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A NONCOMMUTATIVE VERSION OF THE
JULIA-WOLFF-CARATHEODORY THEOREM

SERBAN TEODOR BELINSCHI

ABSTRACT. The classical Julia-Wolff-Carathéodory Theorem characterizes the
behaviour of the derivative of an analytic self-map of a unit disc or of a half-
plane of the complex plane at certain boundary points. We prove a version of
this result that applies to noncommutative self-maps of noncommutative half-
planes in von Neumann algebras at points of the distinguished boundary of
the domain. Our result, somehow surprisingly, relies almost entirely on simple
geometric properties of noncommutative half-planes, which are quite similar
to the geometric properties of classical hyperbolic spaces.

1. INTRODUCTION

The classical Julia-Wolff-Carathéodory Theorem describes the behaviour of the
derivative of an analytic self-map of the unit disc D or of the upper half-plane C*
of the complex plane C at certain boundary points. Numerous generalizations, to
self-maps of balls or polydisks in C", analytic functions with values in spaces of
linear operators, analytic self-maps on domains in spaces of operators or in more
general Banach spaces etc. - see for example [22, 14, 16, 25, 1, 19, 18, 2] (the
list is not exhaustive) - are known. This note gives a version of this theorem
for noncommutative self-maps of the noncommutative upper half-plane of a von
Neumann algebra A. The result builds on the recent literature in the field - see [5,
7, 20], and falls under the programme aiming to find the noncommutative versions
of classical complex analysis results - see for example [3, 4, 8, 9, 10].

In the second section we state our main result, and provide the required back-
ground. The third section is dedicated to proving a Schwarz lemma-type result for
noncommutative functions. In this same section we give a simple (not necessarily
original, though) proof of the classical Julia-Wolff-Carathéodory Theorem in order
to make this article self-contained an some lemmas that make use of it. Finally, in
the last section we prove our main result.

2. NONCOMMUTATIVE FUNCTIONS AND THE JULIA-CARATHEODORY THEOREM

2.1. Noncommutative functions. Noncommutative sets and functions originate
in [23, 24]. Here we largely follow [17] in their definition. We refer to this excellent
monograph for details on, and proofs of, the statements below.

First a notation: if S is a nonempty set, we denote by M, (S) the set of all
matrices with m rows and n columns having entries from S. For simplicity, we
let My, (S) := Muxn(S). Given C*-algebra A, a noncommutative set is a family
Q := () nen such that

(a) for each n € N, Q,, C M, (A);
(b) for each m,n € N, we have Q,,, ® Q, C Qiypne.
1
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The noncommutative set  is called right admissible if in addition the condition (c)
below is satisfied:

(c) for each m,n € N and a € Q,,,,b € Q,w € My xn(A), there is an ¢ > 0

such that < 8 ZZ;U > € Qyn forall z € C 2| <e.

Given C*-algebras A,C and a noncommutative set Q@ C [[°2, M, (A), a noncom-
mutative function is a family f := (fn)nen such that f,,: Q,, — M, (C) and
(1) fm(a) ® fu(b) = frnin(a®b) for allm,n €N, a € Qp, b € Qy;
(2) for alln € N, f,(T"*aT) =T~ f,(a)T whenever a € Q,, and T € GL,(C)
are such that 7~ 'aT" belongs to the domain of definition of f,,.

A remarkable result (see [17, Theorem 7.2]) states that, under very mild condi-
tions on §2, local boundedness for f implies each f,, is analytic as a map between
Banach spaces. Indeed, a hint towards the proof of this result is the following
essential property of noncommutative functions: if € is admissible, a € ,,b €

Qm,c € Mpxm(A), such that g z

Afpm(a,b): Mpxm(A) = Mpxm(C) such that
a ¢\ [ fala) Afnm(a,b)(c)
(1) fn+m< 0 b ) - < 0 fm(b) ) .

Obviously, this implies in particular that f,,, extends to the set of all elements
( 8 g ) such that a € Qp,,b € Q¢ € Myxm(A) (see [17, Section 2.2]). Two
properties of this operator that are important for us are
(2)
Afnn(a,b)(a—b) = fla) = f(b) = Afnn(b,a)(a—0), Afan(a a)lc)= f(a)c),
the classical Frechet derivative of f,, in a aplied to the element ¢ € M, (A). More-
over, A fy, m(a,b) as functions of a and b, respectively, satisfy properties similar to
the ones described in items (1), (2) above (see [17, Sections 2.3-2.5] for details).
For convenience, from now on we shall suppress the indices denoting the level for
noncommutative functions, as it will almost always be obvious from the context.
We provide three examples of noncommutative sets:
(i) The noncommutative upper half-plane H*(A) = (H" (M,,(A)))nen, where
HT(M,(A)) ={be M,(A): Sb> 0},
(ii) The set of nilpotent matrices with entries from A, and
(iii) The unit ball (B(M,,(A)))nen, where B(M,,(A)) = {b € M,(A): ||b]] < 1}.

