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Abstract

Inferring probabilistic networks from data is a notorigudlfficult task. Under various goodness-of-fit mea-
sures, finding an optimal network is NP-hard, even if restddo polytrees of bounded in-degree. Polynomial-
time algorithms are known only for rare special cases, pErlmaost notably for branchings, that is, polytrees
in which the in-degree of every node is at most one. Here, weaysthe complexity of finding an optimal
polytree that can be turned into a branching by deleting soumber of arcs or nodes, treated as a parame-
ter. We show that the problem can be solved via a matroidsettion formulation in polynomial time if the
number of deleted arcs is bounded by a constant. The orddregbdlynomial time bound depends on this
constant, hence the algorithm does not establish fixedwstea tractability when parameterized by the number
of deleted arcs. We show that a restricted version of thelpnolallows fixed-parameter tractability and hence
scales well with the parameter. We contrast this positisalt®dy showing that if we parameterize by the number
of deleted nodes, a somewhat more powerful parameter, thdegon is not fixed-parameter tractable, subject to
a complexity-theoretic assumption.

1 Introduction

There has been extensive research on learning probabiistivorks from data by maximizing some suitable
scoring function. Edmonds (1967) gave an efficient algaritbr the class obranchingsthat is, directed forests
with in-degree at most one; the algorithm was discoveredpeddently by Chu and Liu (1965), and it has been
later simplified and expedited by others Bock (1971); CanmigFratta, and Maffioli (1979); Fulkerson (1974);
Gabow et al. (1986); Gabow, Galil, and Spencer (1989); Kagy{); Tarjan (1977). Chickering (1996) showed
that for general directed acyclic graphs, DAGs, the probiemP-hard even if the in-degree is at most two.
Motivated by this gap, Dasgupta (1999) asked for a netwosksckhat is more general than branchings yet
admitting provably good structure-learning algorithmis; findings concerningolytrees that is, DAGs without
undirected cycles, were however rather negative, shovhiagthe optimization problem is NP-hard even if the
in-degree is at most two.

Given the recent advances in exact exponential algoritimggeneral (see, e.g., the book by Fomin and
Kratsch (2010)), and in finding optimal DAGs in particuldrisi natural to ask, whether “fast” exponential-time
algorithms exist for finding optimal polytrees. For gendalGs the fastest known algorithms run in time within
a polynomial factor o™, wheren is the number of nodes Koivisto and Sood (2004); Ott and Miyg003);
Parviainen and Koivisto (2009); Silander and Myllymak0(®). However, it is not clear, whether even these
bounds can be achieved for polytrees; a brute-force algontould visit each polytree one by one, whose num-
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ber scales as the number of directed labelled tréeg27~! Cayley (1889). Do significantly faster algorithms
exist? Does the problem become easier if only a small nuntherdes are allowed an in-degree larger than one?
In this work, we take a first step towards answering thesetmumssby considering polytrees that differ from
branchings by only a few arcs. More precisely, we study tlodlem of finding an optimat-branching defined
as a polytree that can be turned into a branching by delétiags. We make the standard assumption that the
scoring function decomposes into a sum of local scores;lse@éxt section for precise definitions. We note
thatk-branchings generalize branchings in a different directin the Tree-augmented Naive Bayes classifier
(TAN) due to Friedman, Geiger, and Goldszmidt (1997). Nasriela TAN the in-degree of each node is at most
two, and there is a designated class node of in-degree znoving of which leaves a spanning tree; the tree is
undirected in the sense that the symmetric conditional elutdormation is employed to score arcs.

Polynomial-time result for k-branchings Our main result is an algorithm that finds an optimabranching

in polynomial time for every constait (See the next section for a formal definition of the prob)edur over-

all approach is straightforward: we search exhaustivebr @il possible sets of at mokt“extra arcs”, fix the
guessed arcs, and solve the induced optimization problebrémchings. Implementing this seemingly innocent
algorithm, however, requires successful treatment ohagedomplications that arise when applying the existing
matroid machinery for finding optimal branchings. In partar, one needs to control the interaction of the extra
arcs with the solution from the induced subproblem.

Fixed-parameter tractability Our algorithm for thek-branching is polynomial for fixe&, but the degree of
the polynomial depends ok, hence the algorithm does not scale wellkinWe therefore investigate variants
of the k-branching problem that adnfixed-parameter tractabilityn the sense of Downey and Fellows (1999):
the running time bound is given by a polynomial whose degserdependent of the parameter, the parameter
contributing a constant factor to the bound.

