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A NONCOMMUTATIVE VERSION OF THE JULIA-WOLFF-CARATH ÉODORY THEOREM

The classical Julia-Wolff-Carathéodory Theorem characterizes the behaviour of the derivative of an analytic self-map of a unit disc or of a halfplane of the complex plane at certain boundary points. We prove a version of this result that applies to noncommutative self-maps of noncommutative halfplanes in von Neumann algebras at points of the distinguished boundary of the domain. Our result, somehow surprisingly, relies almost entirely on simple geometric properties of noncommutative half-planes, which are quite similar to the geometric properties of classical hyperbolic spaces.

Introduction

The classical Julia-Wolff-Carathéodory Theorem describes the behaviour of the derivative of an analytic self-map of the unit disc D or of the upper half-plane C + of the complex plane C at certain boundary points. Numerous generalizations, to self-maps of balls or polydisks in C n , analytic functions with values in spaces of linear operators, analytic self-maps on domains in spaces of operators or in more general Banach spaces etc. -see for example [START_REF] Rudin | Function theory in the unit ball of C n[END_REF][START_REF] Ky | The angular derivative of an operator-valued analytic function[END_REF][START_REF] Jafari | Angular derivatives in polydisks[END_REF][START_REF] Sza Lowska | Angular Derivatives of Holomorphic Maps in Infinite Dimensions[END_REF][START_REF] Abate | The Julia-Wolff-Carathéodory Theorem in polydisks[END_REF][START_REF] Mellon | Holomorphic invariance on bounded symmetric domains[END_REF][START_REF] Mackey | Angular derivatives on bounded symmetric domains[END_REF][START_REF] Abate | A Julia-Wolff-Carathéodory theorem for infinitesimal generators in the unit ball[END_REF] (the list is not exhaustive) -are known. This note gives a version of this theorem for noncommutative self-maps of the noncommutative upper half-plane of a von Neumann algebra A. The result builds on the recent literature in the field -see [START_REF] Agler | A Carathéodory Theorem for the bidisk via Hilbert space methods[END_REF][START_REF] Agler | Boundary behavior of analytic functions of two variables via generalized models[END_REF][START_REF] Pascoe | Free Pick functions: representations, asymptotic behavior and matrix monotonicity in several noncommuting variables[END_REF], and falls under the programme aiming to find the noncommutative versions of classical complex analysis results -see for example [START_REF] Abduvalieva | Implicit/inverse function theorems for free noncommutative functions[END_REF][START_REF] Abduvalieva | Fixed point theorems for noncommutative functions[END_REF][START_REF] Agler | Global holomorphic functions in several non-commuting variables[END_REF][START_REF] Agler | Pick interpolation for free holomorphic functions[END_REF][START_REF] Agler | The implicit function theorem and free algebraic sets[END_REF].

In the second section we state our main result, and provide the required background. The third section is dedicated to proving a Schwarz lemma-type result for noncommutative functions. In this same section we give a simple (not necessarily original, though) proof of the classical Julia-Wolff-Carathéodory Theorem in order to make this article self-contained, and some lemmas that make use of it. Finally, in the last section we prove our main result.

Noncommutative functions and the Julia-Carathéodory Theorem

2.1. Noncommutative functions. Noncommutative sets and functions originate in [START_REF] Taylor | A General Framework for a Multi-Operator Functional Calculus[END_REF][START_REF] Taylor | Functions of several noncommuting variables[END_REF]. We largely follow [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF] in our presentation below. We refer to this excellent monograph for details on, and proofs of, the statements that follow.

First a notation: if S is a nonempty set, we denote by M m×n (S) the set of all matrices with m rows and n columns having entries from S. For simplicity, we let M n (S) := M n×n (S). Given C * -algebra A, a noncommutative set is a family Ω := (Ω n ) n∈N such that (a) for each n ∈ N, Ω n ⊆ M n (A); (b) for each m, n ∈ N, we have Ω m ⊕ Ω n ⊆ Ω m+n .

The noncommutative set Ω is called right admissible if in addition the condition (c) below is satisfied: (c) for each m, n ∈ N and a ∈ Ω m , c ∈ Ω n , w ∈ M m×n (A), there is an ǫ > 0 such that a zw 0 c ∈ Ω m+n for all z ∈ C, |z| < ǫ.

Given C * -algebras A, C and a noncommutative set Ω ⊆ We shall refer to the indices n of Ω n or of f n as the "levels" of the noncommutative set Ω or of the noncommutative function f . A remarkable result (see [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF]Theorem 7.2]) states that, under very mild conditions on Ω, local boundedness for f implies each f n is analytic as a map between Banach spaces. Indeed, a hint towards the proof of this result is the following essential property of noncommutative functions: if Ω is admissible, a ∈ Ω n , c ∈ Ω m , b ∈ M n×m (A), such that a b 0 c ∈ Ω n+m , then there exists a linear map ∆f n,m (a, c) :

M n×m (A) → M n×m (C) such that (1) f n+m a b 0 c = f n (a) ∆f n,m (a, c)(b) 0 f m (c) .
Obviously, this implies in particular that f n+m extends to the set of all elements a b 0 c such that a ∈ Ω n , c ∈ Ω m , b ∈ M n×m (A) (see [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF]Section 2.2]). Two properties of this operator that are important for us are [START_REF] Abate | A Julia-Wolff-Carathéodory theorem for infinitesimal generators in the unit ball[END_REF] ∆f n,n (a, c)(ac) = f (a)f (c) = ∆f n,n (c, a)(ac), ∆f n,n (a, a)(b) = f ′ n (a)(b), the classical Frechet derivative of f n in a aplied to the element b ∈ M n (A). Moreover, ∆f n,m (a, c) as functions of a and c, respectively, satisfy properties similar to the ones described in items (1), [START_REF] Abate | A Julia-Wolff-Carathéodory theorem for infinitesimal generators in the unit ball[END_REF] above (see [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF]] for details). For convenience, from now on we shall suppress the indices denoting the levels for noncommutative functions, as it will almost always be obvious from the context.

We provide three examples of noncommutative sets: (i) The noncommutative upper half-plane

H + (A) = (H + (M n (A))) n∈N , where H + (M n (A)) = {b ∈ M n (A) : ℑb > 0} (here ℑb = b-b * 2i , ℜb = b+b * 2
), (ii) The set of nilpotent matrices with entries from A, and (iii) The unit ball (B(M n (A))) n∈N , where B(M n (A)) = {b ∈ M n (A) : b < 1}. Our paper will focus on the first example.

As the domains we consider in this paper are mostly noncommutative subsets of von Neumann algebras given by an order relation, we give below a few of the well-known results we use systematically in the rest of the paper. For them, we refer to [START_REF] Blackadar | Operator Algebras. Theory of C * -Algebras and von Neumann Algebras[END_REF][START_REF] Paulsen | Completely Bounded Maps and Operator Algebras[END_REF][START_REF] Zsidó | Lectures on von Neumann algebras[END_REF]. First, recall that for any C * -algebra (hence, in particular, von Neumann algebra) A, if x ∈ A, then x 2 = x * 2 = x * x = xx * . For a selfadjoint element x = x * ∈ A, x is equal to the spectral radius of x. We say that x ≥ 0 in A if x = x * and the spectrum of x is included in [0, +∞). Equivalently, if H is the Hilbert space on which A acts as a von Neumann algebra, then a selfadjoint x ∈ A is greater than or equal to zero if and only if xξ, ξ ≥ 0 for all ξ ∈ H. We say that x > 0 means that x ≥ 0 and x is invertible (i.e. its spectrum is included in (0, +∞)). We say x ≥ y if xy ≥ 0, and similarly for ">." In particular, it follows that xx * ≤ x 2 • 1 A and x * x ≤ x 2 • 1 A . Clearly, for and ε ∈ (0, +∞), xx * < ( x 2 + ε) • 1 A , with strict inequality achieved only when ε > 0.

As proved in [23, Lemma 3.1],

1 a a * 1 ≥ 0 in M 2 (A) ⇐⇒ a ≤ 1. We claim that 1 a a * 1 > 0 in M 2 (A) ⇐⇒ a < 1.
Indeed, if a < 1, then 1aa * and 1a * a are invertible in A and

1 a a * 1 -1 = (1 -aa * ) -1 -(1 -aa * ) -1 a -a * (1 -aa * ) -1 (1 -a * a) -1 in M 2 (A).
Conversely, if a = 1, then for any ε > 0 there exists

ξ ε , η ε ∈ H of norm one such that aη ε , ξ ε > 1 -ε. Then 1 a a * 1 ξ ε η ε , ξ ε η ε = ξ ε 2 2 + η ε 2 2 -2 aη ε , ξ ε < 2ε,
so that zero belongs to the spectrum of 1 a a * 1 . This proves our claim.

