
HAL Id: hal-01216951
https://hal.science/hal-01216951v1

Submitted on 18 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On finding optimal polytrees
Serge Gaspers, Mikko Koivisto, Mathieu Liedloff, Ordyniak Sebastian, Stefan

Szeider

To cite this version:
Serge Gaspers, Mikko Koivisto, Mathieu Liedloff, Ordyniak Sebastian, Stefan Szeider. On finding
optimal polytrees. Theoretical Computer Science, 2015, 592, pp.49-58. �10.1016/j.tcs.2015.05.012�.
�hal-01216951�

https://hal.science/hal-01216951v1
https://hal.archives-ouvertes.fr

ar
X

iv
:1

20
8.

16
92

v2
 [

cs
.D

S
]

10
 A

ug
 2

01
2

On Finding Optimal Polytrees

Serge Gaspers
The University of New South Wales and

Vienna University of Technology
gaspers@kr.tuwien.ac.at

Mikko Koivisto
University of Helsinki

mikko.koivisto@cs.helsinki.fi

Mathieu Liedloff
Université d’Orléans

mathieu.liedloff@univ-orleans.fr

Sebastian Ordyniak
Vienna University of Technology

ordyniak@kr.tuwien.ac.at

Stefan Szeider
Vienna University of Technology

stefan@szeider.net

Abstract

Inferring probabilistic networks from data is a notoriously difficult task. Under various goodness-of-fit mea-
sures, finding an optimal network is NP-hard, even if restricted to polytrees of bounded in-degree. Polynomial-
time algorithms are known only for rare special cases, perhaps most notably for branchings, that is, polytrees
in which the in-degree of every node is at most one. Here, we study the complexity of finding an optimal
polytree that can be turned into a branching by deleting somenumber of arcs or nodes, treated as a parame-
ter. We show that the problem can be solved via a matroid intersection formulation in polynomial time if the
number of deleted arcs is bounded by a constant. The order of the polynomial time bound depends on this
constant, hence the algorithm does not establish fixed-parameter tractability when parameterized by the number
of deleted arcs. We show that a restricted version of the problem allows fixed-parameter tractability and hence
scales well with the parameter. We contrast this positive result by showing that if we parameterize by the number
of deleted nodes, a somewhat more powerful parameter, the problem is not fixed-parameter tractable, subject to
a complexity-theoretic assumption.

1 Introduction

There has been extensive research on learning probabilistic networks from data by maximizing some suitable
scoring function. Edmonds (1967) gave an efficient algorithm for the class ofbranchings, that is, directed forests
with in-degree at most one; the algorithm was discovered independently by Chu and Liu (1965), and it has been
later simplified and expedited by others Bock (1971); Camerini, Fratta, and Maffioli (1979); Fulkerson (1974);
Gabow et al. (1986); Gabow, Galil, and Spencer (1989); Karp (1971); Tarjan (1977). Chickering (1996) showed
that for general directed acyclic graphs, DAGs, the problemis NP-hard even if the in-degree is at most two.
Motivated by this gap, Dasgupta (1999) asked for a network class that is more general than branchings yet
admitting provably good structure-learning algorithms; his findings concerningpolytrees, that is, DAGs without
undirected cycles, were however rather negative, showing that the optimization problem is NP-hard even if the
in-degree is at most two.

Given the recent advances in exact exponential algorithms in general (see, e.g., the book by Fomin and
Kratsch (2010)), and in finding optimal DAGs in particular, it is natural to ask, whether “fast” exponential-time
algorithms exist for finding optimal polytrees. For generalDAGs the fastest known algorithms run in time within
a polynomial factor of2n, wheren is the number of nodes Koivisto and Sood (2004); Ott and Miyano (2003);
Parviainen and Koivisto (2009); Silander and Myllymäki (2006). However, it is not clear, whether even these
bounds can be achieved for polytrees; a brute-force algorithm would visit each polytree one by one, whose num-

1

http://arxiv.org/abs/1208.1692v2

ber scales as the number of directed labelled treesnn−22n−1 Cayley (1889). Do significantly faster algorithms
exist? Does the problem become easier if only a small number of nodes are allowed an in-degree larger than one?

In this work, we take a first step towards answering these questions by considering polytrees that differ from
branchings by only a few arcs. More precisely, we study the problem of finding an optimalk-branching, defined
as a polytree that can be turned into a branching by deletingk arcs. We make the standard assumption that the
scoring function decomposes into a sum of local scores; see the next section for precise definitions. We note
thatk-branchings generalize branchings in a different direction than the Tree-augmented Naive Bayes classifier
(TAN) due to Friedman, Geiger, and Goldszmidt (1997). Namely, in a TAN the in-degree of each node is at most
two, and there is a designated class node of in-degree zero, removing of which leaves a spanning tree; the tree is
undirected in the sense that the symmetric conditional mutual information is employed to score arcs.