Our paper will focus on the first example.

€ Qp4m, then there exists a linear map

2.2. The Julia-Wolff-Carathéodory Theorem, classical and noncommuta-
tive. We state the classical Julia-Wolff-Carathéodory Theorem for analytic self-
maps of the upper half-plane CT at a point of the real line R. In the following we
denote by lim the nontangential limit at a point v € R (see, for ex. [15]).

Theorem 2.1. Let f: CT — CT be analytic and oo € R be fized.
(1) Assume that

Ox
(3) ¢ := liminf SfG) < 00
z—a Sz
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Then lim f(z):= f(«) exists and belongs to R, and
z—a
<

(4) lim f'(z) = lim 1(z) = f(e) = lim St i) =c.

z?a 2730 zZ— yio y

(2) Assume that h?& fla+iy) := f(a) exists and belongs to R. If
y

f(z) = fla)

hm =c€E C,
L zZ—«
then c € (0,400) and

G Sf) ,

c= h?i}gf =, = zl}gaf (2).

(3) Assume that lim f'(z)=ceC and lim f(2) = f(a) € R. Then
<
R —
c= liminf%(z) = lim M cR.
z—a R4 2720 Z—

The noncommutative version of this theorem becomes quite obvious in light of
(2) and of the formulations of the corresponding main result from [25] as well as the
recent work [20]. In the following, when we make a statement about a completely
positive map, we usually write the statement for level one, and, unless the contrary
is explicitly stated, we mean that the property in question holds for all levels n.
Thus, for example, the statement

lim f'(a+ 2v) := f'(a)

z——0

exists and is completely positive for &« = o* and 0 < v € A means that for any
n € N and any v € M,,(A),

lim fla®l, +2z2v)=f(a®1,) = f(a) ®1d,

is a positive map on M, (A).
Theorem 2.2. Let A be a von Neumann algebra and f: HY(A) — H*(A) be a
noncommutative map. Fiz o = o™ € A.

(1) Assume that for any v € A,v > 0 and any state ¢ on A,
5) liming PSflatzv))
z—0,2€C+ Sz
Then there exists ¢ = c¢(v) € A, ¢ > 0 such that
(6) wolim SFla i)
yl0 Y

Moreover, lim f(a+ zv) = f(«) exists, does not depend on v and is self-
z—0
<
adjoint. The limits
(7) lim Af(a+iyvy, a +iyve) and lim f'(a+ 2v)
z——0 z—0
< <

ezist pointwise for any v,vi,ve >0, and lim f'(a+ 2zv)(v) = c(v).
z——0
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(1) Assume in addition to the hypothesis (5) that for any v,w > 0 in A and any
state  on A, the gradient of the two-variable complex function CT x Ct >
(2,0) = o(f(a+ 2v + Cw)) € CT admits the limit

lim (o(f'(a + iy1v + iyaw) (v), o(f (@ + iyrv + iyaw) (w))) -

y1,y2—0
Then the limits (7) are equal to each other, completely positive and do not
depend on v, vy, vs.
(2) Assume that the pointwise wo limit h?& f(a+iyv) == f'(a) exists for any
y
v > 0, does not depend on v and f'(«) is a completely bounded operator
on A. Then f'(«) is completely positive, wo- lim f(a+ zv) := f(«a) exists,
z——0
<
does mot depend on v and is selfadjoint, and
o~ .
F(0)(v) = wo- lim SL@+ V)

z—0
<

for any v > 0.

Unfortunately, unlike in the classical case of Theorem 2.1, and similar to the
case of functions of several complex variables [22, 1], item (1’) above cannot be
improved upon. Indeed, it was observed in [5] that for analytic functions of two
complex variables on the bidisk with values in the unit disk, there exist examples
that satisfy the commutative equivalent of (5) for the bidisk, and yet the gradient
map does not have a nontangential limit. The equivalent of condition (5) implies the
existence of all directional derivatives in permissible directions, but these directional
derivatives do not necessarily “add up” to a linear map. This commutative example
has a natural noncommutative extension, as shown in [20]. It is enough for our
purposes to treat a simplified version of this extension. It is shown in [6] that any
Loewner map from the n-dimensional upper half-plane (CT)™ to CT has a certain
operatorial realization: for any such h: (C*T)" — CT there exist Hilbert spaces
N, M, a selfadjoint densely defined operator A on M, a real number s an orthogonal
decomposition P = {Pl, .. ,Pn} OfN@M (1e PZP] = PJPZ = 51'ij = 5iij* and
P+ -+ P, = Lpmgn) and a vector state ¢, (1) = (-v,v) on the von Neumann
algebra of bounded linear operators on N’ & M such that

h(z) =s+pu(M(2)), z=(21,...,20) € (CT)"1<j <m,

where

M(z) = <Oi 1_02_A)<<(1) g>(21P1+...+znPn)<8 (1)))_1
x<(21P1+~~~+znPn)<(1) g)+<8 ?))(BZ 1_OZ.A >1.