Observe also that for any selfadjoint x ∈ A, we have x > 0 if and only if for any invertible a ∈ A, we have a * xa > 0. Indeed, one implication is obvious. Conversely, if a is invertible and a * xa > 0, then there is an

ε a ∈ (0, +∞) such that a * xa > ε a • 1 A . For any ξ ∈ H, xξ, ξ = xa(a -1 ξ), a(a -1 ξ) = a * xa(a -1 ξ), (a -1 ξ) > ε a (a -1 ξ) 2 2 ≥ ε a a -2 ξ 2 2 , independently of ξ, so that x ≥ ε a a -2 • 1 A > 0.
We use these last two results to conclude that

u v v * w > 0 in M 2 (A) ⇐⇒ u, w > 0 in A and    u > vw -1 v * and/or w > v * u -1 v .
This follows from the above by writing

u v v * w = u 1 2 0 0 w 1 2 1 u -1 2 vw -1 2 w -1 2 v * u -1 2 1 u 1 2 0 0 w 1 2
and recalling the chain of equivalences u

-1/2 vw -1/2 (u -1/2 vw -1/2 ) * < 1 ⇐⇒ (u -1/2 vw -1/2 ) * u -1/2 vw -1/2 < 1 ⇐⇒ u -1/2 vw -1/2 (u -1/2 vw -1/2 ) * < 1 ⇐⇒ (u -1/2 vw -1/2 ) * u -1/2 vw -1/2 < 1.
We shall use these facts below without further referencing to them.

2.2.

The Julia-Wolff-Carathéodory Theorem, classical and noncommutative. We state the classical Julia-Wolff-Carathéodory Theorem for analytic selfmaps of the upper half-plane C + at a point of the real line R. In the following we denote by lim z-→α ∢ the nontangential limit at a point α ∈ R (see, for ex. [START_REF] Garnett | Bounded Analytic Functions[END_REF]).

Theorem 2.1. Let f : C + → C + be a nonconstant analytic function and α ∈ R be fixed.

(1) Assume that

(3) c := lim inf z→α ℑf (z) ℑz < ∞.
Then f (α) := lim z-→α ∢ f (z) exists and belongs to R, and

(4) lim z-→α ∢ f ′ (z) = lim z-→α ∢ f (z) -f (α) z -α = lim y↓0 ℑf (α + iy) y = c.
(2) Assume that lim y↓0 f (α + iy) =: f (α) exists and belongs to R.

If lim z-→α ∢ f (z) -f (α) z -α = c ∈ C, then c ∈ (0, +∞) and c = lim inf z→α ℑf (z) ℑz = lim z-→α ∢ f ′ (z).
(

) Assume that lim z-→α ∢ f ′ (z) = c ∈ C and lim z-→α ∢ f (z) = f (α) ∈ R. Then c = lim inf z→α ℑf (z) ℑz = lim z-→α ∢ f (z) -f (α) z -α ∈ R. 3 
The noncommutative version of this theorem becomes quite obvious in light of (2) and of the formulations of the corresponding main result from [START_REF] Sza Lowska | Angular Derivatives of Holomorphic Maps in Infinite Dimensions[END_REF] as well as the recent work [START_REF] Pascoe | Free Pick functions: representations, asymptotic behavior and matrix monotonicity in several noncommuting variables[END_REF]. In the following, when we make a statement about a completely positive map, we usually write the statement for level one, and, unless the contrary is explicitly stated, we mean that the property in question holds for all levels n. Thus, for example, the statement lim

z-→0 ∢ f ′ (α + zv) := f ′ (α)
exists and is completely positive for α = α * ∈ A and v > 0 means that for any n ∈ N and any

v ∈ M n (A), lim z-→0 ∢ f ′ (α ⊗ 1 n + zv) = f ′ (α ⊗ 1 n ) = f ′ (α) ⊗ Id n is a positive map on M n (A).
Theorem 2.2. Let A be a von Neumann algebra and f : H + (A) → H + (A) be a noncommutative analytic map. Fix α = α * ∈ A.

(1) Assume that for any v ∈ A, v > 0 and any state ϕ on A,

(5) lim inf z→0,z∈C + ϕ(ℑf (α + zv)) ℑz < ∞.
Then there exists c = c(v) ∈ A, c > 0 such that

(6) lim y↓0 ℑf (α + iyv) y = c
in the strong operator (so) topology. Moreover, lim

z-→0 ∢ f (α+zv) = f (α) exists,
does not depend on v and is selfadjoint. The limits

(7) lim z-→0 ∢ ∆f (α + zv 1 , α + zv 2 ) and lim z-→0 ∢ f ′ (α + zv)
exist pointwise wo for any v, v 1 , v 2 > 0, and lim

z-→0 ∢ f ′ (α + zv)(v) = c(v).
All statements remain true for any n ∈ N, v, v 1 , v 2 > 0 in M n (A) and α replaced by α ⊗ 1 n . (1') Assume in addition to the hypothesis (5) that for any v, w > 0 in A and any state ϕ on A, the gradient of the two-variable complex function

{(z, ζ) ∈ C 2 : ℑ(zv + ζw) > 0} ∋ (z, ζ) → ϕ(f (α + zv + ζw)) ∈ C + admits the limit lim y 1 ,y 2 ↓0 (y1,y2)∈[0,1) 2 \{(0,0)} (ϕ(f ′ (α + iy 1 v + iy 2 w)(v)), ϕ(f ′ (α + iy 1 v + iy 2 w)(w))) .
Then the limits (7) are equal to each other, completely positive and do not depend on v, v 1 , v 2 .

(2) Assume that the pointwise wo limit lim y↓0 f ′ (α + iyv) := f ′ (α) exists for any v > 0, does not depend on v and f ′ (α) is a completely bounded operator on A. Then f ′ (α) is completely positive, lim z-→0 ∢ f (α + zv) := f (α) exists, does not depend on v and is selfadjoint, and

f ′ (α)(v) = so-lim z-→0 ∢ ℑf (α + iyv) y for any v > 0.
Unfortunately, unlike in the classical case of Theorem 2.1, and similar to the case of functions of several complex variables [START_REF] Rudin | Function theory in the unit ball of C n[END_REF][START_REF] Abate | The Julia-Wolff-Carathéodory Theorem in polydisks[END_REF], item (1') above cannot be improved upon. Indeed, it was observed in [START_REF] Agler | A Carathéodory Theorem for the bidisk via Hilbert space methods[END_REF] that for analytic functions of two complex variables on the bidisk with values in the unit disk, there exist examples that satisfy the commutative equivalent of (5) for the bidisk, and yet the gradient map does not have a nontangential limit. The equivalent of condition [START_REF] Agler | A Carathéodory Theorem for the bidisk via Hilbert space methods[END_REF] implies the existence of all directional derivatives in permissible directions, but these directional derivatives do not necessarily "add up" to a linear map. This commutative example has a natural noncommutative extension, as shown in [START_REF] Pascoe | Free Pick functions: representations, asymptotic behavior and matrix monotonicity in several noncommuting variables[END_REF]. It is enough for our purposes to treat a simplified version of this extension. It is shown in [START_REF] Agler | Nevanlinna representations in several variables[END_REF] that any Loewner map from the n-dimensional upper half-plane (C + ) n to C + has a certain operatorial realization: for any such h : (C + ) n → C + there exist Hilbert spaces N , M, a selfadjoint densely defined operator A on M, a real number s an orthogonal decomposition P = {P 1 , . . . , P n } of N ⊕ M (i.e. P i P j = P j P i = δ ij P j = δ ij P * j and

P 1 + • • • + P n = 1 M⊕N ) and a vector state ϕ v (•) = •v, v on the von Neumann algebra of bounded linear operators on N ⊕ M such that h(z) = s + ϕ v (M (z)), z = (z 1 , . . . , z n ) ∈ (C + ) n , 1 ≤ j ≤ n,
where

M (z) = -i 0 0 1 -iA 1 0 0 A -(z 1 P 1 + • • • + z n P n ) 0 0 0 1 -1 × (z 1 P 1 + • • • + z n P n ) 1 0 0 A + 0 0 0 1 -i 0 0 1 -iA -1 .
The 2 × 2 matrix decomposition is realized with respect to the canonical orthogonal decomposition of N ⊕M. We observe that such maps M : (C + ) n → B(N ⊕M) have a natural noncommutative extension to

H + (C n ) := k≥1 {a ∈ M k (C) : ℑa > 0} n
given by replacing (z

1 P 1 + • • • + z n P n ) in the above formula of M (z) by n j=1 (P j ⊗ 1 k )a j (P j ⊗ 1 k ).
(While it is not obvious from its formula that ℑM is positive when evaluated on (C + ) n , and even less when its amplification is evaluated on {a ∈ M k (C) : ℑa > 0} n , a careful reading of the proofs of [6, Propositions 3.4 and 3.5] allows one to observe that they adapt without modification to show that

ℑM (a 1 , . . . , a n ) > 0 for (a 1 , . . . , a n ) ∈ {a ∈ M k (C) : ℑa > 0} n .) The extension of h becomes h k (a) = s ⊗ 1 k + (ϕ v ⊗ Id k )(M (a)), for all a = (a 1 , . . . , a n ) ∈ {a ∈ M k (C) : ℑa > 0} n . For n = 2 any analytic func- tion h : C + × C + → C +
admits such an operatorial realization, and hence it has a noncommutative extension as described above (see [START_REF] Agler | A Carathéodory Theorem for the bidisk via Hilbert space methods[END_REF][START_REF] Agler | Nevanlinna representations in several variables[END_REF][START_REF] Agler | Boundary behavior of analytic functions of two variables via generalized models[END_REF]). Considering the counterexample h provided in [START_REF] Agler | A Carathéodory Theorem for the bidisk via Hilbert space methods[END_REF], the map H :

H + (C 2 ) → H + (C 2 ) defined by H(a) = (h(a), h(a)) shows that we cannot dispense of item (1') in Theorem 2.2.
However, observe that the noncommutative structure of the function f in Theorem 2.2 (1) allows for a slightly stronger conclusion than in classical case of [START_REF] Agler | A Carathéodory Theorem for the bidisk via Hilbert space methods[END_REF][START_REF] Abate | The Julia-Wolff-Carathéodory Theorem in polydisks[END_REF]: the "directional derivative" becomes a bounded linear operator defined on all of A.