Polynomial-time result for k-branchings Our main result is an algorithm that finds an optimalk-branching
in polynomial time for every constantk. (See the next section for a formal definition of the problem.) Our over-
all approach is straightforward: we search exhaustively over all possible sets of at mostk “extra arcs”, fix the
guessed arcs, and solve the induced optimization problem for branchings. Implementing this seemingly innocent
algorithm, however, requires successful treatment of certain complications that arise when applying the existing
matroid machinery for finding optimal branchings. In particular, one needs to control the interaction of the extra
arcs with the solution from the induced subproblem.

Fixed-parameter tractability Our algorithm for thek-branching is polynomial for fixedk, but the degree of
the polynomial depends onk, hence the algorithm does not scale well ink. We therefore investigate variants
of thek-branching problem that admitfixed-parameter tractabilityin the sense of Downey and Fellows (1999):
the running time bound is given by a polynomial whose degree is independent of the parameter, the parameter
contributing a constant factor to the bound.

In particular, we show that thek-branching problem is fixed-parameter tractable if the set of arcs incident to
nodes with more than one parent form a connected polytree with exactly one sink, and each node has a bounded
number of potential parent sets. This result is interestingas we show that thek-branching problem remains NP-
hard under these restrictions.

We complement the fixed-parameter tractability result by showing that more general variants of thek-branching
problem are not fixed-parameter tractable, subject to complexity theoretic assumptions. In particular, we show
that thek-branching problem is not fixed-parameter tractable when parameterized by thenumber of nodeswhose
deletion produces a branching.

2 The k-branching problem

A probabilistic network is a multivariate probability distribution that obeys a structural representation in terms
of a directed graph and a corresponding collection of univariate conditional probability distributions. For our
purposes, it is crucial to treat the directed graph explicitly, whereas the conditional probabilities will enter our
formalism only implicitly. Such a graph is formalized as a pair (N,A), whereN is thenode setandA ⊆ N ×N

is thearc set; we identify the graph with the arc setA when there is no ambiguity about the node set. A nodeu is
said to be aparentof v in the graph if the arc(u, v) is in A; we denote byAv the set of parents ofv. When our
interest is in the undirected structure of the graph, we may denote byA theskeletonof A, that is, the set ofedges
{ {u, v} : (u, v) ∈ A }. For instance, we callA a polytreeif A is acyclic, and abranchingif additionally each
node has at most one parent.

When learning a probabilistic network from data it is customary to introduce a scoring function that assigns
each graphA a real-valued scoref(A) that measures how wellA fits the data. While there are plenty of alterna-
tive scoring functions, derived under different statistical paradigms and assumptions Lam and Bacchus (1994);
Chickering (1995); Heckerman, Geiger, and Chickering (1995); Dasgupta (1999), the most popular ones share
one important property: they aredecomposable, that is,

f(A) =
∑

v∈N

fv(Av) ,

2

v P fv(P)
3 {1} 1.0
4 ∅ 0.1
4 {1} 0.2
5 {1} 0.5
5 {1, 2} 1.0
6 {3} 0.8
6 {3, 4} 1.0
7 {5} 0.9
7 {4, 5} 1.0

7→

1 2

3 4 5

6 7

Figure 1: An optimal polytree for a given scoring function.

with some “local” scoring functionsfv. The generic computational problem is to maximize the scoring function
over some appropriate class of graphs given the local scoring functions as input. Note that the scorefv(Av) need
not be a sum of any individual arc weights, and that the parentsetAv may be empty. Figure 1 shows a table
representing a local scoring functionf , together with an optimal polytree.

We study this problem by restricting ourselves to a graph class that is a subclass of polytrees but a superclass
of branchings. We call a polytreeA ak-branchingif there exists a set of at mostk arcsD ⊆ A such that inA \D
every node has at most one parent. Note that any branching is a0-branching. Thek-branching problemis to find
ak-branchingA that maximizesf(A), given the valuesfv(Av) for each nodev and some collection of possible
parent setsAv ⊆ N \ {v}.

3 An algorithm for the k-branching problem

Throughout this section we consider a fixed instance of thek-branching problem, that is, a node setN and scoring
functionsfv for eachv ∈ N . Thus all arcs will refer to elements ofN ×N . We will use the following additional
notation. IfA is an arc set, thenH(A) denotes theheadsof the arcs inA, that is, the set{ v : (u, v) ∈ A }. If C
is a set of edges, thenN(C) denotes the induced node set{ u, v : {u, v} ∈ C }.

We present an algorithm that finds an optimalk-branching by implementing the following approach. First,
we guess an arc setD of size at mostk. Then we search for an optimal polytreeA that containsD such that in
A \D every node has at most one parent; in other words,B = A \D is an optimal branching with respect to an
induced scoring function. Clearly, the setD must be acyclic. The challenge is in devising an algorithm that finds
an optimal branchingB that is disjoint fromD while guaranteeing that the arcs inD will not create undirected
cycles in the unionB ∪D. To this end, we will employ an appropriate weighted matroidintersection formulation
that extends the standard formulation for branchings.