The 2 x 2 matrix decomposition is realized with respect to the canonical orthogonal
decomposition of N&M. We observe that such maps M : (CT)™ — B(N'@®&M) have
a natural noncommutative extension to H*(C") := [[;5,{a € My(C): Ja > 0}"
given by replacing (z1 P + - - + 2, P,) in the above formula of M(z) by

D (B © 1L)a; (P © 1)

j=1
(While it is not obvious from its formula that SM is positive when evaluated on
(C*T)™, and even less when its amplification is evaluated on {a € My(C): Sa >
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0}", a careful reading of the proofs of [6, Propositions 3.4 and 3.5] allows one to
observe that they adapt without modification to show that SM(aq,...,ay) > 0 for
(a1,...,an) € {a € My(C): Sa > 0}".) The extension of h becomes

hi(a) = 5 @ 1, + (0o @ Idg) (M (a)),

for all @ = (a1,...,a,) € {a € Mi(C): Sa > 0}". For n = 2 any analytic func-
tion h: Ct x C* — CT admits such an operatorial realization, and hence it has
a noncommutative extension as described above (see [5, 6, 7]). Considering the
counterexample h provided in [5], the map H: HT(C?) — H*(C?) defined by
H(a) = (h(a),h(a)) shows that we cannot dispense of item (1’) in Theorem 2.2.
However, observe that the noncommutative structure of the function f in Theorem
2.2 (1) allows for a slightly stronger conclusion than in classical case of [5]: the
“directional derivative” becomes a bounded linear operator defined on all of A.

As noted above, a classical analytic function is itself the first level of a noncom-
mutative function, via the classical analytic functional calculus applied to matrices
over C. Relations (5), (6), (7) are the obvious consequences of relations (3) and (4)
in this context. Thus the statements of Theorem 2.2 are anything but surprising.
Indeed, if f has an analytic extension around «, then the proof of Theorem 2.2 is
absolutely trivial.

3. A NORM ESTIMATE

Several slightly different proofs of Julia-Wolff-Carathéodory Theorem can be
found in the literature. An essential element in one of them is the Schwarz-Pick
Lemma: an analytic self-map of the upper half-plane is a contraction with respect
to a “good” metric on C*. In the next proposition, we obtain a similar result for
noncommutative functions. We think that there is a rather striking resemblance
between our result below and [19, Corollary 3.3], but it is not clear to us yet whether
the two results can be obtained from each other, or even to what extent they are
related. We intend to pursue this question later.

Proposition 3.1. Let f: HY(A) — HT(A) be a noncommutative map. For any
n €N and a,c € HY(M,(A)), the linear map

Ma(A) 3 b= (3£(@)"F Af(a,0) ((Sa)2b(S0) ) (3F(e)F € My(A)
s a complete contraction. In praticular,
|(S5(@)* Afa.0)®) (7))
so that, by Equation (2), for b=a—c,
|(5£(@) ™% (@) = £(e)) (37())
The estimate will often be used under the equivalent form
(/@) 3 Af (@, B)S () F] [(3F(a) AT (@ )(0)(SF(0)) ]

® < |eo e

< [Sa) 2 (@) (80)2

)

which we give here for convenience.
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Proof. For any C*-algebra A, < ;i Z} ) € Ms(A) is strictly positive iff u > 0, w >
0 and v*u~'v < w, or, equivalently, if u > 0,w > 0 and u > vw™lv* (see [21]).

Thus, ( 8 Zc) ) € H*(Ms,(A)) if and only if a,c € H(M,(A)) and b*(Sa)~1b <
4c. This last relation is equivalent to [(Sa)’%b(%c)*%] [(Sa)’%b(gc)’% < 4,

or ||(Sa)"2b(S¢)"2| < 2. Thus, as f maps the noncommutative upper half-plane
into itself, and for any by € M,,(A) there exists an e, = 2 > 0 such

l[(Sa) = Fbo(Se)~ 2 ]

that
< g Eio > € HY (M, (A)) for all € € [0,ep,),
and so
fla) eAf(@,c)(bo) ) ¢ g+ (agy, (A)) for all & € [0, 20,).
0 fle)
In particular, gH(sf(a))—%Af(a,c)(bO) (Sf(e) F| < 2fore < T e o
Fa) 2bp(Se)” 2
Letting ¢ — 2 from below, we obtain