As noted above, a classical analytic function is itself the first level of a noncommutative function, via the classical analytic functional calculus applied to matrices over C. Relations ( 5), ( 6), [START_REF] Agler | Boundary behavior of analytic functions of two variables via generalized models[END_REF] are the obvious consequences of relations ( 3) and ( 4) in this context. Thus the statements of Theorem 2.2 are anything but surprising. Indeed, if f has an analytic extension around α, then the proof of Theorem 2.2 is absolutely trivial.

A norm estimate

Several slightly different proofs of Julia-Wolff-Carathéodory Theorem can be found in the literature. An essential element in one of them is the Schwarz-Pick Lemma: an analytic self-map of the upper half-plane is a contraction with respect to a "good" metric on C + . In the next proposition, we obtain a similar result for noncommutative functions. We think that there is a rather striking resemblance between our result below and [21, Corollary 3.3], but it is not clear to us yet whether the two results can be obtained from each other, or even to what extent they are related. We intend to pursue this question later. 

M n (A) ∋ b → (ℑf (a)) -1 2 ∆f (a, c) (ℑa) 1 2 b(ℑc) 1 2 (ℑf (c)) -1 2 ∈ M n (C) is a complete contraction. In particular, (ℑf (a)) -1 2 ∆f (a, c)(b) (ℑf (c)) -1 2 C ≤ (ℑa) -1 2 b (ℑc) -1 2 A , so that, by Equation (2), for b = a -c, (ℑf (a)) -1 2 (f (a) -f (c)) (ℑf (c)) -1 2 C ≤ (ℑa) -1 2 (a -c) (ℑc) -1 2 A .
The estimate will often be used under the equivalent forms

(ℑf (a)) -1 2 ∆f (a, c)(b)(ℑf (c)) -1 2 * (ℑf (a)) -1 2 ∆f (a, c)(b)(ℑf (c)) -1 2 ≤ (ℑa) -1 2 b (ℑc) -1 2 2 A • 1 Mn(C) , (8) 
(ℑf (a)) -1 2 ∆f (a, c)(b)(ℑf (c)) -1 2 (ℑf (a)) -1 2 ∆f (a, c)(b)(ℑf (c)) -1 2 * ≤ (ℑa) -1 2 b (ℑc) -1 2 2 A • 1 Mn(C) , (9) 
(10) ∆f (a, c)(b) * (ℑf (a)) -1 ∆f (a, c)(b) ≤ (ℑa) -1 2 b (ℑc) -1 2 2 A • ℑf (c), (11) ∆f (a 
, c)(b)(ℑf (c)) -1 ∆f (a, c)(b) * ≤ (ℑa) -1 2 b (ℑc) -1 2 2 A • ℑf (a), which we give here for convenience. Of course, if b ∈ M n (A), the notation b A signifies the C * -norm of b as an element in M n (A). Proof. As ℑ a b 0 c = ℑa b 2i b 2i * ℑc , we have a b 0 c ∈ H + (M 2n (A)) if and only if a, c ∈ H + (M n (A)) and b * (ℑa) -1 b < 4ℑc. This last relation is equivalent to (ℑa) -1 2 b(ℑc) -1 2 * (ℑa) -1 2 b(ℑc) -1 2 < 4, or (ℑa) -1 2 b(ℑc) -1 2 A < 2.
Thus, as f maps the noncommutative upper half-plane into itself, and for any b 0 ∈ M n (A) there exists an

ε b0 = 2 (ℑa) -1 2 b0(ℑc) -1 2 A > 0 such that a εb 0 0 c ∈ H + (M 2n (A)) for all ε ∈ [0, ε b0 ),
and so

f (a) ε∆f (a, c)(b 0 ) 0 f (c) ∈ H + (M 2n (A)) for all ε ∈ [0, ε b0 ). In particular ε (ℑf (a)) -1 2 ∆f (a, c)(b 0 ) (ℑf (c)) -1 2 C < 2 for ε < 2 (ℑa) -1 2 b0(ℑc) -1 2 A . Letting ε → 2 (ℑa) -1 2 b0(ℑc) -1 2 A
from below, we obtain (ℑf (a))

-1 2 ∆f (a, c)(b 0 ) (ℑf (c)) -1 2 C ≤ (ℑa) -1 2 b 0 (ℑc) -1 2 A .
As b 0 ∈ M n (A) has been chosen arbitrarily, we can replace it by (ℑa)

1 2 b(ℑc) 1 2 to conclude that, as claimed (ℑf (a)) -1 2 ∆f (a, c) (ℑa) 1 2 b(ℑc) 1 2 (ℑf (c)) -1 2 C ≤ b A , b ∈ M n (A).
Clearly, the same method can be used to obtain estimates involving ∆ j f for all j ∈ N. We give one such estimate pertaining to a special case of j = 2. We shall simply apply the above result to appropriately chosen elements in M 2 (A). Let

    a 1 0 0 0 0 a 2 c 0 0 0 a 3 b 0 0 0 a 4     be such that ℑa j > 0 and a 3 b 0 a 4 ∈ H + (M 2 (A)). From [19, Section 3] we obtain f     a 1 0 0 0 0 a 2 c 0 0 0 a 3 b 0 0 0 a 4     =     f (a 1 ) 0 0 0 0 f (a 2 ) ∆f (a 2 , a 3 )(c) ∆ 2 f (a 2 , a 3 , a 4 )(c, b) 0 0 f (a 3 ) ∆f (a 3 , a 4 )(b) 0 0 0 f (a 4 )     . Applying Proposition 3.1 to a = a 1 0 0 a 2 , c = a 3 b 0 a 4
and b = 0 0 c 0 under the form of ( 11) provides an estimate for ∆ 2 f (a 2 , a 3 , a 4 )(c, b). As the size of the formula in question becomes quite large, we shall split it. We have where

e 11 = ℑf (a 3 ) - ∆f (a 3 , a 4 )(b)(ℑf (a 4 )) -1 ∆f (a 3 , a 4 )(b) * 4 -1 e 12 = ℑf (a 3 ) - ∆f (a 3 , a 4 )(b)(ℑf (a 4 )) -1 ∆f (a 3 , a 4 )(b) * 4 -1 × ∆f (a 3 , a 4 )(b) -2i (ℑf (a 4 )) -1 e 21 = (ℑf (a 4 )) -1 ∆f (a 3 , a 4 )(b) * 2i × ℑf (a 3 ) - ∆f (a 3 , a 4 )(b)(ℑf (a 4 )) -1 ∆f (a 3 , a 4 )(b) * 4 -1 = e * 12 e 22 = ℑf (a 4 ) - ∆f (a 3 , a 4 )(b) * (ℑf (a 3 )) -1 ∆f (a 3 , a 4 )(b) 4 -1
.