We will need some basic facts about matroids. Amatroid is a pair(E, I), whereE is a set ofelements, called
theground set, andI is a collection of subsets ofE, called theindependent sets, such that

(M1) ∅ ∈ I;

(M2) if A ⊆ B andB ∈ I thenA ∈ I; and

(M3) if A,B ∈ I and|A| < |B| then there exists ane ∈ B \A such thatA ∪ {e} ∈ I.

Therankof a matroid is the cardinality of its maximal independent sets. Any subset ofE that is not indepen-
dent is calleddependent. Any minimal dependent set is called acircuit.

The power of matroid formulations is much due to the availability of efficient algorithms Brezovec, Cornuéjols,
and Glover (1986); Edmonds (1970, 1979); Frank (1981); Iri and Tomizawa (1976); Lawler (1976) for the
weighted matroid intersection problem, defined as follows. Given two matroidsM1 = (E, I1) andM2 = (E, I2),
and a weight functionw : E → R, find anI ⊆ E that is independent in both matroids and maximizes the total
weight ofI, that is,w(I) =

∑

e∈I w(e). The complexity of the fastest algorithm we are aware of (forthe general
problem) is summarized as follows.

3

Theorem 1 (Brezovec, Cornuéjols, and Glover, 1986). The weighted matroid intersection problem can be solved
in O(mr(r + c+ logm)) time, wherem = |E|, r is the minimum of the ranks ofM1 andM2, andc is the time
needed for finding the circuit ofI ∪ {e} in bothM1 andM2 wheree ∈ E andI is independent in bothM1 and
M2.

We now proceed to the specification of two matroids,M1(S) = (N × N, I1(S)) andM2(N × N, I2(S)),
parametrized by an arbitrary arc setS such thatS is acyclic.

Thein-degree matroidM1(S): Let I1(S) consist of all arc setsB such that no arc inB has a head inH(S) and
every node outsideH(S) is the head of at most one arc inB.

Theacyclicity matroidM2(S): Let I2(S) consist of all arc setsB such thatB ∪ S is acyclic.

We observe that the standard matroid intersection formulation of branchings is obtained as the special case of
S = ∅: then an arc set is seen to be branching if and only if it is independent in both the in-degree matroid and
the acyclicity matroid.

The next two lemmas show thatM1(S) andM2(S) are indeed matroids wheneverS is acyclic.

Lemma 2. M1(S) is a matroid.

Proof. Fix the arc setS and denoteI1(S) by I1 for short. Clearly,∅ ∈ I1 and ifA ⊆ B andB ∈ I1 then also
A ∈ I1. Consequently,M1(S) satisfies (M1) and (M2). To see thatM1(S) satisfies (M3) letA,B ∈ I1 with
|A| < |B|. Because of the definition ofM1(S) the setsA andB contain at most one arc with headv, for every
v ∈ N \H(S). Because|A| < |B| there is a nodev ∈ N \H(S) such thatv is the head of an arc inB butv is
not the head of an arc inA. Let e ∈ B be the arc with headv. Thene ∈ B \A andA∪ {e} ∈ I1. Hence,M1(S)
satisfies (M3).

Lemma 3. M2(S) is a matroid.

Proof. Fix the arc setS and denoteI2(S) by I2 for short. Because the skeletonS is acyclic and acylicity is a
hereditary property (a graph property is called hereditaryif it is closed under taking induced subgraphs) it follows
that∅ ∈ I2 and ifA ⊆ B andB ∈ I2 then alsoA ∈ I2. Consequently,M2(S) satisfies (M1) and (M2). To see
thatM2(S) satisfies (M3) letA,B ∈ I2 with |A| < |B|. Consider the setsA′ = A ∪ S andB′ = B ∪ S. Let
C be a connected subset ofA′. Because bothA′ andB′ are acyclic, it follows that the number of edges ofB′

with both endpoints inN(C) is at most the number of edges ofA′ with both endpoints inN(C). Because every
edge inA′ \ S corresponds to an arc inA and similarly every edge inB′ \ S corresponds to an arc inB and
|A| < |B|, it follows that there is an arce ∈ B \A whose endpoints are contained in two distinct components of
A′. Consequently, the setA′ ∪ {e} is acyclic and henceA ∪ {e} ∈ I2.

We now relate the common independent sets of these two matroids tok-branchings. IfA is ak-branching, we
call an arc setD adeletion setof A if D is a subset ofA, contains at mostk arcs, and inA \D every node has at
most one parent.

Lemma 4. LetA be an arc set andD a subset ofA of size at mostk such that no two arcs fromD′ = { (u, v) ∈
A \ D : v ∈ H(D) } have the same head and such thatS is acyclic, whereS = D ∪ D′. We have thatA is a
k-branching with deletion setD if and only ifA \ S is independent in bothM1(S) andM2(S).

Proof. (⇒) : SupposeA is a k-branching with deletion setD. ThenA \ D is a branching, which shows that
every nodev outsideH(S) has in-degree at most one inA \ S. Since by definition all arcs with a head inH(S)
are contained inS, no arc inA \ S has a head inH(S). Therefore,A \ S is independent inM1(S). Since every
k-branching is a polytree,(A \ S) ∪ S = A is acyclic, and thereforeA \ S is independent inM2(S).

