
HAL Id: hal-01217090
https://hal.science/hal-01217090v1

Submitted on 19 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BEAUFORD: A Benchmark for Evaluation of
Formalisation of Definitions in OWL

Cheikh Kacfah Emani, Catarina Ferreira da Silva, Bruno Fies, Parisa Ghodous

To cite this version:
Cheikh Kacfah Emani, Catarina Ferreira da Silva, Bruno Fies, Parisa Ghodous. BEAUFORD: A
Benchmark for Evaluation of Formalisation of Definitions in OWL. Open Journal Of Semantic Web,
2015, 2 (1), pp.3-14. �hal-01217090�

https://hal.science/hal-01217090v1
https://hal.archives-ouvertes.fr

c© 2015 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

Open Access

Open Journal of Semantic Web (OJSW)
Volume 2, Issue 1, 2015

http://www.ronpub.com/ojsw
ISSN 2199-336X

BEAUFORD: A Benchmark for Evaluation of
Formalisation of Definitions in OWL

Cheikh Kacfah Emani A B, Catarina Ferreira Da Silva B, Bruno Fiès A, Parisa Ghodous B

A Centre Scientifique et Technique du Bâtiment, 290 route des Lucioles,
BP 209, 06904 Sophia Antipolis, France, {cheikh.kacfah, bruno.fies}@cstb.fr

B Université Lyon 1, LIRIS, CNRS, UMR5205, F-69622, France,
{cheikh.kacfah-emani, catarina.ferreira, parisa.ghodous}@univ-lyon1.fr

ABSTRACT

In this paper we present BEAUFORD, a benchmark for methods which aim to provide formal expressions of con-
cepts using the natural language (NL) definition of these concepts. Adding formal expressions of concepts to a
given ontology allows reasoners to infer more useful pieces of information or to detect inconsistencies in this given
ontology. To the best of our knowledge, BEAUFORD is the first benchmark to tackle this ontology enrichment prob-
lem. BEAUFORD allows the breaking down of a given formalisation approach by identifying its key features. In
addition, BEAUFORD provides strong mechanisms to evaluate efficiently an approach even in case of ambiguity
which is a major challenge in formalisation of NL resources. Indeed, BEAUFORD takes into account the fact that
a given NL phrase can be formalised in many ways. Hence, it proposes a suitable specification to represent these
multiple formalisations. Taking advantage of this specification, BEAUFORD redefines classical precision and re-
call and introduces other metrics to take into account the fact that there is not only one unique way to formalise a
definition. Finally, BEAUFORD comprises a well-suited dataset to concretely judge of the efficiency of methods of
formalisation. Using BEAUFORD, current approaches of formalisation of definitions can be compared accurately
using a suitable gold standard.

TYPE OF PAPER AND KEYWORDS

Short communication: Benchmark, automatic formalisation, natural language definitions

1 INTRODUCTION

One of the most important ideas of Semantic Web tech-
nologies is the use of ontologies as background knowl-
edge for information processing. The richness of the
Web Ontology Language (OWL) enables to capture ef-
ficiently this knowledge. Ever since the invention of
OWL, the degree of formalisation of web ontologies
arouses discussions. This situation is due to the fact
that complex formal ontologies are suitable for powerful
reasoning (consistency checking and subsumption de-
tection). But building an ontology having high logical

specifications is a costly task which is, in addition, error-
prone. To avoid modelling errors requires to have a deep
understanding of the domain to model and also of the
logic used to formalise it [10]. This problem is often
mentioned as a main argument against the adoption of
rich formal ontologies. To escape this problem, methods
for (semi-)automatic knowledge acquisition from texts
have been proposed. So far however, methods for build-
ing ontologies from texts, produce lightweight ontolo-
gies. Such ontologies mainly consist of a taxonomy and
concepts and some relations between them [6]. But, over
time, techniques which provide more expressive axioms

3

http://creativecommons.org/licenses/by/3.0/
http://www.ronpub.com/ojsw

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

for ontology enrichment have emerged [9] [5] [14] [8].
Some of these techniques use common characteristics of
instances of a given concept to figure out its expression
[9] [5]. For example, by observing that all the instances
of the concept Pizza are instances of the concept Food
and also have a relation hasTopping with an individ-
ual of the knowledge base, we may conclude that (using
Description Logics Notation - section 2)

Pizza v Food u ∃hasTopping.> (1)

The other group of techniques provide expression of
concepts using their natural language (NL) definition
[14] [8]. For example, the expression presented by equa-
tion 1 above, can be obtained through the processing of
the NL definition “A pizza is a food always having a
topping”. Techniques of this group do not make any as-
sumption (for example, having a minimal set of instances
in the ontology) on the ontology to be enriched. More-
over, they only need a set of NL definitions to perform
an automatic enrichment. In practice, such definitions
already exist. Indeed, we can obtain definitions from
Wikipedia pages, from dictionaries or sometimes from
lightweight ontologies (for instance, the Open Biological
and Biomedical Ontologies1). Unfortunately, to the best
of our knowledge, there is not any standard experimental
set-up to evaluate such approaches. This is why we pro-
pose BEAUFORD, the first benchmark able to evaluate
efficiently approaches which formalise NL definitions.

BEAUFORD aims to break down approaches of for-
malisation of definitions. To achieve this goal, BEAU-
FORD first proposes a set of features which allow to
clearly see what an approach is able to do and how the
approach concretely works. In addition, BEAUFORD
provides strong mechanisms to handle ambiguity, i.e.
multiple formalisations of the same NL phrase. For in-
stance, BEAUFORD amends the traditional definition of
precision and recall to take into account ambiguity in-
herent to formalisation. Finally, BEAUFORD provides a
data set made of real NL definitions which may be used
to enrich existing domain ontologies.

The remainder of this paper is organised as follows:
first, a brief description of Description Logics (OWL)
and OWL (Section 2). Next, we present in details the
task of formalisation of definitions in OWL (Section 3).
Next, a brief state of the art (Section 4) introduces the
presentation of the benchmark itself (Section 5). Finally,
we see how in practice, BEAUFORD can be used to eval-
uate existing approaches of formalisation (Section 6).