Thus, in the left-hand side of (11) preserves only one nonzero element, in the position 22 (lower right corner), namely ∆f (a 2 , a 3 )(c)e 11 ∆f (a 2 , a 3 )(c

) * + 2ℜ ∆f (a 2 , a 3 )(c)e 12 ∆ 2 f (a 2 , a 3 , a 4 )(c, b) * + ∆ 2 f (a 2 , a 3 , a 4 )(c, b)e 22 ∆ 2 f (a 2 , a 3 , a 4 )(c, b) * = ∆f (a 2 , a 3 )(c)e 11 ∆f (a 2 , a 3 )(c) * -ℑ ∆f (a 2 , a 3 )(c)e 11 ∆f (a 3 , a 4 )(b)(ℑf (a 4 )) -1 ∆ 2 f (a 2 , a 3 , a 4 )(c, b) * + ∆ 2 f (a 2 , a 3 , a 4 )(c, b)e 22 ∆ 2 f (a 2 , a 3 , a 4 )(c, b) * .
On the right-hand side of [START_REF] Belinschi | Infinite divisibility and a noncommutative Booleanto-free Bercovici-Pata bijection[END_REF] we have the norm

(ℑa 1 ) -1 2 0 0 (ℑa 2 ) -1 2 0 0 c 0 ℑa 3 b 2i b 2i * ℑa 4 -1 2 .
We use the properties of C * -norms to conclude that this norm in M 2 (A) in fact

equals the norm (ℑa 2 ) -1 2 c ℑa 3 -1 4 b(ℑa 4 ) -1 b * c * (ℑa 2 ) -1 2
in A. Thus, inequality [START_REF] Belinschi | Infinite divisibility and a noncommutative Booleanto-free Bercovici-Pata bijection[END_REF] for elements in M 2 (A) translates into an inequality of elements in A as follows:

∆f (a 2 , a 3 )(c)e 11 ∆f (a 2 , a 3 )(c) * -ℑ ∆f (a 2 , a 3 )(c)e 12 ∆f (a 3 , a 4 )(b)(ℑf (a 4 )) -1 ∆ 2 f (a 2 , a 3 , a 4 )(c, b) * + ∆ 2 f (a 2 , a 3 , a 4 )(c, b)e 22 ∆ 2 f (a 2 , a 3 , a 4 )(c, b) * ≤ (ℑa 2 ) -1 2 c ℑa 3 - 1 4 b(ℑa 4 ) -1 b * -1 c * (ℑa 2 ) -1 2 ℑf (a 2 ). (12) 
However, for now their form seems to be too complicated when j > 2, and of no significant use for the purposes of this paper. Since the above proposition is applied in this paper only for A = C, from now on we shall eliminate the subscript from the notation of the C * -norm of A.

Proposition 3.2. Fix n ∈ N, r > 0 and c ∈ H + (M n (A)). Denote B + n (c, r) = a ∈ H + (M n (A)) : (ℑa) -1/2 (a -c)(ℑc) -1/2 ≤ r .
Then B + n (c, r) is a norm-closed norm-bounded convex subset of H + (M n (A)) with nonempty interior, which is bounded away from the topological boundary in the norm topology of H + (M n (A)). Moreover, it is noncommutative. More precisely, (13)

a ≤ ℜc + ℑc   r 2 + 2 + r √ r 2 + 4 2 + r r 2 + 2 + r √ r 2 + 4 2   , a ∈ B + n (c, r), and 
(14) ℑa ≥ 1 2 + r 2 ℑc, a ∈ B + n (c, r). Proof. The set B + n (c, r) is norm-bounded: a ∈ B + n (c, r) if and only if (ℑa) -1 2 (a - c)(ℑc) -1 (a -c) * (ℑa) -1 2 ≤ r 2 • 1, relation which implies (a -c)(ℑc) -1 (a -c) * ≤ r 2 ℑa • 1, which in its own turn implies [(a -c)(ℑc) -1 2 ][(a -c)(ℑc) -1 2 ] * ≤ r 2 ℑa .
Recalling that in any C * -algebra the adjoint (star) operation is isometric and that x * x = x 2 , this implies that [(ac)(ℑc)

-1 2 ] * [(a -c)(ℑc) -1 2 ] ≤ r 2 ℑa , which again implies (ℑc) -1 2 (a -c) * (a -c)(ℑc) -1 2 ≤ r 2 ℑa • 1.
Thus, repeating once again the above computations, we obtain

a -c 2 ≤ r 2 ℑa ℑc , a ∈ B + n (c, r).
Recall that ℑx = (xx * )/2i, so ℑx ≤ ( x + x * )/2 = x . Similarly, ℜx ≤ x . Applying this to x = ac, we obtain

( ℑa -ℑc ) 2 ≤ ℑ(a -c) 2 ≤ a -c 2 ≤ r 2 ℑa ℑc , a ∈ B + n (c, r).
Direct computation shows that this relation imposes

(15) ℑc 2 r 2 + 2 -r r 2 + 4 ≤ ℑa ≤ ℑc 2 r 2 + 2 + r r 2 + 4 , for all a ∈ B + n (c, r). Similarly, ℜ(a -c) 2 ≤ a -c 2 ≤ r 2 ℑa ℑc implies (16) 0 ≤ ℜa ≤ ℜc + r ℑc r 2 + 2 + r √ r 2 + 4 2 , a ∈ B + n (c, r).
Adding relations ( 15) and ( 16) provides the bound

a ≤ ℜc + ℑc   r 2 + 2 + r √ r 2 + 4 2 + r r 2 + 2 + r √ r 2 + 4 2   ,
as claimed in our remark.

Relation ( 14) is proved by a direct application of one of the equivalent definitions of positivity in a von Neumann algebra and the Cauchy-Buniakovsky-Schwarz inequality in Hilbert spaces. Let ξ be an arbitrary vector in the Hilbert space H n on which M n (A) acts as a von Neumann algebra. As we have seen in the proof of (13) above,

a ∈ B + n (c, r) ⇐⇒ (a -c)(ℑc) -1 (a -c) * ≤ r 2 ℑa. This means that (a -c)(ℑc) -1 (a -c) * ξ, ξ ≤ r 2 ℑaξ, ξ .
Moving ac to the right with a star and taking real and imaginary parts provides us with

(ℑc) -1 2 ℜ(a -c)ξ 2 2 + (ℑc) -1 2 ℑaξ 2 2 + ℑcξ, ξ + i (ℑc) -1 2 ℜ(a -c)ξ, (ℑc) -1 2 ℑaξ -(ℑc) -1 2 ℜ(a -c)ξ, (ℑc) -1 2 ℑaξ ≤ (2 + r 2 ) ℑaξ, ξ .
Second line above is simply -2ℑ (ℑc) -1 2 ℜ(ac)ξ, (ℑc) -1 2 ℑaξ , which is clearly greater than -2 (ℑc) -1 2 ℜ(ac)ξ, (ℑc) -1 2 ℑaξ . By the Schwarz-Cauchy inequality (applied in the second inequality below) we obtain

ℑcξ, ξ ≤ ℑcξ, ξ + (ℑc) -1 2 ℜ(a -c)ξ 2 -(ℑc) -1 2 ℑaξ 2 2 = ℑcξ, ξ + (ℑc) -1 2 ℜ(a -c)ξ 2 2 + (ℑc) -1 2 ℑaξ 2 2 -2 (ℑc) -1 2 ℜ(a -c)ξ 2 (ℑc) -1 2 ℑaξ 2 ≤ ℑcξ, ξ + (ℑc) -1 2 ℜ(a -c)ξ 2 2 + (ℑc) -1 2 ℑaξ 2 2 -2 (ℑc) -1 2 ℜ(a -c)ξ, (ℑc) -1 2 ℑaξ ≤ ℑcξ, ξ + (ℑc) -1 2 ℜ(a -c)ξ 2 2 + (ℑc) -1 2 ℑaξ 2 2 -2ℑ (ℑc) -1 2 ℜ(a -c)ξ, (ℑc) -1 2 ℑaξ ≤ (2 + r 2 ) ℑaξ, ξ .
Since this is true for all vectors ξ ∈ H n , we obtain ℑc ≤ (2 + r 2 )ℑa, implying [START_REF] Dineen | The Schwarz Lemma[END_REF]. That B + n (c, r) is closed in norm follows even easier: if a m ∈ B + n (c, r) and lim m→∞ a ma = 0, then lim m→∞ a * ma * = 0, and thus lim m→∞ ℑa m -ℑa = 0. This also implies that ℑa ≥ 1 2+r 2 ℑc > 0, so that, by analytic functional calculus, lim m→∞ (ℑa m ) -1 2 -(ℑa) -1 2 = 0. A few succesive applications of the product-norm inequalities in C * -algebras provides

(ℑa) -1 2 (a -c)(ℑc) -1 2 ≤ (ℑa) -1 2 a m -a + (ℑa m ) -1 2 -(ℑa) -1 2 × (a m -c)(ℑc) -1 2 + (ℑa m ) -1 2 (a m -c)(ℑc) -1 2 .
First and second right-hand terms converge to zero as m → ∞, and the last is no more than r. Thus, (ℑa)

-1 2 (a -c)(ℑc) -1 2 ≤ r, which implies a ∈ B + n (c, r). Midpoint convexity of B +
n (c, r) follows easily from a direct computation: let a 1 , a 2 ∈ B + n (c, r). We show that (a 1 + a 2 )/2 is in B + n (c, r). As in [START_REF] Agler | Global holomorphic functions in several non-commuting variables[END_REF], this is equivalent to showing that

ℑ a 1 + a 2 2 -1 2 a 1 + a 2 2 -c (ℑc) -1 a 1 + a 2 2 -c * ℑ a 1 + a 2 2 -1 2 ≤ r 2 • 1,
which is in its own turn equivalent to

(17) a 1 -c 2 + a 2 -c 2 (ℑc) -1 a 1 -c 2 + a 2 -c 2 * ≤ r 2 2 ℑ(a 1 + a 2 ).
However, adding the inequalities (a