(⇐) : SinceA \ S is independent inM2(S), we have that(A \ S) ∪ S = A is acyclic. Thus,A is a polytree.
AsA \ S is independent inM1(S), every node outsideH(S) has in-degree at most one inA \ S and every node
fromH(S) has in-degree zero inA \ S. Since the head of every arc fromD′ is inH(S) and no two arcs fromD′

have a common head,(A \ S) ∪ D′ = A \D has maximum in-degree at most one. Because|D| ≤ k, we have
thatA is ak-branching with deletion setD.

4

1 2

3 4 5

6 7

1 2

3 4 5

6 7

Figure 2: Left: the two guessed arc setsD (dotted) andD′ (dashed). Right: the arc setA (solid) that is a heaviest
common independent set of the two matroidsM1(S) andM2(S).

The characterization of Lemma 4 enables the following algorithm for thek-branching problem. Define the
weight function by lettingw(u, v) = fv({u}) − fv(∅) for all arcs(u, v). Guess the arc setsD andD′, put
S = D ∪ D′, check thatS is acyclic, find a maximum-weight setB that is independent in bothM1(S) and
M2(S); output ak-branchingA = B ∪ S that yields the maximum weight over all guessesD andD′, where the
weight ofB ∪ S is obtained as

w(B) +
∑

v∈H(S)

(

fv(Sv)− fv(∅)
)

.

It is easy to verify that maximizing this weight is equivalent to maximizing the scoref(A). Figure 2 illustrates
the algorithm for the scoring function of Figure 1.

It remains to analyze the complexity of the algorithm. Denote by n the number of nodes. For a moment,
consider the arc setS fixed. To apply Theorem 1, we bound the associated key quantities: the size of the ground
set isO(n2); the rank of both matroids is clearlyO(n); circuit detection can be performed inO(n) time, by a
depth-first search forM1(S) and by finding a node that has higher in-degree than it is allowed to have inM2(S).
Thus, by Theorem 1, a maximum-weight set that is independentin both matroids can be found inO(n4) time.
Then consider the number of possible choices for the setS = D∪D′. There areO(n2k) possibilities for choosing
a setD of at mostk arcs such thatD is acyclic. For a fixedD, there areO(nk) possibilities for choosing a subset
D′ ⊆ N×H(D) such thatD ∪D′ is acyclic and no two arcs fromD′ have the same head. Thus there areO(n3k)
relevant choices for the setS.

We have shown the following.

Theorem 5. Thek-branching problem can be solved inO(n3k+4) time.

4 Fixed-parameter tractability

Theorem 5 shows that thek-branching problem can be solved in “non-uniform polynomial time” as the order of
the polynomial time bound depends onk. In this section we study the question of whether one can getk “out of
the exponent” and obtain a uniform polynomial-time algorithm.

The framework ofParameterized ComplexityDowney and Fellows (1999) offers the suitable tools and meth-
ods for such an investigation, as it allows us to distinguishbetween uniform and non-uniform polynomial-time
tractability with respect to a parameter. An instance of a parameterized problem is a pair(I, k) whereI is the
main partandk is theparameter; the latter is usually a non-negative integer. A parameterized problem isfixed-
parameter tractableif there exist a computable functionf and a constantc such that instances(I, k) of sizen can
be solved in timeO(f(k)nc). FPT is the class of all fixed-parameter tractable decision problems. Fixed-parameter
tractable problems are also calleduniform polynomial-time tractablebecause ifk is considered constant, then in-
stances with parameterk can be solved in polynomial time where the order of the polynomial is independent of
k (in contrast to non-uniform polynomial-time running timessuch asnk).

Parameterized complexity offers a completeness theory similar to the theory of NP-completeness. One uses
parameterized reductionswhich are many-one reductions where the parameter for one problem maps into the

5

parameter for the other. More specifically, problemL reduces to problemL′ if there is a mappingR from instances
of L to instances ofL′ such that (i)(I, k) is a yes-instance ofL if and only if (I ′, k′) = R(I, k) is a yes-instance
of L′, (ii) k′ ≤ g(k) for a computable functiong, and (iii) R can be computed in timeO(f(k)nc) wheref
is a computable function,c is a constant, andn denotes the size of(I, k). The parameterized complexity class
W[1] is considered as the parameterized analog to NP. For example, the parameterized Maximum Clique problem
(given a graphG and a parameterk ≥ 0, doesG contain a complete subgraph onk vertices?) is W[1]-complete
under parameterized reductions. Note that there exists a trivial non-uniform polynomial-timenk algorithm for
the Maximum Clique problems that checks all sets ofk vertices. FPT6= W[1] is a widely accepted complexity
theoretic assumption Downey and Fellows (1999). For example, FPT= W[1] implies the (unlikely) existence
of a 2o(n) algorithm forn-variable 3SAT Impagliazzo, Paturi, and Zane (2001); Flum and Grohe (2006). A first
parameterized analysis of probabilistic network structure learning using structural parameters such as treewidth
has recently been carried out by Ordyniak and Szeider (2010).