1http://www.obofoundry.org/

2 DESCRIPTION LOGICS, OWL

Description Logics (DL) are a family of knowledge
representation formalisms. They emerged from earlier
representation formalisms like semantic networks and
frames. Their origin lies in the work of Brachmann on
structured inheritance networks [4]. Since then, DL have
increased in popularity. DL are more expressive than
propositional logic and can be understood as fragments
of first-order logic. In DL the focus is on reasoning. The
main goal is to have an interesting trade-off between ex-
pressiveness of a given DL and its complexity in time and
space. More over their syntax is easily human-readable.

DL allow representing domain knowledge using:

• concepts (a.k.a. classes) of the domain (e.g.
Pizza, Country, etc.)

• relations (a.k.a. roles) which can exist between con-
cepts or between instances of these concepts (e.g.
hasTopping, hasCountryOfOrigin, etc.)

• instances (a.k.a. individuals or objects) that are
members of concepts in the application domain
(e.g. myPizza, England, etc.)

To present semantics of DL, we will use the following
notation:

• A and B are atomic concepts

• > is a predefined concept with every individual as
an instance

• C and D are complex concepts

• R and S are roles/relations

• a, ai,1≤i≤n are individuals

2.1 ALC

ALC (Attributive Language Complement) is a centrally
important DL from which comparisons with other va-
rieties can be made. ALC enables to construct complex
concepts from simpler ones using the following language
constructs:

• Concept negation: ¬C

• Concept intersection: C uD

• Universal restriction: ∀R.C

• Concept union: C tD

• Existential quantification: ∃R.C

4

Cheikh KACFAH EMANI et al.: BEAUFORD: A Benchmark for Automatic Formalisation of Definitions in OWL

The Web Ontology Language (OWL) is being rec-
ommended as a web standard by the World Wide Web
Consortium for modelling ontological knowledge. The
most important variant of OWL, called OWL DL, is a
so-called description logic, or DL for short [3], is based
on the DL known as SHOIN (D). We will introduce it
below.

2.2 SHOIN (D)

The constructor S in SHOIN stands for ALC with the
addition of role transitivity (Tr(R)). The three other
constructs are:

• H: role hierarchy (R v S)

• O: nominals (enumerated classes of object value
restrictions {a} or {a1, ..., an})

• I: role inverse (R−)

• N : (unqualified) number restrictions (≤ nR.>, ≥
nR.>)

The symbol (D) which follows the “name” of the DL
family SHOIN indicates that the use of data type prop-
erties (e.g. hasCalorificContentValue), data
values or data types (e.g. integer, real, string,etc.) is
allowed.

We notice that SHOIN (D) does not allow qualified
number restrictions. For example, lets us consider
the definition D2 = “A siciliana pizza has at least 3
vegetable toppings”. We expect D2 to be formalised as

SicilianaPizza v≥ 3 hasTopping.VegetableTopping.

But in SHOIN (D), D2 is formalised as

SicilianaPizza v≥ 3 hasTopping.>

We see that in this formalisation we cannot state the
range of property hasTopping, i.e. force all the top-
pings to be a kind of VegetableTopping as stated
by de definition. Since we find qualified number restric-
tions in many real definitions we use here the DL frag-
ment known as SHOIQ(D) to express formally the NL
definitions in this benchmark. Q denotes the qualified
number restrictions (≤ nR.C, ≥ nR.C).

To conclude with this brief survey on DL, let us men-
tion that there exists a fragment more expressive than
SHOIQ(D). This fragment is denoted SROIQ(D)
where R denotes complex roles inclusion i.e axioms of
the form R ◦ S v R and S ◦ R v R [7]. SROIQ(D)
supports OWL 2 DL [2]. Although the emphasis is on
theR, SROIQ(D) includes also disjunction and nega-
tion of roles, reflexive and irreflexive roles [7]. Enven

if SROIQ(D) is decidable, we have limited the scope
of this benchmark to SHOIQ(D), since we focus on
definition of concepts.

3 FORMALISATION OF DEFINITIONS

In this section we will define concretely the task of “for-
malisation of definitions”.

Definition 3.1. A definition D is a NL sentence which
allows the enunciation of the characteristics of a concept,
of a word, of an object.

Definition 3.2. Formalize a natural language definition
D w.r.t an ontology O is to propose a formal expression:

1. based on terms of D

2. which subsumes or which is equivalent to the con-
cept defined in D

3. which uses foremost entities of O.

From these two definitions, we note that:

• A definition D defines one and only one concept at
a time. Most of real definitions (i.e. found in dictio-
naries and encyclopaedia) respect this criteria. For
instance D cannot be a sentence like “A siciliana
pizza has at least 3 vegetable toppings and a lujuh-
man pizza is made with lamb, vegetables and feta
cheese”, which defines at the same time two NL
terms (in bold).

• D must not contain facts that do not contribute to
the characterisation of the defined concept. For
instance the sentence “I remember that lujuhman
pizza contains lamb” is not a definition. Indeed, the
assertion “I remember that” does not give any piece
of information on “Lujuhman pizza” itself.

• D is not necessarily of the form < A, is a, B >.
The definition D2 is an actual example.

• The formal expression must avoid creating new en-
tities when entities of O can be used.

Some others key characteristics of the formalisation
tasks are worthy to be emphasized here. They concern
ambiguity and incomplete formalisation.

Ambiguity: express formally a NL phrase implies to
(i) understand what this phrase says exactly and (ii) to
use the appropriate entities and constructors to formalise
this sentence. In both of these steps, two domain experts
and/or ontology designers can provide different results
for the same inputs.