In particular, we show that thie-branching problem is fixed-parameter tractable if the $arcs incident to
nodes with more than one parent form a connected polytréeaxictly one sink, and each node has a bounded
number of potential parent sets. This result is interesi;igve show that the-branching problem remains NP-
hard under these restrictions.

We complement the fixed-parameter tractability result lpmshg that more general variants of théranching
problem are not fixed-parameter tractable, subject to cexityltheoretic assumptions. In particular, we show
that thek-branching problem is not fixed-parameter tractable wheamaterized by thaumber of nodeshose
deletion produces a branching.

2 The k-branching problem

A probabilistic network is a multivariate probability ditution that obeys a structural representation in terms
of a directed graph and a corresponding collection of ur@tarconditional probability distributions. For our
purposes, it is crucial to treat the directed graph explicithereas the conditional probabilities will enter our
formalism only implicitly. Such a graph is formalized as argav, A), whereN is thenode seandA C N x N

is thearc set we identify the graph with the arc sdtwhen there is no ambiguity about the node set. A node
said to be garentof v in the graph if the ar¢u, v) is in A; we denote by, the set of parents af. When our
interest is in the undirected structure of the graph, we nesote byA theskeletorof A, that is, the set oédges
{{u,v} : (u,v) € A}. Forinstance, we calll a polytreeif A is acyclic, and @ranchingif additionally each
node has at most one parent.

When learning a probabilistic network from data it is cuséoynto introduce a scoring function that assigns
each graph a real-valued scorg(A) that measures how well fits the data. While there are plenty of alterna-
tive scoring functions, derived under different statiatiparadigms and assumptions Lam and Bacchus (1994);
Chickering (1995); Heckerman, Geiger, and Chickering B)9®asgupta (1999), the most popular ones share
one important property: they adecomposablghat is,
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Figure 1: An optimal polytree for a given scoring function.

with some “local” scoring functiong,. The generic computational problem is to maximize the sgpfiinction
over some appropriate class of graphs given the local sgéuinctions as input. Note that the scgig A, ) need
not be a sum of any individual arc weights, and that the pasentl, may be empty. Figure 1 shows a table
representing a local scoring functightogether with an optimal polytree.

We study this problem by restricting ourselves to a grapbsclhat is a subclass of polytrees but a superclass
of branchings. We call a polytre¢ a k-branchingif there exists a set of at moktarcsD C A such thatind\ D
every node has at most one parent. Note that any branchingisanching. The-branching problenis to find
ak-branchingA that maximizesf(A), given the valueg, (A,) for each node and some collection of possible
parentsetsi, C N \ {v}.

3 An algorithm for the £-branching problem

Throughout this section we consider a fixed instance oktheanching problem, that is, a node $8éand scoring
functionsf, for eachv € N. Thus all arcs will refer to elements &f x N. We will use the following additional
notation. IfA is an arc set, thefl (A) denotes théieadsof the arcs in4, that is, the sef v : (u,v) € A} If C
is a set of edges, theli(C) denotes the induced node det, v : {u,v} € C'}.

We present an algorithm that finds an optimkdbranching by implementing the following approach. First,
we guess an arc sé of size at mosk. Then we search for an optimal polytrdethat containsD such that in
A\ D every node has at most one parent; in other waBds; A \ D is an optimal branching with respect to an
induced scoring function. Clearly, the getmust be acyclic. The challenge is in devising an algorithat fimds
an optimal branching3 that is disjoint fromD while guaranteeing that the arcsinwill not create undirected
cycles in the uniorB U D. To this end, we will employ an appropriate weighted matmtdrsection formulation
that extends the standard formulation for branchings.

We will need some basic facts about matroidsnaAtroidis a pair(E,Z), whereF is a set oklementscalled
theground setandZ is a collection of subsets @&, called thendependent setsuch that

(M1) 0 € Z;
(M2)if AC BandB € ZthenA € Z; and
(M3)if A, B € T and|A| < |B| then there exists anc B\ A such thatd U {e} € 7.

Therank of a matroid is the cardinality of its maximal independenssAny subset ofs that is not indepen-
dent is calleddependentAny minimal dependent set is calledtiacuit.