The algorithm from Theorem 5 considersO(n3k) relevant choices for the setS = D∪D′, and for each fixed
choice ofS the running time is polynomial. Thus, for restrictions of the problem for which the enumeration of
all relevant setsS is fixed parameter tractable, one obtains an FPT algorithm. One such restriction requires that
S = D∪D′ is an in-tree, i.e., a directed tree where every arc is directed towards a designated root, and each node
has a bounded number of potential parent sets.

Theorem 6. Thek-branching problem is fixed-parameter tractable if we require that (i) the setS = D ∪D′ of
arcs is an in-tree and (ii) each node has a bounded number of potential parent sets.

Proof. To compute ak-branchingA, the algorithm guesses its deletion setD and the setD′ = {(u, v) ∈ A \D :
v ∈ H(D)}. As A is ak-branching,|D| ≤ k and for everyv ∈ H(D) there is at most one arc inD′ with head
v. The algorithm first guesses the rootr for the in-treeS. Then it goes over all possible choices forD andD′ as
follows, untilD has at leastk arcs.

Guess a leafℓ of S (initially, r is the unique leaf ofS), and guess a non-empty parent setP for ℓ in A. If
|D|+ |P |+ 1 > k, then backtrack. Otherwise, choose at most one arc(p, ℓ) to add toD′, wherep ∈ P , and add
all other arcs from a node fromP to ℓ to D (if |P | = 1, no arc is added toD′). Now, check whether the current
choice forS = D ∪ D′ leads to ak-branching by checking whetherS is acyclic and using the matroidsM1(S)
andM2(S) as in Theorem 5.

There are at mostn choices forr. The in-treeS is expanded in at mostk steps, as each step adds at least
one arc toD. In each step,ℓ is chosen among at mostk + 1 leaves, there is a constant number of choices for its
parent setP and at mostk + 2 choices for adding (or not) an arc(p, ℓ), with p ∈ P , toD′ (as|P | ≤ k + 1). The
acyclicity check forS and the weighted matroid intersection can be computed in timeO(n4), leading to a total
running time ofO(k2kckn5), wherec is such that every node has at mostc potential parent sets.

Condition (i) in Theorem 6 may be replaced by other conditions requiring the connectivity ofD or a small
distance between arcs fromD, giving other fixed-parameter tractable restrictions of thek-branching problem.

The following theorem shows that an exponential dependencyonk or some other parameter is necessary since
thek-branching problem remains NP-hard under the restrictionsgiven above.

Theorem 7. Thek-branching problem is NP-hard even if we require that (i) thesetS = D ∪ D′ of arcs is an
in-tree and (ii) each node has at most3 potential parent sets.

Proof. We devise a polynomial reduction from3-SAT-2 a version of 3-SATISFIABILITY where every literal
occurs at most in two clauses.3-SAT-2 is well known to be NP-hard Garey and Johnson (1979). Our reduction
uses the same ideas as the proof of Theorem 6 in Dasgupta (1999). LetΦ be an instance of3-SAT-2 with clauses
C1, . . . , Cm and variablesx1, . . . , xn. We define the setN of nodes as follows. For every variablexi in Φ the
setN contains the nodespi, xi, x

1
i , x

2
i , x

1
i andx2

i . Furthermore, for every clauseCj the setN contains the nodes
pn+j andCj . Let 1 ≤ i ≤ n, 1 ≤ j ≤ m, and1 ≤ l ≤ 2. We setf(Cj , x

l
i) = 1 if the clauseCj is thel-th

clause that contains the literalxi. Similarly, we setf(Cj , x
l
i) = 1 if the clauseCj is thel-th clause that contains

the literalxi. We setf(xi, {x
1
i , x

2
i }) = f(xi, {x

1
i , x

2
i }) = 1, f(p1, {x1}) = f(pi, {xi, pi−1}) = 1 for every

1 < i ≤ n, andf(pn+j , {Cj, pn+j−1}) = 1 for every1 ≤ j ≤ m. Furthermore, we setf(v, P) = 0 for all the
remaining combinations ofv ∈ N andP ⊆ N . This completes the construction ofN andf . Observe that every
node ofN has at most3 potential parent sets. This completes our construction. Wewill have shown the theorem
after showing the following claim.

6

p1 p2 p3

x1

x1
1

x2
1

x1
1

x2
1

x2

x1
2

x2
2

x1
2

x2
2

x3

x1
3

x2
3

x1
3

x2
3

C3 C2 C1

p4p5p6

Figure 3: An optimal2n + m-branchingD for the formulaΦ = C1 ∧ C2 ∧ C3 with C1 = x1 ∨ x2 ∨ x3,
C2 = x1 ∨ x2 ∨ x3, andC3 = x1 ∨ x2 ∨ x3 according to the construction given in the proof of Theorem 7.

Claim: Φ is satisfiable if and only if there is a2n + m-branchingD such thatf(D) ≥ 2(m + n), the set
S = D ∪D′ of arcs is an in-tree, and each node ofN has at most3 potential parent sets.