Incomplete (or partial) formalisation: in most cases,
D mentions many pieces of information and using only

5

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

some of these pieces can nevertheless lead to a right and
useful output. For instance from the definition D3 =
“A vegetarian pizza is any pizza which has vegetable
toppings and no other toppings”, one can provide the
formal expression:

VegetarianPizza w Pizza u
∃hasTopping.VegetableTopping (∗)

We see that this result uses only a part of the definition.
Indeed, the phrase “is any” in the definition suggests an
equivalence instead of a simple subsumption. Moreover,
the expression “no other toppings” hints a universal re-
striction instead of an existential quantification. Formal
expressions like (∗), which express only a part of the
whole idea convey by the definition are so called incom-
plete or partial expression. Even if they are not “com-
plete”, they are not semantically wrong and are useful in
practice.

Features of Formalisation Approaches

This subsection presents the features we deem necessary
in a benchmark to break down an approach of formalisa-
tion.

Inputs. First of all, it is pivotal to know the input data
required by the approach. Moreover, all the hypothe-
sis and the requirements of the approach must be clearly
identified.

Automation. Another important point is to know if
the approach is automatic or not. If not, it is important to
know which are the tasks devoted to user.

Schema Independence. The goal here is to know if
the approach can work across schemas. In other words,
we must figure out if the approach of formalisation is
unsupervised or if the supervision can be performed only
once. In the latter case, the classifier provided by this
supervision can be re-used on different schemas.

Expressiveness. It is important to know how expres-
sive are the expressions that the method provides. High
logical specifications are the most useful for powerful
inferences but it is very challenging to obtain them auto-
matically from NL resources.

Handling of Ambiguity. When it is done manually,
formalisation of a NL phrase can give many results de-
pending on the domain expert. Hence, the goal here is

to know if the method of formalisation provides mecha-
nisms which deal with the multiplicity of interpretations.

Alignment with the given Ontology. In definition 3.2
we highlight the fact that a formalisation approach must
re-use as possible entities already present in the ontology
to be enriched. This feature expresses the ability of a
given formalisation approach to find the most suitable
entity in the domain’s ontology that can represent a given
phrase of a NL definition.

4 RELATED WORK

As we mentioned in the introduction of this paper, to the
best of our knowledge, BEAUFORD is the first bench-
mark for the evaluation of approaches of formalisation of
NL definitions. It is thus difficult to compare it to bench-
marks targeting the current formalisation task. Never-
theless, when we go through literature, we find experi-
mental set-ups for tasks in both fields of NL processing
and Semantic Web like Question Answering (QA) [1],
Named Entity Recognition and Disambiguation (NERD)
[11] and Acquisition of Class Disjointness [13].

Given a NL question, a QA system must be able to
retrieve all the correct answers (recall), and only them
(precision), from a knowledge base. Usually, when eval-
uating this QA systems, the set of correct answers is
fixed. In other words, there is not any debate to say
whether a given object is the answer (or belongs to the
set of answers) to a question. We see that in this case the
“classical” f1-measure can be used to efficiently com-
pare performances of QA systems. The same conclusion
holds for NERD systems. In NERD, the set of entities
to be identified is well known in advance. Consequently,
performances of a given NERD system can be evaluated
in the light of its precision and recall. As we mentioned
at the end of section 3, ambiguity is intimately linked
to the task of formalisation of definition. Classical f1-
measure is hence not suitable to evaluate formalisation
approaches we are interested in.

In acquisition of class disjointness, ontology design-
ers do not always agree to assert two classes as disjoint
or not. Völker and colleagues [13] thus face cases of
ambiguity in the set of correct answers. To handle ambi-
guities, they calculate f1-measure in two main cases: for
the subset of the gold standard (i) where all the ontology
designers agree and (ii) where at least 50% of the de-
signers agree. When dealing with formalisation of defi-
nitions, we cannot always exclude some possible results.
Indeed, two formal expressions written with two differ-
ent set of entities can be, for example, equivalent. For
the sake of consistency, we must provide mechanisms
to judge these two formalisations as correct, without ex-

6

Cheikh KACFAH EMANI et al.: BEAUFORD: A Benchmark for Automatic Formalisation of Definitions in OWL

cluding any of them. Hence, it is pivotal to redefine the
classical formula of precision and recall, to be able to
handle multiple formalisations of the same definition.

We have presented the task of formalisation of defini-
tions, its concerns and the challenges to solve w.r.t to the
state of the art, we now present BEAUFORD.

5 DESIGN OF THE BEAUFORD BENCH-
MARK

5.1 Scope of BEAUFORD

In this subsection, based on the features described in sec-
tion 3, we delimit the scope of approaches that BEAU-
FORD is able to evaluate.
BEAUFORD deals with approaches which aim to pro-
vide formal expression of concepts from NL definitions
(as stated in definition 3.1). In literature, there also ex-
ist approaches which learn concept expression by iden-
tifying common characteristics of the instances of this
concept in a given knowledge base like [5, 9]. Such ap-
proaches are out of the scope of BEAUFORD. Moreover,
approaches we are interested in are expected to be as au-
tomatic as possible. They are expected to run fluently for
a pair 〈definition, domain ontology〉. The expressiveness
expected of formal expression is SHOIQ(D).

In addition, BEAUFORD takes into account the fact
that the formal translation of a NL definition does not al-
ways provide a single result. Mechanisms to handle this
key aspect of formalisation are detailed in subsections
5.2 and 5.4.

5.2 Ambiguity and Alignments

The definition 3.2 requires that an approach of formali-
sation uses foremost entities of the existing ontology O.
Nonetheless, when trying to align a NL phrase which
does not match exactly an entity inO, we have to choose
between two main possibilities. We name them sharp
and large formalisations. We define them right below.

Definition 5.1. A sharp formalisation is a formalisation
which intends to always find, for a given NL phrase, the
most likely entity in the domain ontologyO to formalise
this NL phrase. Hence, proposal of new entities is done
when sure that there is not any entity in O that can di-
rectly represent that new entity.

For instance, a formal expression of the defini-
tion D3 = “Luhjuhman pizza is a pizza made with
lamb, vegetables, and feta cheese” in the sharp for-
malisation mind, should use the existing concepts
(in the pizza ontology) LujhmanPizza, Pizza,
VegetableTopping and CheeseTopping (or
GoatCheeseTopping instead). Moreover, as there

is not any entity in the pizza ontology able to repre-
sent directly the phrase “lamb”, a new entity, for ex-
ample Lamb∗, can be propose. In this example, using
Web redundancy, the new concept Lamb∗ can be re-
placed by MeatTopping because lamb is a (kind of)
meat. But to map the NL phrase “lamb” directly to the
entity MeatTopping is very challenging and goes be-
yond classic string matching algorithms. We do not ac-
tually consider it as a valid example of sharp alignment.