1 -c)(ℑc) -1 (a 1 -c) * ≤ r 2 ℑa 1 and (a 2 - c)(ℑc) -1 (a 2 -c) * ≤ r 2
ℑa 2 (assumed to be true by hypothesis) and dividing by 2, we obtain

1 2 ((a 1 -c)(ℑc) -1 (a 1 -c) * + 1 2 (a 2 -c)(ℑc) -1 (a 2 -c) * ≤ r 2 2 ℑ(a 1 + a 2 ).
Thus, our statement is proved if we show that the left-hand term of ( 17) is less than or equal to the left-hand term of the inequality above. Expanding the left-hand of [START_REF] Garnett | Bounded Analytic Functions[END_REF] and subtracting from the one above yields

1 2 (a 1 -c)(ℑc) -1 (a 1 -c) * + 1 2 (a 2 -c)(ℑc) -1 (a 2 -c) * - 1 4 (a 1 -c)(ℑc) -1 (a 1 -c) * - 1 4 (a 2 -c)(ℑc) -1 (a 2 -c) * - 1 4 (a 1 -c)(ℑc) -1 (a 2 -c) * - 1 4 (a 2 -c)(ℑc) -1 (a 1 -c) * = 1 4 (a 1 -c)(ℑc) -1 (a 1 -c -a 2 + c) * + (a 2 -c)(ℑc) -1 (a 2 -c -a 1 + c) * = 1 4 (a 1 -c -a 2 + c)(ℑc) -1 (a 1 -a 2 ) * = 1 4 (a 1 -a 2 )(ℑc) -1 (a 1 -a 2 ) * ≥ 0.
Since B + n (c, r) is midpoint convex and closed, it is convex. To conclude, observe that all the above computations hold if c ∈ H + (M n (A)) is replaced by c ⊗ 1 p ∈ H + (M np (A)). Indeed, one only needs to observe that taking imaginary part, inverse and root, as well as multiplication, respect direct sums. Since a ⊕ b = max{ a , b }, we're done. Estimates ( 13) and ( 14) hold on the amplifications of c to any c ⊗ 1 p , p ∈ N, with the same constants.

The following lemma will be useful when applying Proposition 3.1 to the proof of the main result (compare with the method used in [11, Remark 2.5]). Lemma 3.3. Assume that f is a noncommutative self-map of the noncommutative upper half-plane of

A. Let v 1 , v 2 > 0 in A. If wo-lim y↓0 ℑf (α + iyv j ) y = c j ∈ A, j ∈ {1, 2},
exist, then the set of limit points of ∆f (α + zv 1 , α + ζv 2 )(w) as z, ζ → 0 nontangentially is bounded uniformly in norm as w varies in the unit ball of A.

Proof. By Proposition 3.1, (ℑf (α + zv 1 ))

-1 2 ∆f (α + zv 1 , α + ζv 2 )(w) (ℑf (α + ζv 2 )) -1 2 ≤ (ℑzv 1 ) -1 2 w(ℑζv 2 ) -1 2 .
Multiplying by (ℑzℑζ) 1/2 we obtain

ℑf (α + zv 1 ) ℑz -1 2 ∆f (α + zv 1 , α + ζv 2 )(w) ℑf (α + ζv 2 ) ℑζ -1 2 ≤ v -1 2 1 wv -1 2 2 .
Let ε ≥ 0 be fixed, and denote f ε (a) = f (a) + εa, i.e. f ε = f + εId. Since Id is completely positive, f ε is still a noncommutative self-map of the noncommutative upper half-plane of A, so that

ℑf (α + zv 1 ) ℑz + εv 1 -1 2 (∆f (α + zv 1 , α + ζv 2 )(w) + εw) × ℑf (α + ζv 2 ) ℑζ + εv 2 -1 2 ≤ v -1 2 1 wv -1 2 2
.

For simplicity, we denote

A 1 (ℑz, ε) = ℑf (α+zv1) ℑz + εv 1 , A 2 (ℑζ, ε) = ℑf (α+ζv2) ℑζ + εv 2 , W (z, ζ, ε) = ∆f (α + zv 1 , α + ζv 2 )(w) + εw, and K = v -1 2 1 wv -1 2 2 2
. As noted in [START_REF] Agler | Global holomorphic functions in several non-commuting variables[END_REF], and following the same procedure as in the proof fo the previous proposition, the above is equivalent to 

A 2 (ℑζ, ε) -1 2 W (z, ζ, ε) * A 1 (ℑz, ε) -1 W (z, ζ, ε)A 2 (ℑζ, ε) -1 2 ≤ K1. As A j (•, ε) ≥ ε1,

= lim y↓0

ℑf (α+iyvj ) y We note that the bounds depend exclusively on c j , v j (j = 1, 2), w. Moreover, the dependence can be bounded (at most) linearly in terms of w , v 1 , v 2 , v -1

1 and v -1 2 .
For the sake of completeness, let us use the results of Proposition 3.1 to give a short, elementary proof of Theorem 2.1.

Proof of Theorem 2.1. Assume equation (3) holds. By Proposition 3.1,

f (z) -f (z ′ ) ℑf (z)ℑf (z ′ ) ≤ z -z ′ √ ℑzℑz ′ , z, z ′ ∈ C + .
This is equivalent to

(18) f (z) -f (z ′ ) z -z ′ 2 ≤ ℑf (z)ℑf (z ′ ) ℑzℑz ′ , z, z ′ ∈ C + , z = z ′ . Consider a sequence {z ′ n } n∈N ⊂ C + converging to α such that lim n→∞ ℑf (z ′ n ) ℑz ′ n = c. Clearly ℑf (z ′ n ) → 0 as n → ∞, and {ℜf (z ′ n )} n∈N is a bounded sequence in R.
Moreover, if {z n } n∈N and {z ′ n } n∈N are two arbitrary sequences converging to α along which ℑf (z)/ℑz stays bounded, then {ℜ(f (z n )f (z ′ n ))} n∈N converges to zero. This implies that lim n→∞ f (z n ) exists for any sequence {z n } n∈N such that {ℑf (z n )/ℑz n } n∈N is bounded and lim n→∞ z n = α. We agree to call this limit f (α). Taking limit along z ′ n in ( 18) we obtain

f (z) -f (α) z -α 2 ≤ c ℑf (z) ℑz , z ∈ C + . Fix an M ∈ [0, +∞). Let D M = {z ∈ C + : |ℜz -α| ≤ M ℑz}. For any z ∈ D M , this implies (ℜf (z) -f (α)) 2 ≤ c ℑf (z) ℑz |z -α| 2 -(ℑf (z)) 2 = ℑf (z) c|z -α| 2 ℑz -ℑf (z) = ℑf (z) cℑz |ℜz -α| 2 (ℑz) 2 + cℑz -ℑf (z) ≤ ℑf (z) c(M 2 + 1)ℑz -ℑf (z) .
We conclude that ℑf (z)/ℑz ≤ c(M 2 + 1) for all z ∈ D M and thus lim

z-→0 ∢ f (z) = f (α).
Moreover, for M = 0 (i.e. z of the form α + iy) we have c ≥ ℑf (α + iy)/y, which together with the definition of c implies lim y↓0

ℑf (α+iy) y = c, so that

(ℜf (α + iy) -f (α)) 2 y 2 ≤ ℑf (α + iy) y c - ℑf (α + iy) y → 0 as y ↓ 0.
These two facts imply, via direct computation, that lim y↓0 f (α+iy)-f (α) iy = c. Since To prove (2), simply observe that

f (z) -f (α) z -α 2 ≤ c ℑf (z) ℑz ≤ c 2 (M 2 + 1), z ∈ D M , M ≥ 0, it follows straightforwardly that lim z-→0 ∢ f (z) -f (α) z -α = c ( 
f (α + iy) -f (α) iy 2 = (ℜf (α + iy) -f (α)) 2 + (ℑf (α + iy)) 2 y 2 ≥ (ℑf (α + iy)) 2 y 2 , so that lim inf z→α ℑf (z)
ℑz < ∞. Part (2) follows now from part (1). To prove part (3), we apply the classical mean value theorem to bound ℑf (α + iy)/y. The result follows then from part [START_REF] Abate | The Julia-Wolff-Carathéodory Theorem in polydisks[END_REF].

We feel it necessary to reiterate that no claim to novelty is made for this proof, and we chose to write it down here for the sake of making the paper more selfcontained.

Proof of the main result

In this section we prove Theorem 2.2. The proof makes use quite often of the results, and sometimes of the proof, of Theorem 2.1. For the sake of simplicity, we will isolate some elements of the proof in separate lemmas.