I(3a) "2 bo(Se) 2 |
|(S7(@) " Af(a,)(bo) (3F(e))

As by € M, (A) has been chosen arbitrarily, we can replace it by (Sa)zb(Sc)? to
conclude that, as claimed

|(5£(@) " Af(a,0) ((Sa)Bb(3e)

=

) (SF(e)

< oll, be M,(A).
(]

Clearly, the same method can be used to obtain estimates involving A7 f for all
7 € N. However, for now their form seems to be too complicated when j > 2, and
of no significant use for the purposes of this paper.

The following lemma will be useful when applying the above proposition to the
proof of the main result (compare with the method used in [11, Remark 2.5]).

Lemma 3.2. Assume that f is a noncommutative self-map of the noncommutative
upper half-plane of A. Let vi,v9 > 0 in A. If
& T
wo-lim 7\#(0[ +iyv;)
yl0 Y
exist, then the set of limit points of Af(a + zv1,a + (v2)(w) as z,{ — 0 nontan-
gentially is bounded uniformly in norm as w varies in the unit ball of A.

:CjE.A, j€{1,2}

Proof. As shown in Proposition 3.1,

|Ss(a+200)7F Af(a+ zvra+ Cen)w) (S (0 +Cu))

< H(%zvl)féw(%gvg)fé

Dividing we obtain

{W]ZMM%M@MM) [%2@2)] < |Jorunr?|.
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Let ¢ > 0 be fixed, and denote f.(a) = f(a) + €a, ie. fo = f+ eld. Since Id is
completely positive, f. is still a noncommutative self-map of the noncommutative
upper half-plane of A, so that

(M + 5U1>_2 (Af(a+ zv1, a + Cua)(w) + ew) x

For simplicity, we denote A;(Sz,¢) = Stladzv) | oy, As(S¢,e) = Shladus) | gy,

Sz S¢
2
W(z,¢e) = Af(a+ zv1, 0 + Cua)(w) + ew, and K = Hv;%wv;% . The above is
equivalent to
AQ(gCa 5)_%W(Za ga E)*Al(gza E)_1W(Z, Ca E)AQ(QC, E)_% < K1.
As A;(-,e) > el, this implies

W(z,(,5)*141(%2,5)711/1/(2,@‘,5) S KA?(%Ca‘C;) S KHAQ(SCvE)”l

We re-write this as
(41929 FW(z,¢.0)) (A1(92,0) B W(=,¢,9)) || < K| A2(3¢, ).
Since in any C*-algebra, ||z*z|| = |Jzz*|| = ||z||* = ||=*||?, we have

|A41(82,0)BW (=, ¢ ) W2, G,2) A1 (32,) 8

< K[| A2(S¢,e)|l,
so that
AL(Sz,e) 2 W(z,(,e) Wz, ¢ e)A1(Sz,e) "% < K| Ax(SC,e)].
We repeat the same argument to obtain
W (z,¢ 0)[1? < K[| A1(Sz,)[|[[A2(SC, €) -
Let H be the Hilbert space on which A acts as a von Neumann algebra. By our hy-
(atineg (%ﬂa;iyv))% 5‘ ’

exists and equals (c¢, &),

2
hence it is finite for any £ € H. Thus, the family {qu‘ :y € (0, 1)}
is bounded for any £ € H. By the Banach-Steinhauss Theorem and th2€ positivity of
the operators W, it follows that {H WH cy € (0, 1)} is a bounded set.
Moreover, as it will be seen in the proof of Theorem 2.1, if z tends to zero nontan-
gentially and lim, o M is finite, then {M |z| < 1,z € F}

pothesis, limy o = limyo

Sz

stays bounded for any closed cone I' € C* U {0}. The bound for ¢; is |¢;| <
]w ‘ Thus, the set {||W(z,¢0)||: 2,¢ € T,]2],[¢| < 1} is

bounded for any closed cone I' C CT with vertex at zero. The lemma, follows. [J

limsup,_,o

We note that the bounds depend exclusively on ¢;,v;,5 = 1,2, w.
Let us use the results of Proposition 3.1 to give a short and elementary proof of
Theorem 2.1.
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Proof of Theorem 2.1. Assume equation (3) holds. By Proposition 3.1,

1) — A=) s , 2,2 €CT.
VSF(2)Sf(2) V3232
This is equivalent to
f&) = FE | | SFESFE) +
(9) ‘ pam < S25 , 2,2 €CTz#z
Consider a sequence {z/,},en C CT converging to a such that lim,, %Z,;) =c.