Note In this paper, we use ∗ to tag every new entity,
i.e. which is not (already) part of the domain’s ontology
O.

Definition 5.2. Large formalisation is a formalisation
where trend is the creation of new entities. Nevertheless,
priority remains on the re-use of entities of the domain’s
ontology O.

For example, for the definition D3 given above,
a possible result should use the existing entity
LujuhmanPizza (exact string matching). Be-
cause, trend is the creation of new entities, the formal
expression could use the new entities Vegetable∗,
FetaCheese∗ (or the intersection of {Feta∗ and
Cheese∗}) and Lamb∗.

Having these two most distant types of formalisation
for each phrase of the definition allows to cover a wide
space of possible formalisations of the whole definition.
Indeed, depending on how a formalisation method pro-
ceeds, it may provide a formal expression with a mix of
large and sharp alignments. For instance D3 can be for-
malised by

LujuhmanPizza v Pizza u (∃isMadeWith∗.Lamb∗

u∃hasTopping.VegetableTopping
u∃ isMadeWith∗.FetaCheese∗)

where the concept VegetableTopping results from
a sharp linking and FetaCheese∗ from a large one.

Although entities resulting of sharp and large align-
ments can coexist in the same formal expression, there
is an important need of consistency. Indeed, we con-
sider that if a method is able to perform a challenging
alignment then it must be able to perform a common
sense alignment. For instance, using D3, we consider
that obtaining that “feta cheese” can be formalised by the
entity GoatCheeseTopping is far more challenging
than obtaining that “vegetables” can be formalised us-
ing VegetableTopping. Hence, achieving the for-
mer alignment must lead to an identification of the lat-
ter. Likewise, a formalisation approach not able to map
“vegetables” to VegetableToppingmust not be able
to map “feta cheese” to GoatCheeseTopping.

7

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

Another issue introduced by the use of new entities af-
fects the range of the properties. Indeed, we cannot al-
ways assert that an existing relation can be filled by a new
concept. For instance, w.r.t. the pizza ontology, it is un-
wanted to write something like hasTopping.Lamb∗.
That’s because the range of the relation hasTopping
is PizzaTopping and it is unproven yet that Lamb∗ is
a sub-concept of PizzaTopping.
All the issues about the coexistence of new and existing
entities in the same formal expression are presented be-
low. We introduce them with what we call incompatible
entities.

Definition 5.3. Let D be a NL definition, A and B two
concepts (or individuals) and R a role. If A, B and R can
be used in a formal expression of D, then the following
cases of incompatibility holds:

• A is incompatible with B if when an approach
identifies A, this approach must not be able to
identify B. This incompatibility happens when
it is more challenging to identify A than B
or vice versa. For instance, for the definition
D3, GoatCheeseTopping is incompatible with
Vegetable.

• A is incompatible with R if A (or its type - when A
is an individual) cannot stand as a filler of the role
R. For instance, still using D3, hasTopping is
incompatible with Lamb∗.

The relation of incompatibility thus defined is symmetric.

Let us mention that results of sharp and large formal-
isations sometimes meet. The first meeting point is in
the case of an exact string matching (for example “Lu-
juhman pizza” cannot be mapped to anything else than
LujuhmanPizza). The second meeting point is in
case of the non existence of a concept (at the current state
of O). Indeed, when O lacks a concept, described by a
NL phrase mentioned in D, there is no choice than the
creation of a new concept. An illustration of this case is
given by the phrase “lamb” within D3.

5.3 Specification of a Formalisation Result

BEAUFORD encapsulates all the pieces required for
the formalisation of a definition within a given schema.
This schema is available through a XML Schema Def-
inition (XSD) file accessible at http://tinyurl.
com/opllwpt. To represent the result of the formal-
isation of a given definition, we need three elements:

1. The list of all possible formal entities required to
formalise this definition

Figure 1: A schematic view of the specifications of
BEAUFORD.

2. The list of all NL phrases of the definition that we
need to formalise in other to have the full formal
expression. Among other pieces of information, we
have to tell which formal entities can be used to for-
malise a given NL phrase.

3. Finally, we have to provide the sketch of the for-
malisation result. This sketch reuses the identifiers
of NL-phrases with the required DL constructors to
show how the final formal expression should look
like.

A simplified view of the interaction of formal entities,
NL-phrases and the sketch of formalisation is illustrated
by Figure 1.

We now present the semantics of each node of this
XSD specification through a running example.

5.3.1 Entities

For each definition, BEAUFORD requires the list of all
possible entities (existing entities and possible new ones)
that could be used to formalise this definition. In prac-
tice, for a precise definition, this list comprises the union
of all the entities used by ontology designers to formalise
this definition.
Each of these entities respect the following description:

• the type, i.e. concept, predicate or individual, of the
entity (<type>)

• a shortened URI (<uri>)

8

http://tinyurl.com/opllwpt
http://tinyurl.com/opllwpt

Cheikh KACFAH EMANI et al.: BEAUFORD: A Benchmark for Automatic Formalisation of Definitions in OWL

• the list of NL-phrases of D that this entity for-
malises (<nlEntity>)

• an identifier (<id>) which is a number used to rep-
resent this entity where needed

• the list of identifiers of entities incompatible with
this entity (<incompEnt>)

Some examples of entities are provided by listing 1.