The power of matroid formulations is much due to the avdlitgtof efficient algorithms Brezovec, Cornugjols,
and Glover (1986); Edmonds (1970, 1979); Frank (1981); hd domizawa (1976); Lawler (1976) for the
weighted matroid intersection problentefined as follows. Given two matroid¢; = (F,Z;) andM» = (E, ),
and a weight functiom: £ — R, find anI C F that is independent in both matroids and maximizes the total
weight of I, thatis,w(l) = > _.; w(e). The complexity of the fastest algorithm we are aware ofttiergeneral
problem) is summarized as follows.



Theorem 1 (Brezovec, Cornugjols, and Glover, 1986he weighted matroid intersection problem can be solved
in O(mr(r 4+ ¢ + logm)) time, wheren = |E|, r is the minimum of the ranks @f; and M,, andc is the time
needed for finding the circuit dfU {e} in both M/; and M, wheree € F and[ is independent in both/; and
M.

We now proceed to the specification of two matroidis,(S) = (N x N,Z;(S)) andMy(N x N,Z»(S)),
parametrized by an arbitrary arc sesuch thatS is acyclic.

Thein-degree matroid\/; (S): LetZ; (S) consist of all arc set® such that no arc i3 has a head ii7 (S) and
every node outsid& (S) is the head of at most one arcih

Theacyclicity matroid)M,(S): Let Z,(.S) consist of all arc set® such thatB U S is acyclic.

We observe that the standard matroid intersection fornauatf branchings is obtained as the special case of
S = (: then an arc set is seen to be branching if and only if it is reehelent in both the in-degree matroid and
the acyclicity matroid.

The next two lemmas show thaf, (S) and M, (S) are indeed matroids whenewvgiis acyclic.

Lemma?2. M;(S) is a matroid.

Proof. Fix the arc sefS and denot&; (S) by Z; for short. Clearlyf) € Z; and if A C B andB € I, then also
A € TI,. ConsequentlyM; (S) satisfies (M1) and (M2). To see thaf; (S) satisfies (M3) letd, B € Z; with
|A| < |B|. Because of the definition df/, (.S) the setsd and B contain at most one arc with heagdfor every
v € N\ H(S). BecauséA| < |B| thereisanode € N \ H(S) such thaw is the head of an arc iB butwv is
not the head of an arc iA. Lete € B be the arc with head. Thene € B\ AandAU {e} € Z;. Hence M (S5)
satisfies (M3). O

Lemma 3. M(S) is a matroid.

Proof. Fix the arc setS and denoteZ»(S) by Z, for short. Because the skeletédhis acyclic and acylicity is a
hereditary property (a graph property is called heredifatys closed under taking induced subgraphs) it follows
that() € Z, and if A C B andB € 7, then alsoA € Z,. Consequently)/,(S) satisfies (M1) and (M2). To see
that M>(S) satisfies (M3) let4, B € Z, with |A| < |B|. Consider the setd’ = AU S andB’ = BU S. Let

C be a connected subset df. Because bottl’ and B” are acyclic, it follows that the number of edgesmsf
with both endpoints inV(C) is at most the number of edges 4f with both endpoints inV(C). Because every
edge inA’ \ S corresponds to an arc id and similarly every edge i’ \ S corresponds to an arc i and

|A| < |Bj, it follows that there is an are € B \ A whose endpoints are contained in two distinct components of
A’. Consequently, the set’ U {e} is acyclic and hencd U {e} € Z,. O

We now relate the common independent sets of these two matwk-branchings. IfA is ak-branching, we
call an arc seD adeletion sebf A if D is a subset o, contains at most arcs, and ird \ D every node has at
most one parent.

Lemma4. Let A be an arc set and a subset of1 of size at most such that no two arcs from’ = { (u,v) €
A\ D : v € H(D)} have the same head and such tia acyclic, whereS = D U D’. We have thatl is a
k-branching with deletion s&b if and only if A \ S is independent in both/; (S) and M>(S).

Proof. (=) : Supposed is a k-branching with deletion seb. ThenA \ D is a branching, which shows that
every nodey outsideH (S) has in-degree at most oneh\ S. Since by definition all arcs with a head Fi(.S)
are contained ir, no arc inA \ S has a head it (S). Therefore, A \ S is independent i/ (S). Since every
k-branching is a polytre€ A \ S) U S = A is acyclic, and thereford \ S is independent id/5(S).