(⇒) : Suppose that the formulaΦ is satisfiable and letβ be a satisfying assignment forΦ. Furthermore, for
every1 ≤ j ≤ m let lj be a literal ofCj that is set to true byβ. We construct a2n+m-branchingD as follows.
For every1 ≤ j ≤ m the digraphD contains an arc(xl

i, Cj) if lj = xi andCj is thel-th clause that contains
xi and an arc(xl

i, Cj) if lj = xi andCj is thel-th clause that containsxi for some1 ≤ i ≤ n and1 ≤ l ≤ 2.
Furthermore, for every1 ≤ i ≤ n the digraphD contains the arcs(x1

i , xi) and(x2
i , xi) if β(xi) = false and the

arcs(x1
i , xi) and(x2

i , xi) if β(xi) = true. Last but not leastD contains the arcs(xi, pi), (Cj , pn+j) and(pl, pl+1)
for every1 ≤ i ≤ n, 1 ≤ j ≤ m, and1 ≤ l < m + n. Figure 3 shows an optimal2n + m-branchingD for
some3-SAT-2 formula. It is easy to see thatD is a2n +m-branching such thatf(D) = 2(m + n) and the set
S = D ∪D′ of arcs is an in-tree.

(⇐) : Suppose there is a2n + m-branchingD such thatf(D) ≥ 2(m + n). Becausef(D) ≥ 2(m + n)
it follows that every node ofN achieves its maximum score inD. Hence,D has to contain the arcs(xi, pi),
(Cj , pn+j), (pl, pl+1), for every1 ≤ i ≤ n, 1 ≤ j ≤ m, and1 ≤ l < m + n. For the same reasonsD has to
contain either the arcs(x1

i , xi) and(x2
i , xi) or the arcs(x1

i , xi) and(x2
i , xi) for every1 ≤ i ≤ n. Furthermore,

for every1 ≤ j ≤ m the2n + m-branchingD has to contain one arc of the form(xl
i, Cj) or (xl

i, Cj) where
Cj is thel-th clause that containsxi or xi, respectively, for some1 ≤ i ≤ n and1 ≤ l ≤ 2. Let 1 ≤ i ≤ n,
1 ≤ j ≤ m, and1 ≤ l ≤ 2. We first show that wheneverD contains an arc(xl

i, xi) thenD contains no arc of the
form (xl

i, Cj) and similarly ifD contains an arc(xl
i, xi) thenD contains no arc of the form(xi, Cj). Suppose

for a contradiction thatD contains an arc(xl
i, xi) together with an arc(xl

i, Cj) or an arc(xl
i, xi) together with an

arc(xl
i, Cj). In the first caseD contains the undirected cycle(xl

i, xi, pi, . . . , pn+j , Cj , x
l
i) and in the second case

D contains the cycle(xl
i, xi, pi, . . . , pn+j, Cj , x

l
i) contradicting our assumption thatD is a2n +m-branching.

It now follows that the assignmentβ with β(xi) = true if D does not contain the arcs(x1
i , xi) and(x2

i , xi) and
β(xi) = false ifD does not contain the arcs(x1

i , xi) and(x2
i , xi) is a satisfying assignment forΦ.

So far we have measured the difference of a polytree to branchings in terms of the number of arcs to be
deleted. Next we investigate the consequences of measuringthe difference by the number of nodes to be deleted.
We call a polytreeA a k-node branchingif there exists a set of at mostk nodesX ⊆ A such thatA \ X is a
branching. Thek-node branching problemis to find ak-node branchingA that maximizesf(A). Clearly every
k-branching is ak-node branching, but the reverse does not hold. In other words, thek-node branching problem
generalizes thek-branching problem.

In the following we show that thek-node branching problem is hard for the parameterized complexity class
W[1]; this provides strong evidence that the problem is not fixed-parameter tractable.

7

G D

Figure 4: An example graphG (k = 3) together with an optimalk′-node branchingD with f(D) ≥ s according
to the construction given in the proof of Theorem 8.

Theorem 8. Thek-node branching problem isW[1]-hard.

Proof. We devise a parameterized reduction from the following problem, called Partitioned Clique, which is
well-known to be W[1]-complete for parameterk Pietrzak (2003). The Instance is ak-partite graphG = (V,E)
with partitionV1, . . . , Vk such that|Vi| = n for every1 ≤ i ≤ k. The question is whether there are nodes
v1, . . . , vk such thatvi ∈ Vi for 1 ≤ i ≤ k and {vi, vj} ∈ E for 1 ≤ i < j ≤ k? (The graphK =
({v1, . . . , vk}, { {vi, vj} : 1 ≤ i < j ≤ k }) is ak-cliqueof G.)