Listing 1: An example of entities that can be used to
formalise D3

<entity>
<type>concept</type>
<uri>Vegetable*</uri>
<nlEntity>vegetables</nlEntity>
<id>1</id>
</entity>
<entity>
<type>concept</type>
<uri>VegetableTopping</uri>
<nlEntity>vegetabkes</nlEntity>
<id>2</id>
</entity>
<entity>
<type>concept</type>
<uri>Feta*</uri>
<nlEntity>feta</nlEntity>
<id>3</id>
</entity>
<entity>
<type>concept</type>
<uri>Cheese*</uri>
<nlEntity>cheese</nlEntity>
<id>4</id>
</entity>
<entity>
<type>concept</type>
<uri>Lamb*</uri>
<nlEntity>lamb</nlEntity>
<id>5</id>
</entity>
...
<entity>
<type>concept</type>
<uri>:GoatCheeseTopping</uri>
<nlEntity>feta</nlEntity>
<nlEntity>cheese</nlEntity>
<id>7</id>
<incompEnt>1</incompEnt> <!-- 1=Vegetable* -->
</entity>
...
<entity>
<type>property</type>
<uri>hasTopping</uri>
<nlEntity>made with</nlEntity>
<id>10</id>
<incompEnt>1</incompEnt>
<incompEnt>5</incompEnt> <!-- 5=Lamb* -->
</entity>

5.3.2 Natural Language Phrases to Formalise

Formalising a NL definition requires formalising all the
valuable NL phrases of this definition (for instance, stop

words are usually useless in formalisation approaches).
In this section of the specification, BEAUFORD struc-
tures this list of valuable NL-phrases. Formalisations of
some phrases ofD3 are shown by listing 2. This example
re-uses entities of listing 1.

Listing 2: An example of formalisations of some NL
phrases taken from D3

<nlPhrase>
<idNL>VegEnt</idNL><label>vegetables</label>
<formal>1</formal> <!-- 1=Vegetable*-->
<formal>2</formal> <!-- 2=VegetableTopping-->
<!-- "vegetables" can be formalised by the
entity with the id 1 or entity with the id 2-->

</nlPhrase>
<nlPhrase>
<idNL>FetaCheNL</idNL>
<label>feta cheese</label>
<formal>7</formal><formal>3 u 4</formal>
<!-- We can represent formally
"feta cheese" by the entity
7 (GoatCheeseTopping) or the intersection
of entities 3 (Feta*) and 4 (Cheese*) -->
...
</nlPhrase>
<nlPhrase>
<idNL>LujEnt</idNL>
<label>lujuhman pizza</label>
...
</nlPhrase>
<nlPhrase>
<idNL>PizzaEnt</idNL><label>pizza</label>
...
</nlPhrase>
<nlPhrase>
<idNL>LambEnt</idNL><label>lamb</label>
...
</nlPhrase>
<nlPhrase>
<idNL>madeEnt</idNL><label>made with</label>
<formal>10</formal>
...
</nlPhrase>

From the listing 2, we see that each NL phrase
(<nlPhrase>) is made of:

• an identifier (<idNL>) which will be used in the
formal expression of the D to denote the formal ex-
pression of this phrase

• a label (<label>) which is constituted of NL-
phrases with a known formalisation (given in
<entity> - section 5.3.1)

• an exhaustive list of its possible formalisation
(<formal>). With this list, BEAUFORD is aware
that multiple formalisations of the same phrase (and
thus of the same definition) are possible.

5.3.3 Sketch of a Formal Expression

Finally for each definition BEAUFORD provides the ex-
act sketch of the formal expression made of DL con-

9

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

structors and identifiers of NL phrases (signalled by the
tag <idNL> - section 5.3.2) of this definition. Listing 3
gives the sketch of the formal expression of D3.

Listing 3: Sketch of the formal expression of D3

<formalExpr>
LujEnt w PizzaEnt u (∃ madeEnt.LambEnt
u ∃ madeEnt.VegEnt u ∃ madeEnt.FetaCheEnt)

</formalExpr>

The formal expression of a given definition has a
unique sketch. This sketch allows BEAUFORD to cover
all the possible valid formal expressions (see definition
5.4) of a definition and thus to efficiently deal with am-
biguity. Indeed, the sketch uses identifiers of NL-phrases
to be formalised. An identifier of a NL-phrase is a
slot which can be filled by any possible formalisation
of this NL-phrase. For instance, we can instantiate the
slot vegEnt in listing 3, by the formal entities 1 (i.e.
Vegetable*) or 2 (i.e. VegetableTopping).

The full example showing the specification of the for-
malisation of definition D3 is available at http://
tinyurl.com/nmfluek.

Remark. It is important to underline that the iden-
tifier of a NL-phrase may appear more than once in
a given sketch. In such cases, this identifier can
be filled with different formal entities. For exam-
ple, the NL-phrase madeEnt which represents the
phrase “made with” can be formalised in the same ex-
pression by the role madeWith∗ (to be filled with
Lamb∗) and the role hasTopping (to be filled with
VegetableTopping).

Definition 5.4. A valid formal expression of a given def-
inition must be a consistent instantiation of the sketch.
Consistent here means that it is not permitted to have
two incompatible entities in the formal expression.

For instance:

1. The following instantiation of the sketch in listing
3 is valid because it does not contain any inconsis-
tency
LujuhmanPizza v Pizza u (∃madeWith∗.Lamb∗

u ∃hasTopping.VegetableTopping
u ∃madeWith∗.FetaCheese∗)

2. But in this second case the formalisation is incorrect
because it contains at the same time Vegetable∗

and GoatCheeseTopping which are considered
incompatible
LujuhmanPizza v Pizza u (∃madeWith∗.Lamb∗

u ∃madeWith∗.Vegetable∗

u ∃madeWith∗.GoatCheeseTopping∗)

5.4 Metrics: Precision, Recall and Confidence

At section 5.3, we presented mechanisms that BEAU-
FORD proposes to handle all the possible results of
the formalisation of a definition. Now we present the
metrics to evaluate formalisation approaches by taking
into account the multiplicity of formal expressions for a
given definition.