(<) : SinceA \ S is independent i/ (S), we have thatA \ S) U S = A is acyclic. ThusA is a polytree.
As A\ S is independent i/, (5), every node outsidé (S) has in-degree at most oneih\ S and every node
from H(S) has in-degree zero id \ S. Since the head of every arc frobf is in H(.S) and no two arcs frond’
have a common headlA \ S) U D’ = A\ D has maximum in-degree at most one. Becgil§e< k, we have
that A is ak-branching with deletion sdb. O
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Figure 2: Left: the two guessed arc sétgdotted) andD’ (dashed). Right: the arc sdt(solid) that is a heaviest
common independent set of the two matralds(S) andMz(.S).

The characterization of Lemma 4 enables the following aflgor for the k-branching problem. Define the
weight function by lettingw(u,v) = f,({u}) — f.(0) for all arcs(u,v). Guess the arc se®® and D’, put
S = D U D', check thatS is acyclic, find a maximum-weight sét that is independent in both/, (S) and
M, (S); output ak-branchingd = B U S that yields the maximum weight over all guesgeand D’, where the
weight of B U S is obtained as

veH(S)

It is easy to verify that maximizing this weight is equivalém maximizing the scorg(A). Figure 2 illustrates
the algorithm for the scoring function of Figure 1.

It remains to analyze the complexity of the algorithm. Denby n the number of nodes. For a moment,
consider the arc séf fixed. To apply Theorem 1, we bound the associated key qiemtihe size of the ground
set isO(n?); the rank of both matroids is clearty(n); circuit detection can be performed {(n) time, by a
depth-first search fak/; (S) and by finding a node that has higher in-degree than it is altbtw have inV/,(S).
Thus, by Theorem 1, a maximum-weight set that is indeperidemth matroids can be found ifi(n*) time.
Then consider the number of possible choices for th&'setD U D’. There arg)(n2*) possibilities for choosing
a setD of at mostk arcs such thab is acyclic. For a fixedD, there areD(n*) possibilities for choosing a subset
D’ C N x H(D) such thatD U D’ is acyclic and no two arcs fro®’ have the same head. Thus there@fe>*)
relevant choices for the sét

We have shown the following.

Theorem 5. Thek-branching problem can be solved@(n3**4) time.

4 Fixed-parameter tractability

Theorem 5 shows that thebranching problem can be solved in “non-uniform polyndrtirae” as the order of
the polynomial time bound depends bnin this section we study the question of whether one caik getit of
the exponent” and obtain a uniform polynomial-time algarit

The framework ofParameterized Complexiyowney and Fellows (1999) offers the suitable tools and meth
ods for such an investigation, as it allows us to distinglbistween uniform and non-uniform polynomial-time
tractability with respect to a parameter. An instance of epeeterized problem is a p&if, k) where! is the
main partandk is theparameter the latter is usually a non-negative integer. A paramegerproblem idixed-
parameter tractabléf there exist a computable functighand a constantsuch that instanced, k) of sizen can
be solvedin time)(f(k)n°). FPT is the class of all fixed-parameter tractable decisioblpms. Fixed-parameter
tractable problems are also callediform polynomial-time tractableecause i is considered constant, then in-
stances with parametércan be solved in polynomial time where the order of the pafyiabis independent of
k (in contrast to non-uniform polynomial-time running timssch as:*).

Parameterized complexity offers a completeness theorjasito the theory of NP-completeness. One uses
parameterized reductionshich are many-one reductions where the parameter for ooldgm maps into the



parameter for the other. More specifically, problemeduces to problery if there is a mappindz from instances
of L to instances of’ such that (i) I, k) is a yes-instance df if and only if (I’, k') = R(I, k) is a yes-instance
of L', (ii) ¥ < g(k) for a computable functiog, and (iii) R can be computed in timé&(f(k)n°) where f

is a computable functiory, is a constant, and denotes the size dff, k). The parameterized complexity class
WI[1]is considered as the parameterized analog to NP. Fonpbea the parameterized Maximum Clique problem
(given a graphG and a parametédr > 0, doesG contain a complete subgraph brvertices?) is W[1]-complete
under parameterized reductions. Note that there exisigial tnon-uniform polynomial-time:* algorithm for
the Maximum Clique problems that checks all set& ofertices. FPT£ W[1] is a widely accepted complexity
theoretic assumption Downey and Fellows (1999). For exanfT= W/[1] implies the (unlikely) existence
of a2°(") algorithm forn-variable 3SAT Impagliazzo, Paturi, and Zane (2001); Flurd &rohe (2006). A first
parameterized analysis of probabilistic network struetearning using structural parameters such as treewidth
has recently been carried out by Ordyniak and Szeider (2010)