Proof of Theorem 2.2. For any n ∈ N and any state ϕ on M n (A), z → ϕ(f (α+ zv)) is a self-map of C + whenever α is selfadjoint and v > 0 in M n (A). Thus, Theorem 2.1 applies to it. In particular, if H is the Hilbert space on which the von Neumann algebra A acts, the above holds for the vector state corresponding to any ξ ∈ ⊕ n j=1 H of L 2 -norm equal to one. For n = 1, our hypothesis guarantees that lim inf z→0 We show next that the limit lim y↓0 f (α + iyv) = f (α) exists in A (i.e. does not depend on v) and is selfadjoint. Indeed, consider again any state ϕ on A and define z → ϕ(f (α + zv)). We have seen that this is a self-map of C + to which Theorem 2.1 applies. Thus, there exists a number k = k(ϕ, α, v) ∈ R such that lim z-→0 ∢ ϕ(f (α + zv)) = k. We recall the estimate from Proposition 3.1

ϕ(f (α + zv)) -ϕ(f (α + z ′ v)) z -z ′ 2 ≤ ϕ(ℑf (α + zv))ϕ(ℑf (α + z ′ v)) ℑzℑz ′ .
In this estimate we take z ′ = i and let z = iy tend to zero. We obtain

|k(ϕ, α, v) -ϕ(f (α + iv))| 2 ≤ ϕ(c)ϕ(ℑf (α + iv)).
Obviously, |ϕ(f

(α + iv))| ≤ f (α + iv) , a value independent of ϕ. Thus, |k(ϕ, α, v)| ≤ f (α + iv) + c ℑf (α + iv) ,
for any state ϕ on A. By applying as before this result to vector states and using polarization, we find an operator f v (α) ∈ A such that

f v (α)ξ, η = lim y↓0 f (α + iv)ξ, η , ξ, η ∈ H.
Since x = sup{|ϕ(x)| : ϕ state on A}, the estimate

f v (α) ≤ 4 f (α + iv) + c ℑf (α + iv) holds. Since for any state ϕ, k(ϕ, α, v) = lim y↓0 ϕ(f (α + iyv)) ∈ R, it follows that f v (α) = f v (α) * .
The fact that f v (α) does not depend on v follows from Proposition 3.1 and Lemma 3.3: indeed,

(ℑf (α + iy 1 v)) -1 2 (f (α + iy 1 v) -f (α + iy 2 1)) (ℑf (α + iy 2 1)) -1 2 ≤ (y 1 v) -1 2 (iy 1 v -iy 2 1) (y 2 1)) -1 2 is equivalent to ℑf (α + iy 1 v) y 1 -1 2 (f (α + iy 1 v) -f (α + iy 2 1)) ℑf (α + iy 2 1) y 2 -1 2 ≤ v -1 2 y 1 v -y 2 1 .
We obtain as in the proof of Lemma 3.3

f (α + iy 1 v) -f (α + iy 2 1) ≤ v -1 2 y 1 v -y 2 1 ℑf (α + iy 1 v) y 1 ℑf (α + iy 2 1) y 2 . (19) 
The two factors under the square root are bounded by hypothesis. Thus, we conclude.

Remark 4.1. This result is similar to results in [START_REF] Agler | A Carathéodory Theorem for the bidisk via Hilbert space methods[END_REF][START_REF] Ky | The angular derivative of an operator-valued analytic function[END_REF][START_REF] Sza Lowska | Angular Derivatives of Holomorphic Maps in Infinite Dimensions[END_REF]. We observe that this essentially improves the convergence to norm convergence, without requiring norm convergence in formula (5).

In the classical Julia-Carathéodory Theorem, we noted also that (ℜf (α + iy)f (α))/y → 0 as y ց 0. A similar result holds for general noncommuttive functions. Indeed, using relation [START_REF] Agler | The implicit function theorem and free algebraic sets[END_REF] 

with a = α + iyv, c = α + iy ′ v, b = a -c we obtain (f (α + iyv) -f (α + iy ′ v)) * (ℑf (α + iyv)) -1 (f (α + iyv) -f (α + iy ′ v)) ≤ (y -y ′ ) 2 yy ′ ℑf (α + iy ′ v).
Letting y ′ ց 0 we obtain (with the notation from the statement of Theorem 2.2)

(f (α + iyv) -f (α)) * (ℑf (α + iyv)) -1 (f (α + iyv) -f (α)) ≤ yc(v).
Recalling that f (α) = f (α) * we conclude that

(ℜf (α + iyv) -f (α)) (ℑf (α + iyv)) -1 (ℜf (α + iyv) -f (α)) ≤ yc(v)-ℑf (α+iyv).
We divide by y and let y ց 0 to conclude that

(20) 0 ≤ lim y↓0 ℜf (α + iyv) -f (α) y ℑf (α + iyv) y -1 ℜf (α + iyv) -f (α) y ≤ 0.
The invertibility of c(v) guarantees that lim y↓0

ℜf (α+iyv)-f (α) y = 0 in the so-topology.

Thus, lim

z-→0 ∢ ℜf (α+zv)-f (α) ℑz = 0.
In order to extend the above result to all levels n, we need the following lemma.

Lemma 4.2. Let f be as in Theorem 2.2. Fix α = α * ∈ A, v 1 , v 2 > 0 in A, and b ∈ A of norm b 2 • 1 < v 2 v -1 1 -1 . Then 1 y f α + iyv 1 iyb 0 α + iyv 2 -f α + iyv 1 iyb 2 iyb * 2 α + iyv 2 : y ∈ (0, 1) is bounded Proof. Observe that b 2 1 < 4 v -1 1 -1 v 2 implies ℑ α + iyv 1 iyb 0 α + iyv 2 > 0
for all y > 0. We use the same trick as in Lemma 3.3. For simplicity, denote

D = f α + iyv 1 iyb 0 α + iyv 2 -f α + iyv 1 iyb 2 iyb * 2 α + iyv 2 .
Proposition 3.1 (in the guise of inequality ( 8)) applied to a and c equal to the two arguments of the function f in the formula of D above give

ℑf α 0 0 α + iy v 1 b 0 v 2 -1 2 D * ℑf α 0 0 α + iy v 1 b 2 b * 2 v 2 -1 × Dℑf α 0 0 α + iy v 1 b 0 v 2 -1 2 ≤ yv 1 yb 2 yb * 2 yv 2 -1 2 0 -iyb 2 iyb * 2 0 yv 1 yb 2 yb * 2 yv 2 -1 2 2 • 1 M2(A) ,
for all y > 0 (we have kept the y's on the right hand side for transparency of the method). As in the proof of Lemma 3.3, we "multiply out" the imaginary parts of f on the left to obtain

DD * ≤ D 2 1 ≤ yℑf α 0 0 α + iy v 1 b 2 b * 2 v 2 v 1 b 2 b * 2 v 2 -1 2 0 -ib 2 ib * 2 0 × v 1 b 2 b * 2 v 2 -1 2 2 1 y ℑf α 0 0 α + iy v 1 b 0 v 2 • 1.
The last factor on the right hand side is bounded by the hypothesis, formula (1), Lemma 3.3 and the above arguments. The first factor needs not apriori tend to zero, but it is clearly bounded. However, if this factor is nonzero, consider H to be the Hilbert space on which A acts as a von Neumann algebra. Then there exists a vector ξ ∈ H 2 of norm one such that lim y↓0 yϕ ξ ℑf

α 0 0 α + iy v 1 b 2 b * 2 v 2
exists and belongs to (0, +∞), so that necessarily

ℑf α 0 0 α + iy v 1 b 2 b * 2 v 2
→ +∞, y → 0.

(Recall that we have denoted by ϕ ξ the vector state corresponding to ξ: ϕ ξ (a) = aξ, ξ .) But then 2 ℑD = D -D * ≤ 2 D is unbounded as y tends to zero, so that

ℑD 2 ≤ D 2 ≤ yℑf α 0 0 α + iy v 1 b 2 b * 2 v 2 v 1 b 2 b * 2 v 2 -1 2 0 -ib 2 ib * 2 0 × v 1 b 2 b * 2 v 2 -1 2 2 1 y ℑf α 0 0 α + iy v 1 b 0 v 2 , (21) 
making the right hand side unbounded, a contradiction. Thus,

lim y→0 yℑf α 0 0 α + iy v 1 b 2 b * 2 v 2
= 0, so, by a second application of inequality [START_REF] Mellon | Holomorphic invariance on bounded symmetric domains[END_REF],

lim y→0 ℑf α 0 0 α + iy v 1 b 2 b * 2 v 2 = 0.
However, more can be concluded from ( 21): dividing by y 2 , one obtains

ℑD 2 y 2 = 1 y ℑf α + iyv 1 iyb 0 α + iyv 2 - 1 y ℑf α + iyv 1 iyb 2 iyb * 2 α + iyv 2 2 ≤ 1 y ℑf α 0 0 α + iy v 1 b 2 b * 2 v 2 v 1 b 2 b * 2 v 2 -1 2 0 -ib 2 ib * 2 0 × v 1 b 2 b * 2 v 2 -1 2 2 1 y ℑf α 0 0 α + iy v 1 b 0 v 2 .
We know from our hypothesis and Lemma 3.3 that the set of real positive numbers 