To calculate the various metrics of a given approach,
we assume that for each definition, the expected results
of formalisation (gold standard) are available and follow
the specification of section 5.3. Hence, for each NL def-
inition we have:

• Ea the set of entities (without duplicates) provided
by the given approach

• Eb the set of entities, using the tag <uri> of
each <entity>, (without duplicates) suggested in
the gold standard

• Ia the set of pairs of incompatible entities (as men-
tioned in the gold standard) found in Ea

• fa, the formal expression actually provided by the
approach

In addition, we define:

• the boolean function instance(f,D) which returns
1 is f is a valid formalisation (as mentioned in defi-
nition 5.4) of the sketch of the formal expression of
D and 0 otherwise.

• the function nlPhrases(X) which returns the set
(without duplicates) of NL-phrases actually for-
malised by formal entities which constitute the set
X

With these elements, we use the equations 2-4 below
to compute precision, recall and confidence for a set of
definitions {D}.

precision =
Σ{D} (|Ea ∩ Eb| − |Ia|)

Σ{D}|Ea|
(2)

recall =
Σ{D}|nlPhrases (Ea ∩ Eb) |

Σ{D}|nlPhrases (Eb) |
(3)

confidence =
Σ{D}|instance(fa,D)|

|{D}|
(4)

Let us note that:

• Precision is the ratio between (i) the number of for-
mal entities correctly identified (|Ea ∩ Eb|) by the
approach and penalizes in presence of incompatible
entities (by means of the quantity |Ia|) and (ii) the
total number of entities identified by the approach.

10

http://tinyurl.com/nmfluek
http://tinyurl.com/nmfluek

Cheikh KACFAH EMANI et al.: BEAUFORD: A Benchmark for Automatic Formalisation of Definitions in OWL

• The recall is the ratio of NL-phrases which are cor-
rectly formalised by the approach. BEAUFORD
does not take the percentage of correct formal en-
tities (i.e |Ea ∩ Eb| ÷ |Eb|) because an entity can
formalise more than one NL-phrase. For example
:GoatCheeseTopping formalises both “feta”
and “cheese”. BEAUFORD considers that recall
in a formalisation approach, measures the ability of
this approach to formalise accurately all the mean-
ingful NL-phrases of definitions.

• Confidence as defined by equation 4 denotes the
percentage of formal expressions which are in all
points accurate as stated in definition 5.4.

Some Examples

We take the NL definition D3 = “Luhjuhman pizza is a
pizza made with lamb, vegetables, and feta cheese” for
this illustration. The expected result of the formalisa-
tion of D3 is described in the file http://tinyurl.
com/nmfluek.

Based on this expected result, we have:

• Eb = Set of entities suggested by the
gold standard = {LujuhmanPizza, Pizza,
madeWith∗, hasTopping, Lamb∗, Vegetable∗,
VegetableTopping, Feta∗, Cheese∗,
CheeseTopping, GoatCheeseTopping,
FetaCheese∗}

• Set of pairs of incompatible properties sug-
gested by the gold standard = {{Vegetable∗,
GoatCheeseTopping}, {Vegetable∗,
CheeseTopping}, {Lamb∗, hasTopping},
{Vegetable∗, hasTopping}}

• nlPhrases(Eb) = Set of NL-phrases to formalise
= {Lujuhman pizza, pizza, made with, vegetables,
lamb, feta, cheese}

Result 1

• Formalisation1 = LujuhmanPizza v Pizza
u (∃ madeWith∗.Lamb∗
u ∃madeWith∗.Vegetable∗
u ∃madeWith∗.GoatCheeseTopping)

• Ea = Set of entities suggested by the approach
= {LujuhmanPizza, Pizza, madeWith∗,
Lamb∗, Vegetable∗, GoatCheeseTopping}

• Ia = pairs of incompatible entities in Ea =
Vegetable∗, GoatCheeseTopping

• Precision =
|Ea ∩ Eb| − |Ia|

|Ea|
=

6− 1

6
= 0.83

• Recall =
|nlPhrases(Ea ∩ Eb)|
|nlPhrases(Eb)|

=
7

7
= 1.0

• Confidence = 0. Since there are incompatible enti-
ties the formal expression is incorrect

Result 2

• Formalisation2 = LujuhmanPizza v Pizza
u (∃ madeWith∗.Lamb∗
u ∃hasTopping.VegetableTopping
u ∃madeWith∗.FetaCheese∗)

• Ea = {LujuhmanPizza, Pizza, madeWith∗,
hasTopping, Lamb∗, Vegetable∗,
FetaCheese∗}

• Ia = pairs of incompatible entities in Ea = {}

• Precision =
|Ea ∩ Eb| − |Ia|

|Ea|
=

7− 0

7
= 1.0

• Recall =
|nlPhrases(Ea ∩ Eb)|
|nlPhrases(Eb)|

=
7

7
= 1.0

• Confidence = 1. No incompatible entities and all
the DL constructors are correctly used

BEAUFORD also provides a seed data set to evalu-
ate the efficiency of formalisation approaches. This data
set is made of NL definitions (as defined earlier in this
paper) and domain ontologies to be enriched by formal-
ising these definitions. Moreover, BEAUFORD provides
formal expressions resulting of large and sharp formali-
sations. The data set is presented in the next section.

5.5 Data Set

To evaluate concretely an approach based on the charac-
teristics listed above, BEAUFORD provides a data set.
This data set is made of 3 subsets each composed of a
domain ontology and 25 real definitions related to each
ontology. All these data and their description are avail-
able at http://tinyurl.com/pkx9hz5.

The domain ontologies used in BEAUFORD are:

1. The well-known Pizza Ontology (PIZZA)

2. The Vertebrate Skeletal Anatomy (VSAO) Ontol-
ogy2

3. The Semantic Sensor Network (SSN) Ontology3

These three ontologies put together have the following
advantages:

2http://purl.obolibrary.org/obo/vsao.owl
3http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

11

http://tinyurl.com/nmfluek
http://tinyurl.com/nmfluek

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

• Existing ontologies. These ontologies already ex-
ist and are commonly used. This avoids us to build
(unreal) ontologies from scratch to evaluate the cur-
rent task we are interested in.