The algorithm from Theorem 5 considedgn>*) relevant choices for the sét= D U D’, and for each fixed
choice ofS the running time is polynomial. Thus, for restrictions oé throblem for which the enumeration of
all relevant sets is fixed parameter tractable, one obtains an FPT algorithme. $ich restriction requires that
S = DUD'isanin-tree, i.e., a directed tree where every arc is dicktwards a designated root, and each node
has a bounded number of potential parent sets.

Theorem 6. Thek-branching problem is fixed-parameter tractable if we reguhat (i) the setS = D U D’ of
arcs is an in-tree and (ii) each node has a bounded number tefpial parent sets.

Proof. To compute &-branchingA4, the algorithm guesses its deletion seand the seD’ = {(u,v) € A\ D :

v € H(D)}. As Ais ak-branching)D| < k and for everyw € H (D) there is at most one arc iR’ with head
v. The algorithm first guesses the radior the in-treeS. Then it goes over all possible choices ferand D’ as
follows, until D has at least arcs.

Guess a leaf of S (initially,  is the unique leaf of), and guess a non-empty parent sefor 7 in A. If
|D| + |P| + 1 > k, then backtrack. Otherwise, choose at most onéarg to add toD’, wherep € P, and add
all other arcs from a node from to ¢ to D (if |P| = 1, no arc is added t®’). Now, check whether the current
choice forS = D U D’ leads to a&-branching by checking whethéris acyclic and using the matroidd; (.S)
andM,(S) as in Theorem 5.

There are at most choices forr. The in-treeS is expanded in at mogt steps, as each step adds at least
one arc toD. In each step/ is chosen among at mokt+ 1 leaves, there is a constant number of choices for its
parent sef” and at mosk + 2 choices for adding (or not) an afg, ¢), withp € P,to D’ (as|P| < k+ 1). The
acyclicity check forS and the weighted matroid intersection can be computed ie @n*), leading to a total
running time ofO(k2*cFn®), wherec is such that every node has at mogiotential parent sets. O

Condition (i) in Theorem 6 may be replaced by other condgimmuiring the connectivity ob or a small
distance between arcs frof, giving other fixed-parameter tractable restrictions efikbranching problem.

The following theorem shows that an exponential dependen&yor some other parameter is necessary since
the k-branching problem remains NP-hard under the restrictiiven above.

Theorem 7. Thek-branching problem is NP-hard even if we require that (i) #e.S = D U D’ of arcs is an
in-tree and (i) each node has at mdspotential parent sets.

Proof. We devise a polynomial reduction froBaSAT-2 a version of 3-SATISFIABILITY where every literal
occurs at most in two clauses.SAT-2 is well known to be NP-hard Garey and Johnson (1979). Ouratéziu
uses the same ideas as the proof of Theorem 6 in Dasgupta) (1L89® be an instance df-SAT-2 with clauses
Ci,...,Cy,, and variables,. .. , x,. We define the selV of nodes as follows. For every variahig in ® the
setN contains the nodes, z;, z}, v, 7} andz?. Furthermore, for every claugg; the setN contains the nodes
Pnyj aNdCj. Letl <4< n,1 <j <m,andl <1 < 2. We setf(Cj,azﬁ) = 1 if the clauseC; is thel-th
clause that contains the litera). Similarly, we setf(C;,7%) = 1 if the clauseC; is thel-th clause that contains
the literalw;. We setf (z;, {z},22}) = f(z:, {z},72}) = 1, f(p1,{z1}) = f(psi, {zi,pi1}) = 1 for every
1 <i<mn,andf(pn+j,{Cj,pn+j—1}) = 1 foreveryl < j < m. Furthermore, we set(v, P) = 0 for all the
remaining combinations af € N andP C N. This completes the construction &fand f. Observe that every
node of N has at mos8 potential parent sets. This completes our constructionwiNdave shown the theorem
after showing the following claim.
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Figure 3: An optimaln + m-branchingD for the formula® = C; A Cy A C5 with C; = z1 V z2 V T3,
Co =71 Vag Vxs, andCs = x1 V Ty V Tg according to the construction given in the proof of Theorem 7

Claim: @ is satisfiable if and only if there is 2n + m-branchingD such thatf (D) > 2(m + n), the set
S = DU D' of arcs is an in-tree, and each nodeSfhas at mos8 potential parent sets.