ℑf α + iy n v 1 iynb 2 iynb * 2 α + iy n v 2 = +∞, then 1 y n ℑf α + iy n v 1 iynb 2 iynb * 2 α + iy n v 2 - 1 y n ℑf α + iy n v 1 iy n b 0 α + iy n v 2 ≤ 1 y n ℑf α 0 0 α + iy n v 1 b 2 b * 2 v 2 1 2 v 1 b 2 b * 2 v 2 -1 2 0 -ib 2 ib * 2 0 × v 1 b 2 b * 2 v 2 -1 2 1 y n ℑf α 0 0 α + iy n v 1 b 0 v 2 1 2 becomes ℑf α + iy n v 1 iynb 2 iynb * 2 α + iy n v 2 y n 1 2 - 1 yn ℑf α + iy n v 1 iy n b 0 α + iy n v 2 1 yn ℑf α + iy n v 1 iynb 2 iynb * 2 α + iy n v 2 1 2 ≤ v 1 b 2 b * 2 v 2 -1 2 0 -ib 2 ib * 2 0 v 1 b 2 b * 2 v 2 -1 2 × 1 y n ℑf α 0 0 α + iy n v 1 b 0 v 2 1 2 
; by letting n → ∞, we obtain

∞ -0 ≤ ℓ v 1 b 2 b * 2 v 2 -1 2 0 -ib 2 ib * 2 0 v 1 b 2 b * 2 v 2 -1 2 ,
an obvious contradiction. We have thus shown that ℑD /y stays bounded as y ց 0. By relation [START_REF] Mellon | Holomorphic invariance on bounded symmetric domains[END_REF], the same holds for ℜD. This proves the lemma.

The previous lemma implies more: since 1 y ℑf

α + iyv 1 iyb 0 α + iyv 2 is
bounded as y ∈ (0, 1), it follows immediately from the lemma that lim inf

y↓0 1 y ϕ ℑf α + iyv 1 iyb 2 iyb * 2 α + iyv 2 < ∞,
for all states ϕ on M 2 (A), and so, as proved above, [START_REF] Pascoe | Free Pick functions: representations, asymptotic behavior and matrix monotonicity in several noncommuting variables[END_REF] so-lim

y↓0 1 y ℑf α + iyv 1 iyb 2 iyb * 2 α + iyv 2 := C > 0 in M 2 (A).
In particular, it follows that the finiteness of the liminf in (5) guarantees the boundedness of the sets ℑf (α ⊗ 1 n + iyv)/y, y ∈ (0, 1), for all n ∈ N, v > 0 in M n (A), and so the existence of the corresponding so-limits for all n, as well as the normconvergence of f (α ⊗ 1 n + zv) to f (α) ⊗ 1 n as z → 0 nontangentially. We show next the existence of the limit of ∆f (α+iyv 1 , α+iyv 2 )(b) as y ց 0. Let v 1 , v 2 , b, α be as in the above lemma. Fix ǫ ∈ (0, 1) and denote

V ǫ = 1 0 0 √ ǫ .
Observe that

V -1 ǫ α + iyv 1 iyb iyǫb * α + iyv 2 V ǫ = α + iyv 1 i √ ǫyb i √ ǫyb * α + iyv 2 ,
so that, by the definition of a noncommutative function,

f α + iyv 1 iyb iyǫb * α + iyv 2 = V ǫ f α + iyv 1 i √ ǫyb i √ ǫyb * α + iyv 2 V -1 ǫ ,
The methods used in the proof of Lemma 4.2 allow for an estimate of the form

1 y 2 f α + iyv 1 i √ ǫyb i √ ǫyb * α + iyv 2 - f (α) 0 0 f (α) 2 ≤ v 1 0 0 v 2 -1 2 iv 1 i √ ǫb i √ ǫb * iv 2 v 1 √ ǫb 2 √ ǫb * 2 v 2 -1 2 2 × c(v 1 ) 0 0 c(v 2 ) 1 y ℑf α + iyv 1 i √ ǫyb i √ ǫyb * α + iyv 2 .
If we denote C ǫ := lim y↓0

1 y ℑf α + iyv 1 i √ ǫyb i √ ǫyb * α + iyv 2
, the above allows us to conclude that

C ǫ ≤ v 1 0 0 v 2 -1 2 v 1 √ ǫb √ ǫb * v 2 v 1 √ ǫb 2 √ ǫb * 2 v 2 -1 2 2 max 1≤j≤2 c(v j ) .
Thus, for any ǫ ∈ (0, 1) we have C ǫ ≤ const(v 1 , v 2 , b). However, a bit more can be obtained: since conjugation by V ǫ does not affect diagonal elements, we have

1 y 2 f α + iyv 1 iyb iǫyb * α + iyv 2 - f (α) 0 0 f (α) 2 = 1 y 2 V ǫ f α + iyv 1 i √ ǫyb i √ ǫyb * α + iyv 2 - f (α) 0 0 f (α) V -1 ǫ 2 ≤ 1 ǫ v 1 0 0 v 2 -1 2 iv 1 i √ ǫb i √ ǫb * iv 2 v 1 √ ǫb 2 √ ǫb * 2 v 2 -1 2 2 × c(v 1 ) 0 0 c(v 2 ) 1 y ℑf α + iyv 1 i √ ǫyb i √ ǫyb * α + iyv 2 , as V ǫ = 1, V -1 ǫ = ǫ -1/2
. The existence of the limit

ℓ ǫ := lim y↓0 1 y f α + iyv 1 i √ ǫyb i √ ǫyb * α + iyv 2 - f (α) 0 0 f (α) implies the existence of lim y↓0 1 y f α + iyv 1 iyb iǫyb * α + iyv 2 - f (α) 0 0 f (α) = V ǫ ℓ ǫ V -1 ǫ .
Let us now continue our estimates on the derivative:

1 y 2 f α + iyv 1 iyb iǫyb * α + iyv 2 -f α + iyv 1 iyb 0 α + iyv 2 2 ≤ yv 1 yb 2 yb * 2 yv 2 -1 2 0 0 iǫyb * 0 yv 1 (1+ǫ)yb 2 (1+ǫ)yb * 2 yv 2 -1 2 2 × 1 y ℑf α + iyv 1 iyb 0 α + iyv 2 1 y ℑf α + iyv 1 iyb iǫyb * α + iyv 2 .
The first factor on the right hand side is bounded by ǫ 2 const(b, v 1 , v 2 ), for a constant const(b, v 1 , v 2 ) ∈ R, independent of y, ǫ ∈ (0, 1). The second factor has been shown in Lemma 3.3 to be bounded uniformly in y ∈ (0, 1). Finally, the last term is dominated, as seen above, by ǫ -1 const(b, v 1 , v 2 ). Thus,

1 y 2 f α + iyv 1 iyb iǫyb * α + iyv 2 -f α + iyv 1 iyb 0 α + iyv 2 2 ≤ ǫconst(v 1 , v 2 , b),
for any y, ǫ ∈ (0, 1). By weak compactness of norm-bounded sets, any sequence tending to zero has a subsequence {y n } such that lim

n→∞ ∆f (α + iy n v 1 , α + iy n v 2 )(b)
exists in the weak operator topology. Adding and subtracting f (α) 0 0 f (α) under the norm in the left hand side above and letting y ց 0 along such a sequence provides

V ǫ ℓ ǫ V -1 ǫ - c(v 1 ) lim n→∞ ∆f (α + iy n v 1 , α + iy n v 2 )(b) 0 c(v 2 ) ≤ √ ǫconst(v 1 , v 2 , b),
for any fixed ǫ ∈ (0, 1). This restricts the diameter of the cluster set of ∆f (α + iyv 1 , α + iyv 2 )(b) at zero to a set of norm-diameter of order √ ǫ for any ǫ > 0. Thus, the limit lim

y↓0 ∆f (α + iyv 1 , α + iyv 2 )(b) must exist.
We conclude that lim y↓0 ∆f (α + iyv 1 , α + iyv 2 )(b) exists and is uniformly bounded as b ∈ A stays in a bounded subset of A. Clearly the limit depends linearly on b, since each of ∆f (α + iyv

1 , α + iyv 2 )(b) does. In particular, if v 1 = v 2 = v, ∆f (α + iyv, α + iyv)(b) = f ′ (α + iyv)(b) has a limit as y → 0, as claimed in part (1) of Theorem 2.2. Let now in addition b = v/4. For any state ϕ on A and v > 0, z → ϕ(f (α + zv)) is a self-map of C + which satisfies the conditions of Theorem 2.1 at z = 0. Thus, lim y↓0 ϕ(f ′ (α + iyv)(v)) = lim y↓0 ϕ(ℑf (α + iyv)) y , so that indeed lim y↓0 f ′ (α + iyv)(v) = lim y↓0 ℑf (α + iyv) y = c(v) > 0.
Until now we have proved that the finiteness of the liminf in (5) (which is applied to elements in A = M 1 (A)) implies not only the existence of f (α) and of limits of ∆f (α + iyv 1 , α + iyv 2 ) as y ↓ 0, but also the existence and finiteness of the liminf in (5) applied to α replaced by α ⊗ 1 M2(C) and v replaced by a positive in M 2 (A). Obviously, we now apply the above results to elements in M 2 (A) to obtain the same conclusion for elements in M 4 (A) and so on. This, according to [19, Chapters 2 and 3], allows us to conclude the proof of part [START_REF] Abate | The Julia-Wolff-Carathéodory Theorem in polydisks[END_REF].