Let G = (V,E) be an instance of this problem with partitionV1, . . . , Vk, |V1| = · · · = |Vk| = n, and
parameterk. Letk′ =

(

k

2

)

+ k, α = 1, ands = k′α. LetA = { aij : 1 ≤ i < j ≤ k } andAi = { alk ∈ A : l = i

or k = i } for every1 ≤ i ≤ k. ThenN is defined asN = A ∪ {c1, . . . , ck} ∪ { v1, . . . , vk : v ∈ V }. Let
V w
i = { v1, . . . , vk : v ∈ Vi andv 6= w }. We define the score functionf as follows. We setf(ci, Ai ∪ V w

i) = α

for every1 ≤ i ≤ k andw ∈ Vi, andf(aij , {uj, wi}) = α for every1 ≤ i < j ≤ k, u ∈ Vi, w ∈ Vj , and
{u,w} ∈ E(G). Furthermore, we setf(v, P) = 0 for all the remaining combinations ofv andP . This completes
our construction. We will have the theorem after showing thefollowing claim.

Claim:G has ak-clique if and only if there is ak′-node branchingD such thatf(D) ≥ s.
(⇒) : Suppose thatG has ak-cliqueK. Then it is easy to see that the DAGD onN defined by the arc set

{ (vj , aij), (vj , aji) : v ∈ V (K) ∩ Vi and1 ≤ i, j ≤ k } ∪ { (vi, aij), (vi, aji) : v ∈ V (K) ∩ Vj and1 ≤ i, j ≤
k } ∪ { (aij , ci) : 1 ≤ i < j ≤ k } ∪ { (aij , cj) : 1 ≤ i < j ≤ k } ∪ { (vj, ci) : v ∈ Vi \ (

⋃

e∈E(K) e) and1 ≤

i, j ≤ k } is ak′-node branching andf(D) = s. Figure 4 shows an optimalk′-node branchingD constructed
from an example graphG.

(⇐) : Suppose there is ak′-node branchingD with f(D) ≥ s. It follows that every node ofD achieves its
maximum score. In particular, for every1 ≤ i ≤ k the nodesci must have scoreα in D and hence there is a node
wi ∈ Vi such thatci is adjacent to all nodes inV wi

i ∪ Ai. Furthermore, for every1 ≤ i < j ≤ k the nodeaij
is adjacent to exactly one node inVi and to exactly one node inVj . Let vli be the unique node inVi adjacent to
aij and similarly letvmi be the unique node inVj that is adjacent toaij for every1 ≤ i < j ≤ k. Thenwi = vi
andwj = vj because otherwise the skeleton ofD would contain the cycle(vi, aij , ci) or the cycle(vj , aij , cj).
Consequently, the edges represented by the parents ofaij in D for all 1 ≤ i < j ≤ k form ak-clique inG.

5 Concluding remarks

We have studied a natural approach to extend the known efficient algorithms for branchings to polytrees that
differ from branchings in only a few extra arcs. At first glance, one might expect this to be achievable by simply
guessing the extra arcs and solving the remaining problem for branchings. However, we do not know whether
such a reduction is possible in the strict sense. Indeed, we had to take a slight detour and modify the two matroids
in a way that guarantees a control for the interactions caused by the presence of high-in-degree nodes. As a result,
we got an algorithm that runs in time polynomial in the input size: namely, there can be more than

(

n−1
k+1

)

relevant
input values for each of then nodes; so, the runtime of our algorithm is less than cubic in the size of the input,

8

supposing the local scores are given explicitly. While thisanswers one question in the affirmative, it also raises
several further questions, some of which we give in the next paragraphs.

Our complexity analysis relied on a result concerning the general weighted matroid intersection problem.
Do significantly faster algorithms exist when restricted toour two specific matroids? One might expect such
algorithms exist, since the related problem for branchingscan be solved inO(n2) time by the algorithm of Tarjan
(1977).

Even if we could solve the matroid intersection problem faster, our algorithm would remain practical only
for very small values ofk. Can one find an optimalk-branching significantly faster, especially if allowing every
node to have at most two parents? As the current algorithm makes aroundn3k mutually overlapping guesses,
there might be a way to considerably reduce the time complexity. Specifically, we ask whether the restricted
problem is fixed-parameter tractable with respect to the parameterk, that is, solvable inO(f(k)p(n)) time for
some computable functionf and polynomialp Downey and Fellows (1999). The fixed-parameter algorithm given
in Section 4 can be seen as a first step towards an answer to thisquestion. Can we find other restrictions under
which thek-branching problem becomes fixed-parameter tractable?

Can we use a similar approach for the more generalk-node branching problem, i.e., is there a polynomial time
algorithm for thek-node branching problem for every fixedk? Likewise, we do not know whether the problem
is easier or harder for polytrees than for general DAGs: Do similar techniques apply to finding maximum-score
DAGs that can be turned into branchings by deleting somek arcs?

Acknowledgments

Serge Gaspers, Sebastian Ordyniak, and Stefan Szeider acknowledge support from the European Research Coun-
cil (COMPLEX REASON, 239962). Serge Gaspers acknowledges support from the Australian Research Coun-
cil (DE120101761). Mikko Koivisto acknowledges the support from the Academy of Finland (Grant 125637).
Mathieu Liedloff acknowledges the support from the French Agence Nationale de la Recherche (ANR AGAPE
ANR-09-BLAN-0159-03).