• Existing set of official definitions. To evaluate a
formalisation method towards each of these ontolo-
gies, we do not absolutely need to create defini-
tions. Indeed, official versions of these ontologies
already provide definitions. In VSAO, definitions
are asserted by means of the obo:IAO 0001154

property. In SSN, definitions can be found in the
rdfs:comment annotation property. Concerning
PIZZA, some definitions are also already provided
(mainly through rdfs:comment annotation). But
to have a substantial set of definitions, we add more
definitions from various resources (Wikipedia and
some restaurants sites5).

• Variety of domains. Each of these ontologies cov-
ers a specific domain. It allows us to see how
domain-independent is the formalisation approach.
Moreover, because they have been designed by dif-
ferent group of people, design choices (concep-
tual schema, level of details on labels of enti-
ties, etc.) are different. For instance, concepts
in VSAO have an average number of 2.08 tokens
meanwhile the same quantity in PIZZA and SSN
is respectively 1.66 and 1.49. The fact that enti-
ties have labels made of many tokens is very im-
portant in practice. Indeed, if tokenizers in nat-
ural language processing are able to identify to-
kens (usually words), it is a challenging task to
know which tokens (must) go together to form an
entity w.r.t to a given domain. For instance the
phrase “X is a tomato topping” can lead to the ex-
pression X v :TomatoTopping (the two tokens
“tomato” and “topping” are taken together) or to
X v (new:Tomato u :PizzaTopping) (if
“tomato” and “topping” are considered separately).

6 BEAUFORD IN PRACTICE

We claim that we can use BEAUFORD to evaluate
efficiently approaches of formalisation of definitions.
Strengths of BEAUFORD rely on:

• mechanisms to handle ambiguity, i.e. all the mul-
tiple expressions which can formalise a given defi-
nition. These mechanisms are the encapsulation of
all the constituents of possible formalisations of a

4The prefix obo stands for http://purl.obolibrary.org/obo/
5http://www.pizzaexpress.com/our-food/our-restaurant-

menu/mains/, http://www.nutritionrank.com/

definition in the same place (section 5.3) and the re-
definition of the classical formulas of precision and
recall and the introduction of a new metric, the con-
fidence, to take into account ambiguity.

• A suitable corpus covering various domains and
with formalised definitions.

6.1 Using BEAUFORD Corpus in the state

BEAUFORD provides a corpus which can be used to
evaluate, without any other need, formalisation methods
or tools. In this case, these tools have to formalise for
a domain ontology (between PIZZA, VSAO and SSN),
the corresponding NL definitions. Finally, likewise the
above examples of formalisations and evaluations (sec-
tion 5.4), the formal expressions of each definition pro-
vided by the tool can then be compared with the gold
standard. Using the definitions proposed in this BEAU-
FORD dataset, authors of [8] have evaluated NALDO
against the three domain ontologies PIZZA, VSAO and
SSN. We do not actually report here the result of the eval-
uation of NALDO [8] using the BEAUFORD data set
because the metrics used in [8] are different of those we
define here.

6.2 Extending BEAUFORD Corpus

Since BEAUFORD provides the specification of results
of a gold standard for this task, its current corpus can be
freely and easily extended. Indeed, a corpus is made up
of an existing domain ontology to be enriched, a set of
NL definitions and the expected results of the formalisa-
tion of these definitions. The only constraint is that these
results may respect the specifications detailed in section
5.3. For instance, Völker et al. [14] use the Proton On-
tology [12], among other ontologies to evaluate their ap-
proach, LEXO. We can thus imagine that, the definitions
used for a critical discussion of their work, can be for-
malised under the specification of BEAUFORD and thus
can be re-used later to evaluate formalisation tools and
then compare with performances of LEXO. It is impor-
tant to notice that, actually there is not any metrics or
values in [14] to describe the performances of LEXO.

7 CONCLUSION AND FUTURE WORK

In this paper, we present BEAUFORD, a benchmark
suitable to evaluate methods of formalisation of NL def-
initions. The formalisation of a given definition to en-
rich an ontology can give different results based on the
understanding and the choice of entities of this ontol-
ogy to rewrite the definition. Handle all these possible
cases is a major concern to efficiently evaluate formal-
isation. The main contribution of this benchmark is to

12

Cheikh KACFAH EMANI et al.: BEAUFORD: A Benchmark for Automatic Formalisation of Definitions in OWL

provide strong mechanisms to handle multiple formal-
isation results for a given definition. Indeed, BEAU-
FORD considers that a NL sentence can be split in many
ways and that each chunk can be formalised in differ-
ent ways. BEAUFORD defines formally all the parts
which constitute a formalisation result using an XSD
specification. This specification handles efficiently the
multiple formalisation result. Moreover, based on the
elements found within the specification of a formalisa-
tion result, BEAUFORD redefines precision and recall
and introduces the notion of confidence to judge of the
overall consistency of a formalisation approach. Despite
BEAUFORD covers numerous key aspects required by
formalisation, we can extend its abilities by handling
partial formalisation and chain of properties which are
also important concerns. Indeed, the whole formal ex-
pression obtained from a definition contains many sub-
expressions which are of great help for ontology enrich-
ment. For instance from D3 we can extract expressions
LujuhmanPizza v Pizza and LujuhmanPizza
v ∃ hasTopping.VegetableTopping. Moreover,
if a formal entity can represent the sense of many NL-
phrases (like GoatCheeseTopping with “feta” and
“cheese” in D3), the reverse is also possible. For exam-
ple, let us imagine that the pizza ontology is extended
from Figure 2.A to 2.B. Hence, the NL-phrase “made
with” in D3 could be formalised by the chain of proper-
ties hasTopping ◦ hasIngredient.

Figure 2: Two examples of RDF graphs of pizzas, top-
pings and ingredients. Ellipse shape nodes represent
RDF resources and dashed arcs RDF properties.

REFERENCES

[1] CLEF Question Answering Track. [Online]. Avail-
able: http://nlp.uned.es/clef-qa/

[2] (2012, dec) OWL 2 Web Ontology Language
New Features and Rationale (Second Edi-

tion). [Online]. Available: http://www.w3.org/
TR/owl2-new-features/

[3] F. Baader, The description logic handbook: the-
ory, implementation, and applications. Cambridge
university press, 2003.