Clearly Sf(2,) — 0 as n — oo, and {Rf(2/,)}nen is a bounded sequence in R.
Moreover, if {zp}neny and {z),},en are two arbitrary sequences converging to «
along which Sf(z)/Sz stays bounded, then {R(f(z,) — f(2]))}nen converges to
zero. This implies that lim,, . f(z,) exists for any sequence {z,}nen such that
{Sf(2n)/S2n }nen is bounded and lim,,,~ 2, = a. We agree to call this limit f(«).
Taking limit along 2, in (9) we obtain

‘f (@)]" . S/)

zeCT.

<=,
Sz

z—«
Fix an M € [0,+00). Let Dpyy = {z € CT: |Rz — o] < MSz}. For any z € Dy,
this implies

Sf(=)

(Rf(2) = f(@)* = e=5—le—af = (3f(2))°
I f<z>)
= Sf( <c\sz —i—\sz—\yf( )>

A

(CM2+1 zf\yf( ) -
)

We conclude that Sf(z)/Sz < c(M2 +1) for all z € Dy and thus hm f(z) = f(a).

Moreover, for M = 0 (i.e. z of the form « + iy) we have ¢ > \Yf(oz + iy)/y, which
together with the definition of ¢ implies lim, o W = ¢, so that

(Rf (o +iy) = f(0)” _ ( _Sfla+iy)
y? - y

>—>0 asy | 0.

Hotin)=1(@) _ . Gince

These two facts imply, via direct computation, that lim, g o

f&) = f@f _ Sfk)

<c <A(M?+1), z€Dy,M>0,
z— SZ

it follows straightforwardly that
f(z) = f(@)

lim ————==¢
2——0 Z—
<
(see for example [15, Exercise 5, Chapter I}).

Considering the classical definition of the derivative, the above directly implies
that limy o f'(a+iy) = c. Relation (9) implies that | f/(z)| < ¢(M?+1) for z € Dy,
so, by the same [15, Exercise 5, Chapter I], lim f’(z) = c. This proves (1).

z——0
<
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To prove (2), simply observe that

ﬂa+ﬁﬁfm)2V%ﬂa+W)ﬂmf+(%ﬂa+WD2>(Sﬂa+wn2
iy y? - 2 ’

so that liminf,_., gé(zz) < oo. Part (2) follows now from part (1).
To prove part (3), we apply the classical mean value theorem to bound S f(« +

1y)/y. The result follows then from part (1). O

We feel it necessary to reiterate that no claim to novelty is made for this proof,
and we chose to write it down here for the sake of making the paper more self-
contained.

4. PROOF OF THE MAIN RESULT

In this section we prove Theorem 2.2. The proof makes use quite often of the
results, and sometimes of the proof, of Theorem 2.1. For the sake of simplicity, we
will isolate some elements of the proof in separate lemmas.

Proof of Theorem 2.2. For any n € N and any state ¢ on M, (A), z — o(f(a+2zv))
is a self-map of C* whenever « is selfadjoint and v > 0 in M,,(A). Thus, Theo-
rem 2.1 applies to it. In particular, if H is the Hilbert space on which the von
Neumann algebra A acts, the above holds for the vector state corresponding to
any § € ®j_;H of L%-norm equal to one. For n = 1, our hypothesis guaran-
7($f(a§jv)5’5> is finite. Ttem (1) of Theorem 2.1 guarantees
2

1
(W) ’ &|| exists and equals the above

tees that liminf,_q

that hmy‘w W(QZM = hmyw

liminf, hence it is finite for any £ € ‘H. As in the proof of Lemma 3.2 the Banach-

Steinhauss Theorem and the positivity of the operators Sfatiyv) guarantee that

{HW‘ cy € (0, 1)} is a bounded set. Moreover, the existence of the limits
(Sf(atiyv)€,8)
y

for all £ € H implies, via polarization, the existence of

i S (a+ iy)€ )
yl0 Y

We conclude the existence of a bounded operator 0 < ¢ = ¢(v) € A such that
(Sf(a+iyv)¢ )

limy 10

, &mneH.

lim = (c&, ), ,n € H.
lirn ” {e&m, &n
The bound for ¢ is |[c|| < limsup,_,, HW ’ On the other hand, as seen in

the proof of Theorem 2.1, S(f(a + iyv)&, &) < y(c&, &) for all y > 0. Since f takes
values in H1(A), applying this relation to y = 1 guaranteres that ¢ > 0.

