting from the lower bound until the upper
bound of the interval associated to the clause is reached. A
guard ensures that such a location is not left before the up-
per bound is actually reached. Each of our animated views
consists in a network of such automata sharing a global
clock clk. Last, since our automata progresses according
to time (not to internal events or synchronizations), the la-
bels of their states are also meaningful.

• The instruction view. In this view, a timed automata
was assigned to each instruction. Stepping trough this
view allows us to see how each instruction evolves.
This view is especially interesting for observing the
relative ”speed” of each instruction: when an instruc-
tion enters the pipe and maybe stalls over its successive
stages.

• The stage view (Figure 3). In this view, to each stage
is associated a timed automata. Stepping through this
view allows us to see how stages evolve. This view is
especially interesting for observing stages occupancy.

Figure 3: Stage view network timed automata

6. CONCLUSION
In this paper, starting from our extension of the OTAWA tool

allowing WCET computations for today architectures [12],
we have extended the Sim-nML language in order to handle
modern processors features. We found the constraint-based
time computation method suitable for expressing complex
instruction features. We have also presented a light DSL
for expressing architecture properties. Last, we have con-
sidered how to validate and animate the results obtained
through constraint solvers. As a future work, we intend to
use the DSL presented in this paper to formalize the archi-
tecture specification and constraints, in order to elaborate a
reliable description of the architecture constraints.

7. REFERENCES
[1] R. Alur and D. Dill. A theory of timed automata.

Theoretical Comput. Sci., 126(1):183–235, February
1994.

[2] M. Armand, G. Faure, B. Grégoire, C. Keller,
L. Théry, and B. Werner. A modular integration of

sat/smt solvers to coq through proof witnesses. In
CPP, pages 135–150, 2011.

[3] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat.
Otawa: An open toolbox for adaptive wcet analysis. In
Software Technologies for Future Embedded and
Ubiquitous Systems (SEUS), 2010.

[4] J.-L. Béchennec and F. Cassez. Computation of wcet
using program slicing and real-time model-checking.
CoRR, 2011.

[5] G. Behrmann, A. David, K. G. Larsen, J. H̊akansson,
P. Pettersson, W. Yi, and M. Hendriks. Uppaal 4.0. In
QEST, pages 125–126, 2006.

[6] N. Beldiceanu, M. Carlsson, S. Demassey, and
T. Petit. Global constraint catalogue: Past, present
and future. Constraints, 12(1):21–62, Mar. 2007.

[7] Y. Bertot and P. Casteran. Interactive Theorem
Proving and Program Development. SpringerVerlag,
2004.

[8] A. Burns. Programming in Occam 2. Addison-Wesley,
1988.

[9] A. Dalsgaard, M. Olesen, M. Toft, R. Hansen, and
K. Larsen. METAMOC: Modular execution time
analysis using model checking. In 10th International
Workshop on Worst-Case Execution Time Analysis
(WCET), 2010.

[10] A. Fauth, J. Van Praet, and M. Freericks. Describing
instruction set processors using nml. European Design
and Test Conference (EDTC), 1995.

[11] M. Freericks. The nml machine description formalism.
Technical Report 1991/15, TU Berlin, 1991.

[12] H. Herbegue, H. Cassé, M. Filali, and C. Rochange.
Hardware architecture specification and constraint
based wcet computation. In International Symposium
on Industrial Embedded Systems (SIES), June 2013.

[13] C. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

[14] X. Li, A. Roychoudhury, and T. Mitra. Modeling
out-of-order processors for WCET analysis. Real-Time
Systems, 2006.

[15] P. Mishra and N. Dutt. Modeling and validation of
pipeline specifications. ACM Trans. Embed. Comput.
Syst., pages 114–139, Feb. 2004.

[16] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL.
A Proof Assistant for Higher-Order Logic. Number
2283 in Lecture Notes in Computer Science. Springer,
2002.

[17] V. Rajesh and R. Moona. Processor modeling for
hardware software codesign. In International
Conference on VLSI Design, 2000.

[18] C. Rochange and P. Sainrat. A context-parameterized
model for static analysis of execution times.
Transactions on High-Performance Embedded
Architectures and Compilers II, 2009.

[19] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The
worst-case execution-time problem—overview of
methods and survey of tools. ACM Transactions on
Embedded Computing Systems (TECS), 2008.