(=) : Suppose that the formufh is satisfiable and let be a satisfying assignment fé@. Furthermore, for
everyl < j < mletl; be a literal ofC; that is set to true bﬂ We construct &n + m-branchingD as follows.
For everyl < j < m the digraphD contains an ar¢z!, C;) if I; = x; andC} is thel-th clause that contains
z; and an arc(:c ;) if I; = T, andC} is thel-th clause that contawm for somel <i<mnandl <[ <2
Furthermore, for every g 1 < nthe dlgraphD contains the arcér}, z;) and(2?, z;) if 3(x;) = false and the
arcs(z}, x;) and(z?, x;) if B(z;) = true. Last but not leadd contains the arc&e;, p; ), (Cj, pn+;) and(py, pi+1)
foreveryl <i <n,1 < j <m,andl <[ < m + n. Figure 3 shows an optimah + m-branchingD for
some3-SAT-2 formula. It is easy to see th@ is a2n + m-branching such that(D) = 2(m + n) and the set
S = DU D ofarcsis an in-tree.

(<) : Suppose there is Zn + m-branchingD such thatf(D) > 2(m + n). Becausef (D) > 2(m + n)
it follows that every node ofV achieves its maximum score il. Hence,D has to contain the ards:;, p;),
(Cj,Pn+j)s (Pi,pi41), foreveryl < i <mn,1<j <m,andl <! < m+ n. For the same reasoii$ has to
contain either the ardse}, z;) and(z2, ;) or the arcy7; , z;) and (7%, z;) for every1 < i < n. Furthermore,
for everyl < j < m the2n + m-branchingD has to contain one arc of the forfal, C;) or (z%, C;) where
C; is thel-th clause that contains; or 7;, respectively, for somé < i < nandl <[ < 2. Letl <i < mn,

1 < j < m, andl <[ < 2. We first show that whenevé? contains an ar¢z!, z;) then D contains no arc of the
form (z!, C;) and similarly if D contains an ar¢z., z;) then D contains no arc of the forr(e;, C;). Suppose
fora contradlctlon thab contains an ar¢z!, z;) together with an ar¢x!, C;) or an arq(z!, z;) togetherW|th an
arc(z!, C;). In the first caseéD contains the undirected cydle!, z;, p;, . .. ,pn+j, Cj, zt) and in the second case
D contains the cycléz!, =, pi, ... ,pns;, C;, Tt) contradicting our assumption thakis a2n + m-branching.

It now follows that the assignmeptwith 3(z;) = true if D does not contain the ar¢s;, z;) and(2?, ;) and
B(x;) = false if D does not contain the ar¢s}, =;) and(z?, r;) is a satisfying assignment f@r. O

So far we have measured the difference of a polytree to bagshin terms of the number of arcs to be
deleted. Next we investigate the consequences of meaghgrdifference by the number of nodes to be deleted.
We call a polytreed a k-node branchingf there exists a set of at mostnodesX C A such thatd \ X is a
branching. The:-node branching problerns to find ak-node branchingl that maximizesf(A). Clearly every
k-branching is &-node branching, but the reverse does not hold. In othersydindk-node branching problem
generalizes th&-branching problem.

In the following we show that thé-node branching problem is hard for the parameterized cexitglclass
WI[1]; this provides strong evidence that the problem is na@diparameter tractable.
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Figure 4: An example grapfi (¢ = 3) together with an optimat’-node branchind with f(D) > s according
to the construction given in the proof of Theorem 8.

Theorem 8. Thek-node branching problem M/[1]-hard.

Proof. We devise a parameterized reduction from the following [gob called Partitioned Clique, which is
well-known to be W[1]-complete for parameteiPietrzak (2003). The Instance iscgpartite graphz = (V, E)
with partition V7, ..., V} such thafV;| = n for everyl < i < k. The question is whether there are nodes
v1,...,v, such thaty, € V;forl < ¢ < k and{v;,v;} € Eforl < i < j < k? (The graphk =
o1, ok, {{vi, v} 1 1 <i<j <k})isak-cliqueof G.)