We show next that the limit wo-limy o f(a + iyv) = f(«) exists in A (i.e. does
not depend on v) and is selfadjoint. Indeed, consider again any state ¢ on .4 and
define z — @(f(a + 2v)). We have seen that this is a self-map of C* to which
Theorem 2.1 applies. Thus, there exists a number k = k(p, @, v) € R such that
lim0 o(f(a+ zv)) = k. We recall the estimate from Proposition 3.1

<

P(f (0 +20)) = p(f(a + 2v))

z—z

_ 9(S8F(a+ 20)e(Sf (a + 2'v))

- REAN T4
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In this estimate we take 2z’ =4 and let z = 7y tend to zero. We obtain
|k(p, 0, 0) = o f(a +))[* < p()p(Sf (@ +iv)).

Obviously, |o(f(a+iv))| < ||f(a+iv)||, a constant value. Thus,
k(. a,v)| < [If(a+ )l + V]l f (e + iv)],

for any state ¢ on A. By applying as before this result to vector states and using
polarization, we find an operator f,(a) € A such that

(fo(a)€,m) = Eg(f(a +iv)é,nm), &neH.

Since ||z|| = sup{|p(z)|: ¢ state on A}, the estimate

1@l < 4 (I + i)l + VIS e+ i)

holds. Since for any state ¢, k(p, a,v) = limy o ¢o(f(a + iyv)) € R, it follows that
fo(a) = fu(@)*. The fact that f,(«) does not depend on v follows from Proposition
3.1 and Lemma 3.2: indeed,

1
2

(S 1@+ i) ™F (Fa+ ig0) = Fla+ig21)) (S (@ + iga1))

< H(?le)_% (iy1v — iy21) (921))_%

is equivalent to

’(3f(a+iylv)

- ) (Fa+ino) - S+ i) (

Sf(a +iy21))_5
Y2
'U_%

<

lyr1v — yo1]| .

We obtain as in the proof of Lemma 3.2

I|f (o +iy1v) — flo+ dya1)||
. Hsf(““‘““)
1 2 y1

As seen above, the two factors under the square root are bounded. Thus, we
conclude.

_1
v o2

(10) <

’HSf(aﬂyzl)H
Y2 '

Remark 4.1. This result is similar to results in [5, 14, 25]. We observe that this
essentially improves the convergence to norm convergence, without requiring norm
convergence in formula (5).

We discuss next the question of the derivatives.

Lemma 4.2. Let f be as in Theorem 2.2. Fiz a = a* € A, v1,v2 >0 in A, and
be A of norm ||b]|*1 < 01/2021)%/2. Then

1 ' ' ' b
1im—Hf(a+wU1 b )—f(ai;i?“l 2 )H:o.
yl0 y 0 Q +1yva - o + iy
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9 /2 1/2. . o+ 1yvy 1yb
Proof. Observe first that ||b]|*1 < 4v;’ “vov;’” implies 0 a -+ iyvs ) >0
for all y > 0. We use the same trick as in Lemma 3.2. For simplicity, denote

D= f o+ 1yvy iyb g afiyvl %
0 a + iyvo % a+iyvy )

Proposition 3.1 applied to a and ¢ equal to the two arguments of the function f in
the formula of ® above give
) ) i

N a 0 . v; b BN a 0 ) vy
o ((5 ) (s ) =or((5 o) (e
~ a 0 . vy b e

<osr((5 ) +u(s 0))
“5 Yoo w0 g

for all y > 0 (we have kept the y’s on the right hand side for transparency of the
method). As in the proof of Lemma 3.2, we “multiply out” the imaginary parts of
f on the left to obtain

29" < |91

1
b b\ 2 —ib
o~ (0% 0 . ’U} b ’U} 5 '0* 5
< Joor((6 &) (2 w))HH(% i) (27
-
v 3 lo a 0 . vy b
(2 d) ) e ((s @ )+u s )

The last factor on the right hand side is bounded by the hypothesis, formula (1),
Lemma 3.2 and the above arguments. The first factor needs not apriori be zero, but
it is clearly bounded. However, if this factor is nonzero, consider H to be the Hilbert
space on which A acts as a von Neumann algebra. Then there exists a vector £ € H?

b
of norm one such that lim, o ype (Sf (( (g g ) + iy ( Z*l 1)2 ))) exists and
T2

S
S vl

2

IN

NI

belongs to (0, +00), so that necessarily

b
~ (6% 0 . V1 5
(5 0 )l L))o v

(Recall that we have denoted by ¢ the vector state corresponding to &: ¢¢(a) =

(a&,€).) But then 2||ID| = ||© —D*|| < 2||D|| is unbounded as y tends to zero, so
that