References

Bock, F. C. 1971. An algorithm to construct a minimum directed spanning tree in a directed network. In Avi-Itzak,
B., ed.,Developments in Operations Research. Gordon and Breach. 29–44.

Brezovec, C.; Cornuéjols, G.; and Glover, F. 1986. Two algorithms for weighted matroid intersection.Mathe-
matical Programming36(1):39–53.

Camerini, P. M.; Fratta, L.; and Maffioli, F. 1979. A note on finding optimum branchings.Networks9:309–312.

Cayley, A. 1889. A theorem on trees.Quart. J. Math.23:376–378.

Chickering, D. M. 1995. A transformational characterization of equivalent Bayesian network structures. In
Uncertainty in artificial intelligence (UAI 1995).

Chickering, D. M. 1996. Learning Bayesian networks is NP-complete. InLearning from data (Fort Lauderdale,
FL, 1995), volume 112 ofLecture Notes in Statist.Springer Verlag. 121–130.

Chu, Y. J., and Liu, T. H. 1965. On the shortest arborescence of a directed graph.Science Sinica14:1396–1400.

Dasgupta, S. 1999. Learning polytrees. InUncertainty in Artificial Intelligence (UAI 1999).

Downey, R. G., and Fellows, M. R. 1999.Parameterized Complexity. Monographs in Computer Science. New
York: Springer Verlag.

Edmonds, J. R. 1967. Optimum branchings.Journal of Research of the National Bureau of Standards
71B(4):233–240.

Edmonds, J. R. 1970. Submodular functions, matroids and certain polyhedra. InCombinatorial Structures and
their Applications, 69–87.

9

Edmonds, J. R. 1979. Matroid intersection.Annals of Discrete Mathematics4:39–49.

Flum, J., and Grohe, M. 2006.Parameterized Complexity Theory, volume XIV of Texts in Theoretical Computer
Science. An EATCS Series. Berlin: Springer Verlag.

Fomin, F. V., and Kratsch, D. 2010.Exact Exponential Algorithms. Texts in Theoretical Computer Science. An
EATCS Series. Springer.

Frank, A. 1981. A weighted matroid intersection algorithm.Journal of Algorithms2:328–336.

Friedman, N.; Geiger, D.; and Goldszmidt, M. 1997. Bayesiannetwork classifiers.Machine Learning29:131–
163.

Fulkerson, D. R. 1974. Packing rooted directed cuts in a weighted directed graph.Mathematical Programming
6:1–13.

Gabow, H. N.; Galil, Z.; Spencer, T.; and Tarjan, R. E. 1986. Efficient algorithms for finding minimum spanning
trees in undirected and directed graphs.Combinatorica6(2):109–122.

Gabow, H. N.; Galil, Z.; and Spencer, T. H. 1989. Efficient implementation of graph algorithms using contraction.
Journal of the ACM36(3):540–572.

Garey, M. R., and Johnson, D. R. 1979.Computers and Intractability. San Francisco: W. H. Freeman and
Company, New York.

Heckerman, D.; Geiger, D.; and Chickering, D. M. 1995. Learning Bayesian networks: The combination of
knowledge and statistical data.Machine Learning20(3):197–243.

Impagliazzo, R.; Paturi, R.; and Zane, F. 2001. Which problems have strongly exponential complexity?J. of
Computer and System Sciences63(4):512–530.

Iri, M., and Tomizawa, N. 1976. An algorithm for finding an optimal ’independent’ assignment.Journal of the
Operations Research Society of Japan19:32–57.

Karp, R. M. 1971. A simple derivation of Edmonds’ algorithm for optimum branchings.Networks1(3):265–272.

Koivisto, M., and Sood, K. 2004. Exact Bayesian structure discovery in Bayesian networks.J. Mach. Learn. Res.
5:549–573.

Lam, W., and Bacchus, F. 1994. Learning Bayesian belief networks: An approach based on the MDL principle.
Computational Intelligence10:269–293.

Lawler, E. L. 1976. Combinatorial Optimization: Networks and Matroids. New York: Holt, Rinehart and
Winston.

Ordyniak, S., and Szeider, S. 2010. Algorithms and complexity results for exact Bayesian structure learning. In
Uncertainty in Artificial Intelligence (UAI 2010).

Ott, S., and Miyano, S. 2003. Finding optimal gene networks using biological constraints.Genome Informatics
14:124–133.

Parviainen, P., and Koivisto, M. 2009. Exact structure discovery in Bayesian networks with less space. In
Uncertainty in Artificial Intelligence (UAI 2009), 436–443.

Pietrzak, K. 2003. On the parameterized complexity of the fixed alphabet shortest common supersequence and
longest common subsequence problems.J. of Computer and System Sciences67(4):757–771.

Silander, T., and Myllymäki, P. 2006. A simple approach forfinding the globally optimal Bayesian network
structure. InUncertainty in Artificial Intelligence (UAI 2006), 445–452.

Tarjan, R. E. 1977. Finding optimum branchings.Networks7:25–35.

10