We prove next part (1') of Theorem 2.2. Let v, w > 0 be fixed. Recall that we have shown in the proof of part (1) that lim t↓0 f ′ (α + ity 1 v + ity 2 w) exists pointwise.

Our hypothesis that lim y1,y2→0 (ϕ(f ′ (α + iy 1 v + iy 2 w)(v)), ϕ(f ′ (α + iy 1 v + iy 2 w)(w))) exists and is finite for any state ϕ on A implies that f ′ (α + iy 1 v + iy 2 w)(v), f ′ (α + iy 1 v+iy 2 w)(w) have a weak limit as (y 1 , y 2 ) ↓ (0, 0) in [0, 1) 2 \{(0, 0)}. Note that the domain {(z, ζ) ∈ C 2 : ℑ(zv + ζw) > 0} of the function (z, ζ) → ϕ(f (α + zv + ζw)) includes C + × C + ∪ C + × C + (closures taken in C). In particular, {(z, 0) : z ∈ C + }∪{(0, ζ) : ζ ∈ C + } ⊂ {(z, ζ) ∈ C 2 : ℑ(zv +ζw) > 0}. The existence of the above displayed limit thus guarantees that lim y↓0 ϕ(f ′ (α + iyw)(v)) = lim y↓0 ϕ(f ′ (α + iyv)(v)). This means that the limit of f ′ (α + iyv) as y ↓ 0 does not depend on v and is positive. Applying this same result to M n (A) and recalling the properties of noncommutative functions guarantee complete positivity for f ′ (α). To conclude the proof of (1'), simply observe that ∆f (α + iyv 1 , α + iyv 2 )(b)f ′ (α + iyv 1 )(b) converges to zero as y ↓ 0.

The proof of ( 2) is much simpler. Indeed, the existence of the limit lim y↓0 f ′ (α + iyv) implies the existence of the limit lim y↓0 ϕ(f ′ (α + iyv)(v)) for all states ϕ on A. An application of Theorem 2.1 and of parts ( 1) and (1') of Theorem 2.2 allows us to conclude.

It might be useful to note that the operator C from equality [START_REF] Pascoe | Free Pick functions: representations, asymptotic behavior and matrix monotonicity in several noncommuting variables[END_REF] can be written in terms of the small c's form the statement of Theorem 2.2, at least when v 1 = v 2 . We use here the condition (A) of the definition of noncommutative functions. Let v > 0 be fixed and let b be such that v > b > 0 in A. Then During the inception and elaboration of this paper I had the privilege to discuss various aspects related to it with Hari Bercovici, Victor Vinnikov and Gilles Pisier. I thank them very much both for valuable advices and encouragements. I would also like to thank Marco Abate for discussions on the first draft of this paper that motivated me to expand it. Clearly, any mistakes are entirely mine.

∞

  n=1 M n (A), a noncommutative function is a family f := (f n ) n∈N such that f n : Ω n → M n (C) and(1)f m (a) ⊕ f n (c) = f m+n (a ⊕ c) for all m, n ∈ N, a ∈ Ω m , c ∈ Ω n ; (2) for all n ∈ N, f n (T -1 aT ) = T -1 f n (a)T whenever a ∈ Ω n and T ∈ GL n (C) are such that T -1 aT belongs to the domain of definition of f n . These two conditions are equivalent to the single condition (A) For any m, n ∈ N, a ∈ Ω m , c ∈ Ω n , S ∈ M m×n (C), one has aS = Sc =⇒ f m (a)S = Sf n (c).

Proposition 3 . 1 .

 31 Let A, C be two von Neumann algebras and f : H + (A) → H + (C) be a noncommutative map. For any n ∈ N and a, c ∈ H + (M n (A)), the linear map

ℑf a 3 b 0 a 4 - 1 = 1 = e 11 e 12 e

 41112 ℑf (a 3 ) ∆f (a3,a4)(b) 2i ∆f (a3,a4)(b) * -2if (a 4 )-21 e 22 ,

√ y ξ 2 :

 2 c j ξ, ξ , finite for any ξ ∈ H. Thus, the family(ℑf (α+iyvj )) 1/2 y ∈ (0,1) is bounded for any ξ ∈ H. By the Banach-Steinhaus Theorem and the positivity of the operators ℑf (α+iyvj ) y , it follows that ℑf (α+iyvj ) y : y ∈ (0, 1) is a bounded set. Moreover, as it will be seen in the proof of Theorem 2.1, if z tends to zero nontangentially and lim y↓0 ℑf (α+iyvj )ξ,ξ y is finite, then ℑf (α+ℑzvj )ξ,ξ ℑz : |z| < 1, z ∈ Γ stays bounded for any closed cone Γ ⊂ C + ∪ {0}. A bound for c j is c j ≤ lim sup y→0 ℑf (α+iyvj ) y . Thus, { W (z, ζ, ε) : z, ζ ∈ Γ, |z|, |ζ| < 1} is bounded for any closed cone Γ ⊂ C + with vertex at zero. The lemma follows by letting ε ↓ 0.

  see for example [17, Exercise 5, Chapter I]). Considering the classical definition of the derivative, the above directly implies that lim y↓0 f ′ (α+iy) = c. (18) implies that |f ′ (z)| ≤ c(M 2 +1) for z ∈ D M , so, by the same [17, Exercise 5, Chapter I], lim z-→0 ∢ f ′ (z) = c. This proves (1).

  the above lim inf, hence it is finite for any ξ ∈ H. As in the proof of Lemma 3.3, the Banach-Steinhaus Theorem and the positivity of the operators ℑf (α+iyv) y guarantee that ℑf (α+iyv) y : y ∈ (0, 1) is a bounded set. Moreover, the existence of the limits lim y↓0 ℑf (α+iyv)ξ,ξ y for all ξ ∈ H implies, via polarization, the existence of lim y↓0 ℑf (α + iyv)ξ, η y , ξ, η ∈ H. We conclude the existence of a bounded operator 0 ≤ c = c(v) ∈ A such that lim y↓0 ℑf (α + iyv)ξ, η y = cξ, η , ξ, η ∈ H. The bound for c is c ≤ lim sup y→0 ℑf (α+iyv) y . On the other hand, as seen in the proof of Theorem 2.1, ℑ f (α + iyv)ξ, ξ ≤ y cξ, ξ for all y > 0. Since f takes values in H + (A), applying this relation to y = 1 guaranteres that c > 0. Now it follows easily that lim y↓0 ℑf (α+iyv) y c ξ = 0 for any ξ ∈ H.

2 ∆ 2 2 ∆ 2 f 2 f 2 f 21 = 2 ..

 222222212 iy(v + b) iyb α + iyv α + iy(v + b) α + iyv iyb ,which is in its own turn equal to the product 1We recognize in the 2 × 2 matrix the argument of one of the terms involved in the statement of Lemma 4.2. If we denote iy(v+ b)) f (α+iy(v+b))-f (α+iy(v-b)) f 0 f (α + iy(vb)) f (α + iyv) -f (α + iy(vb)) 0 0 f (α + iyv)   = f (α + iy(v + b)) f (α+iy(v+b))-f (α+iy(v-b)) + f (α + iyv) f (α + iy(v + b)) f (α+iy(v+b))+f (α+iy(v-b)) (α + iyv) -f (α + iy(vb)) + ∆ 2 f , where ∆ 2 f stands for ∆ 2 f (α + iy(v + b), α + iy(vb), α + iyv)(iyb, iyb).We obtain immediately the relationsf 11 = f 22 = f (α + iy(v + b)) + f (α + iy(vb)) f 12 = f (α + iy(v + b))f (α + iy(vb)) It follows that, for v 1 = v 2 > 0, (v+b))+ℑf (α+iy(v-b)) y ℑf (α+iy(v+b))-ℑf (α+iy(v-b)) y ℑf (α+iy(v+b))-ℑf (α+iy(v-b)) y ℑf (α+iy(v+b))+ℑf (α+iy(v-b)) yBy considering the functions z → ϕ(f(α + z(v ± b))), we obtain on the off-diagonal entries precisely [f ′ (α)(v +b)-f ′ (α)(v -b)]/2 and on the diagonal entries [f ′ (α)(v + b) + f ′ (α)(vb)]/2.Moreover, the set of elements b ∈ A such that 0 < b < v is open in the set of selfadjoints, and the set of selfadjoints is a set of uniqueness for analytic maps. Thus, the above formulas for f ij hold for any b from the connected component of the domain of the maps in question (viewed as functions of b).

  we obtain by the same methods as in the proof of Proposition 3.2 that W (z, ζ, ε) 2 ≤ K A 1 (ℑz, ε) A 2 (ℑζ, ε) . Let H be the Hilbert space on which A acts as a von Neumann algebra. By

	our hypothesis, lim y↓0	ℑf (α+iyvj )ξ,ξ y