19D < [9]%1

1
b b\ "2 —ib
o a 0 . v g v o3 0 =
< Joor((6 &) (2 Q)HH(% 5) (27
1(\ a 0 . (%1 b
For((5 2)+u(5 2
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making the right hand side unbounded, a contradiction. Thus,

b
o a 0 . U1 g _
(5 a) (2 5))]=e

lim
y—0

and thus, by above,

lim
y—0

(5 2) (2 D))=

However, more can be concluded from (11): dividing by 32, one obtains

H3©||2: lgf o+ iy iyb —lgf OzJ_rz'yvl %
y2 Yy 0 Oé+iy’l)2 % a+iyv2

1
2

Y
or((5 ) (2 DI 2) (2 7
- + 14 i 2 by 2 ib* 2
Rl (CROCIE s % 0
b o\ =12
U1 b lc\ a 0 . (%1} b
X(% UQ) Hy\yf((() a )T 0 v '
We know from our hypothesis and Lemma 3.2 that the set of real positive numbers
1o o +1yvy 1yb ) .
{ y\yf << 0 o + iy )) cy € (0, 1)} is bounded. If we assume that

. iyb
the set { (|23 @+ iyu 2, :y € (0,1) ¢ is unbounded and choose
Y iyb” a—+1

2 Yua

a sequence {y, }nen converging to zero so that the strictly positive real number

1 o+ Z.ynvl Zynb
_ Cx
Yn Sf (( 0 a + 1Ynv2

f:= lim exists, and
n—oo

1 . WYnb
—gf (( e >) H — +o0,
Yn 5 Q + 1Yp U2

then
. iynb
Lo (W)l
Yn 5 Q + 1Ypv2
1 a 0 . v 2
Hallfe? 13
Lo (5 2) (2 1))
2N 1
(2 2) |l
5 2 Yn

i%f(( o+ 1ypvy iy.nb ))
Yn 0 Q + 1Ynv2

1 .
b ib*
2 2 2 0

IN

1
2

o Q
Q o
N———
+
~=.
N
3
N
o=
S o
~
N———
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L% o+ “Jnvl Zynb
Yn a +iypv2

Lgf o+ zynvl in—nb
Yn zyn a+ 1Ypv2

becomes

. 1
af ([ @tiwao ’
Wb atiyav

1
2

1
b\ ~2 —ib
v = 0o =2
i)y (8 )
2 2 2
o a 0 . v, b
frsr((5 0 )+ (5 0))

by letting n — oo, we obtain

o —-0<Y¢

an obvious contradiction. O

. . . A 1 o+ iyvy iyb i
The previous lemma implies more: since H y\rf ( 0 o+ iyvs )) 15

bounded as y € (0, 1), it follows immediately from the lemma that

1 . Ynb
lim inf — (p(\yf(( a—i’—ylgfvl 2 ))) < 00,
10 "T o+ 1YpUs

for all states ¢ on Ms(A), and so, as proved above,
1Ynb
lim — Jf<< O‘fyly”“ 2 >) = C >0 in My(A).
yl0 Y = Q + 1Y U2
In particular,
C = lim- \yf(( aJrzyvl Zy.b ))
vi0 Y o+ iyvy
i Sfletiy) (”‘j"y“) LA f(a+ iyvr, o + iyva) (b)
- 1un x ; .
vi0 \ TAf(a+ iyvr, o + iyva)(b)* W

We conclude that hﬁ} Af(a + iyvr, a + iyvs)(b) exists and is uniformly bounded
y

as b € A stays in a bounded subset of A. Clearly the limit depends linearly on
b, since each of Af(a + iyvi, @ + iyva)(b) does. In particular, if v; = ve = v,
Af(a+iyv,a+iyv)(b) = f'(a +iyv)(b) has a limit as y — 0, as claimed in part
(1) of Theorem 2.2. Let now in addition b = v/4. For any state ¢ on A and v > 0,
2z @(f(a+2v)) is a self-map of C* which satisfies the conditions of Theorem 2.1

& ;
at z = 0. Thus, lim o(f'(a + iyv)(v)) = lim M
Y40 y40 y

, so that indeed

, R
lim f'(a 4+ 2yv)(v) = lim
lim f(a +iyv)(v) = lim ;
It is essential to observe that Lemma 4.2 (and hence its conclusion above) applies
equally well to elements v;,b € M, (A) for all n € N (the proof is independent of
dimension). This concludes the proof of part (1).
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We prove next part (1°) of Theorem 2.2. We show first that Let v, w > 0 be fixed.
Recall that we have shown in the proof of part (1) that ltlﬁ)l (o +ity1v + ityaw)

exists pointwise. Our hypothesis that

lim (p(f (e + iyrv + iyaw) (v), o(f' (@ + iyrv + iyaw) (w)))
Y1.y2—>
Y1,Y2€Fm

exists and is finite for any state ¢ on A implies that f/(a + iy1v + iyaw)(v), f/ (o +
1y1v +iyaw)(w) have a weak limit as (y1,y2) | (0,0) in Fys. Note that the function
(2,0) = o(f(a + 2v + Cw)) extends, with values in CT, to the strictly larger cone
{(2,¢) € C%: S(zv+Cw) > 0}. In particular, {(z,0): z € C*}uU{(0,¢): (€ CT} C
{(2,¢) € C%: (zv + (w) > 0}. The following lemma is well-known. We provide
here a proof (following [15, Exercise 5, Chapter I]) for the convenience of the reader.