Let G = (V, E) be an instance of this problem with partitiéa, ..., Vi, [Vi| = --- = |Vkx| = n, and
parametek. Letk’ = (’2“) +ka=1ands=FKa. LetA={a;;:1<i<j<k}and4d, ={apcA:l=1
ork = i} foreveryl < i < k. ThenN is defined asV = AU {cy,...,c,} U {v},...,vF : v € V' }. Let
Ve ={v!,...,v* : v € V; andv # w }. We define the score functighas follows. We sef (c;, A; UV¥) = «
foreveryl < i < kandw € V;, and f(a;j, {u/,w'}) = a foreveryl < i < j < k,u € V;, w € V;, and
{u,w} € E(G). Furthermore, we set(v, P) = 0 for all the remaining combinations ofand P. This completes
our construction. We will have the theorem after showingftlewing claim.

Claim: G has ak-clique if and only if there is &’-node branching such thatf (D) > s.

(=) : Suppose thati has ak-clique K. Then it is easy to see that the DAG on N defined by the arc set
{ (v, ai5), (W, a;;) v e V(K)NV;andl <i,j <k} U{(v% ai), (v',a;) v e V(K)NV;andl <i,j <
kYU {(aij,c)):1<i<j<k}U{(ayc):1<i<ji<k}u{(v,¢):ve Vi\ (Ueerx) ) andl <
i,j < k} is ak’-node branching and(D) = s. Figure 4 shows an optiméf-node branching> constructed
from an example grapfy.

(<) : Suppose there is/d-node branchind with f(D) > s. It follows that every node oD achieves its
maximum score. In particular, for evety< i < k the nodeg; must have score in D and hence there is a hode
w; € V; such that; is adjacent to all nodes ili;"* U A;. Furthermore, for every < ¢ < j < k the nodeu;;
is adjacent to exactly one node ¥ and to exactly one node ii;. Let v} be the unique node ii; adjacent to
a;; and similarly letv]” be the unique node ii; that is adjacent ta,; for everyl < i < j < k. Thenw; = v;
andw; = v; because otherwise the skeleton®fvould contain the cyclév;, a;;, c;) or the cycle(v;, a;;, ¢;).
Consequently, the edges represented by the parenigiof D forall 1 <i < j < k form ak-clique inG. O

5 Concluding remarks

We have studied a natural approach to extend the known ettfialgorithms for branchings to polytrees that
differ from branchings in only a few extra arcs. At first glanone might expect this to be achievable by simply
guessing the extra arcs and solving the remaining problerbremchings. However, we do not know whether
such a reduction is possible in the strict sense. Indeedagdédtake a slight detour and modify the two matroids
in a way that guarantees a control for the interactions chingéhe presence of high-in-degree nodes. As a result,
we got an algorithm that runs in time polynomial in the ingaesnamely, there can be more th(aﬁrﬁ) relevant
input values for each of the nodes; so, the runtime of our algorithm is less than cubibénsize of the input,



supposing the local scores are given explicitly. While #iiswers one question in the affirmative, it also raises
several further questions, some of which we give in the naragraphs.

Our complexity analysis relied on a result concerning theegal weighted matroid intersection problem.
Do significantly faster algorithms exist when restrictedotor two specific matroids? One might expect such
algorithms exist, since the related problem for branchoagsbe solved i) (n?) time by the algorithm of Tarjan
(1977).

Even if we could solve the matroid intersection problemegsbur algorithm would remain practical only
for very small values of. Can one find an optimal-branching significantly faster, especially if allowingegy
node to have at most two parents? As the current algorithmemakound:®* mutually overlapping guesses,
there might be a way to considerably reduce the time comyleRQpecifically, we ask whether the restricted
problem is fixed-parameter tractable with respect to tharpaterk, that is, solvable irO(f(k)p(n)) time for
some computable functighand polynomiap Downey and Fellows (1999). The fixed-parameter algorithramgi
in Section 4 can be seen as a first step towards an answer fgutssion. Can we find other restrictions under
which thek-branching problem becomes fixed-parameter tractable?

Can we use a similar approach for the more gerferadde branching problem, i.e., is there a polynomial time
algorithm for thek-node branching problem for every fixé@ Likewise, we do not know whether the problem
is easier or harder for polytrees than for general DAGs: Dalai techniques apply to finding maximum-score
DAGs that can be turned into branchings by deleting séragcs?
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