[4] R. J. Brachman, “A Structural Paradigm for Repre-
senting Knowledge.” DTIC Document, Tech. Rep.,
1978.

[5] L. Bühmann, D. Fleischhacker, J. Lehmann,
A. Melo, and J. Völker, “Inductive lexical learn-
ing of class expressions,” in Knowledge Engineer-
ing and Knowledge Management. Springer, 2014,
pp. 42–53.

[6] P. Cimiano, A. Mdche, S. Staab, and J. Vlker, “On-
tology learning,” in Handbook on Ontologies, ser.
International Handbooks on Information Systems,
S. Staab and R. Studer, Eds. Springer Berlin Hei-
delberg, 2009, pp. 245–267.

[7] I. Horrocks, O. Kutz, and U. Sattler, “The Even
More Irresistible SROIQ,” in Proceedings of the
10th Int. Conf. on Principles of Knowledge Rep-
resentation and Reasoning, vol. 6. AAAI Press,
2006, pp. 57–67.

[8] C. Kacfah Emani, C. Ferreira Da Silva, B. Fiès,
P. Ghodous, and A. Zarli, “NALDO: From natu-
ral language definitions to OWL DL expressions,”
2015, Demo tool available at http://tinyurl.com/
na4ecs3.

[9] J. Lehmann, S. Auer, L. Bühmann, and S. Tramp,
“Class expression learning for ontology engineer-
ing,” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 9, no. 1, pp. 71–81,
2011.

[10] A. Rector, N. Drummond, M. Horridge, J. Rogers,
H. Knublauch, R. Stevens, H. Wang, and C. Wroe,
“OWL Pizzas: Practical Experience of Teaching
OWL-DL: Common Errors and Common Patterns,”
in Engineering Knowledge in the Age of the Seman-
tic Web, ser. Lecture Notes in Computer Science,
E. Motta, N. Shadbolt, A. Stutt, and N. Gibbins,
Eds. Springer Berlin Heidelberg, 2004, vol. 3257,
pp. 63–81.

[11] G. Rizzo, M. van Erp, and R. Troncy, “Benchmark-
ing the extraction and disambiguation of named en-
tities on the semantic web,” in LREC, 05 2014.

[12] I. Terziev, A. Kiryakov, and D. Manov, “D. 1.8. 1
Base upper-level ontology (BULO) Guidance,” De-
liverable of EU-IST Project IST, 2005.

[13] J. Völker, D. Fleischhacker, and H. Stucken-
schmidt, “Automatic acquisition of class disjoint-

13

http://nlp.uned.es/clef-qa/
http://www.w3.org/TR/owl2-new-features/
http://www.w3.org/TR/owl2-new-features/
http://tinyurl.com/na4ecs3
http://tinyurl.com/na4ecs3

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

ness,” Web Semantics: Science, Services and
Agents on the World Wide Web, 2015.

[14] J. Völker, P. Hitzler, and P. Cimiano, “Acquisi-
tion of OWL DL axioms from lexical resources,”
in The Semantic Web: Research and Applications.
Springer, 2007, pp. 670–685.

AUTHOR BIOGRAPHIES

Cheikh Kacfah Emani is cur-
rently PhD student in the IT de-
partment of the Centre Scien-
tifique et Technique du Bâtiment
in Sophia Antipolis and in com-
puter science department of Uni-
versity of Lyon I. He started his
PhD in November 2013. Previ-
ously, he obtained an engineer-
ing degree in 2011 in University

of Yaounde I and a Master degree in 2013 in University
of Burgundy in Dijon. His current research interests are
Natural Language Processing, Business Rules Manage-
ment, Semantic Web and Knowledge Representation.

Dr. Catarina Ferreira Da
Silva is Associate Professor
at the Computer Science De-
partment of the University In-
stitute of Technology of the
Claude Bernard Lyon 1 Univer-
sity, and joined the Service Ori-
ented Computing team of the
Research Center for Images and
Intelligent Information Systems
(France) in 2012. She is also
member of the Information Sys-

tem Group of the Centre for Informatics and Systems of
the University of Coimbra (Portugal) since 2009. She
obtained her PhD thesis in computer science (2007) from
the University of Lyon 1. Previously she worked for the
Scientific and Technical Centre for Building at Sophia-
Antipolis (France). Her main current research interests
are Knowledge Representation and Reasoing, Business
Rules, Semantic Web, Service Science and Cloud Com-
puting.

Dr. Bruno Fiès is a research
engineer in the field of Informa-
tion and Communication Tech-
nologies. He started his contri-
bution with CSTB (French re-
search center in Building and
Construction) working on Elec-
tronic Data Interchange related
to the Construction Sector. He
naturally moved from informa-

tion exchange to knowledge management. His main field
of interest is now on Semantic web technologies applied
to the Construction Sector with a specific focus on en-
ergy efficiency issues from the Building to the City scale.
He has been and is still involved in National and Euro-
pean Research Projects.

Dr. Parisa Ghodous is cur-
rently full professor in computer
science department of Univer-
sity of Lyon I. She is head
of cloud computing theme of
LIRIS UMR 5205 (Laboratory
of Computer Graphics, Images

and Information Systems). Her research expertise is in
the following areas: Cloud Computing, Interoperability,
Web semantic, Web services, Collaborative modeling,
Product data exchange and modeling and Standards. She
is in editorial boards of CERA, ICAE and IJAM journals
and in the committees of many relevant international as-
sociations such as concurrent engineering, ISPE, Inter-
operability.

14

	Introduction
	Description Logics, OWL
	ALC
	SHOIN(D)

	Formalisation of Definitions
	Related Work
	Design of the BEAUFORD Benchmark
	Scope of BEAUFORD
	Ambiguity and Alignments
	Specification of a Formalisation Result
	Entities
	Natural Language Phrases to Formalise
	Sketch of a Formal Expression

	Metrics: Precision, Recall and Confidence
	Data Set

	BEAUFORD In Practice
	Using BEAUFORD Corpus in the state
	Extending BEAUFORD Corpus

	Conclusion and Future Work