Lemma 4.3. Assume that I' C C? is open, connected, contains (iR.) x (iR.) and
for any r;s > 0,(z1,22) € ', we have (sz1,722) € T'. Let g: T — C be analytic.
Consider a second cone (iR} ) x ({Ry) C IV C T satisfying the same conditions as
' and such that g(T"ND?) C C is a bounded set. Assume that there is a ¢ € C such
that

lim g(iys, iyz) = c.

Y1,Yy2—>

Then for any convex cone I such that T" C IT”, we have
lim g(z1,22) =c.

;111;22&‘3/
Proof. The function g|p/p2 is bounded. For any r,s > 0, define g(, 5: I' = C by
9irs)(2,C) = g(rz,5C). Clearly g(, ) is well-defined and analytic, by I'’s definition.
Moreover, {g(r,s)|r'np? fo<rs<1 is clearly bounded by hypothesis, so it forms a nor-
mal family. For any sequence (7, s,) — (0,0) along which g, ) converges in the
topology of uniform convergence on compacts, the limit, call it gg, is bounded on
"' ND? and satisfies go(iRy x iRy ND?) = {c}. Since iRy x iRy ND? is a set of
uniqueness for holomorphic functions! on I' N D2, it follows that gg = c. Thus, any
limit point of {g(, s)|r'Ap2 Jo<r,s<1 at (0,0) is the constant function c¢. Now, assume
that there is a cone I'’ as in the hypothesis along which the limit of g at zero in not c.

That means that there is a sequence (27(11), 27(12)) € I'” converging to zero and €9 > 0

so that |g(z,(zl),z7(12)) —c| > go. Take ry, s, > 0 such that |z,(11)/rn| = |z,(12)/sn| =1/2
(note that r,, s, — 0). Then {(z,%l)/rn, 2:7(12)/571): n € N} has a compact closure in
I c I and yet g, s,) does not converge uniformly to c on this set, a contradic-
tion. [l

The set {(z,¢) € C%: S(zv+Cw) > 0} satisfies all the hypotheses imposed by the
above lemma on T, and ¢(f'(a+ zv+Cw)(v)) is bounded along any path t(zv+ (w)

1For a domain D C C2, we call B C D a set of uniqueness if for any analytic functions h, k on D
such that h|p = k|, it follows that h = k on D. It is easy to see that any open subset of RxR in an
open simply connected domain D C C? is a set of uniqueness. Indeed, by translation and rescaling,
we may assume that D D D? and B = (—1,1) x (-1, 1). For any fixed 1 € (-1, 1), consider the
one-variable analytic functions za — h(z1,22), k(z1,22). Since they agree on (—1,1), they must
agree on {z2: (z1,22) € D}. Thus h and k agree on {(z1,22) € D: z1 € (—1,1) or 22 € (—1,1)}.
But now if h(29,29) # k(2?,23) for some (29, 2)) € D?, then we fix 20 and let z2 vary in D to
conclude that the one-variable functions zo +— h(29, 22), k(2), z2) coincide on (—1,1) but not on
D, an obvious contradiction.
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with z and ¢ such that S(zv + (w)~! stays uniformly bounded. Thus, the above
lemma applies to show that lim, o ¢(f' (o + iyw)(v)) = limy 0 (f' (e + iyv)(v)) to
show that the limit of f'(a + iyv) as y | 0 does not depend on v and is positive.
Applying this same result to M,,(A) and recalling the properties of noncommutative
functions guarantee complete positivity for f'(a). To conclude the proof of (1),
simply observe that ||Af(a+ iyvi, a+ iyvs)(b) — f'(a+iyv1)(b)| converges to zero

asy | 0.
The proof of (2) is much simpler. Indeed, the existence of the limit lim, o f'(a+

iyv) implies the existence of the limit lim, o @(f' (o + iyv)(v)) for all states ¢ on
A. An application of Theorem 2.1 and of parts (1) and (1’) of Theorem 2.2 allows
us to conclude. O

During the inception and elaboration of this paper I had the privilege to discuss
various aspects related to it with Hari Bercovici, Victor Vinnikov and Gilles Pisier.
I thank them very much both for valuable advices and encouragements. Clearly,
any mistakes are entirely mine.
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