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Abstract :

We consider binary mixtures of fluids with components having different temperatures. A new dynamical pressure term is

associated with the difference of temperatures between components even if fluid viscosities are null. The non-equilibrium

dynamical pressure can be measured and may be convenient in several physical situations as for example in cosmological

circumstances where a dynamical pressure played a major role in the evolution of the early universe.
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Résumé :

Nous considérons des mélanges de fluides où chaque constituant a sa propre température. La différence de températures

entre constituants implique l’existence d’une nouvelle pression dynamique même si les fluides ont une viscosité nulle.

Cette pression dynamique peut être mesurée et utile dans de nombreuses situations physiques comme en cosmologie où

une pression dynamique joue un rôle majeur dans l’évolution des débuts de l’univers.

Mots clés : Mélanges de fluides ; multi-temperatures ; pression dynamique ; principe d’Hamilton.

1 Introduction.

The theory of mixtures generally considers two different kinds of continua : homogeneous mixtures (each
component occupies the whole mixture volume) and heterogeneous ones (each component occupies only a
part of the mixture volume). At least four approaches to the construction of two-fluids models are known.
The first one for studying the heterogeneous two-phase flows is an averaging method [1]. A second approach
was used for the construction of a quantum liquid model and was purposed for the homogeneous mixtures of
fluids [2]. A third approach is done in the context of rational thermodynamics founded on the postulate that
each constituent obeys the same balance laws as a single fluid [3, 4].
At least, there exists a different approach based on the Hamilton principle which is used for the construction of
conservative mathematical models of continua. The variations of the Hamilton action are constructed in terms
of virtual motions of continua which may be defined both in Lagrangian and Eulerian coordinates [5].
Here, we use variations in the case of fluid mixtures. The variational approach to the construction of two-fluid
models has been used by many authors [6, 7, 8]. The method is different from the method proposed is [9] and
is now developed in [10].
To study thermodynamical processes by using the Hamilton principle, the entropies of components are added
to the field parameters instead of temperatures. The Lagrangian is the difference between the kinetic energy
and an internal potential per unit volume depending on the densities, the entropies and the relative velocities of
the mixture components. It is not necessary to distinguish molecular mixtures from heterogeneous fluids when
each component occupies only a part of the mixture volume [11]. The terms including interaction between
different components come from the direct knowledge of the internal potential.
The assumption of a common temperature for all the components is open to doubt for the suspensions of
particles [12] as well as in the mixtures of gases in the early universe [13]. By using the Hamilton principle, the
existence of several temperatures (one temperature for each component) must be associated with the existence
of several entropies (one specific entropy for each component). The internal potential per unit volume is a
function of the densities, the entropies and the difference of velocity between components.

1
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2 Governing equations in conservative cases.

In a Galilean system of coordinates, the motion of a two-fluid mixture is represented as

Zα = Φα(z) , (α = 1, 2)

where z = (t,x) denotes Eulerian coordinates in a four-dimensional domain ω in the time-space and Zα =
(λ,Xα) denotes Lagrangian coordinates of the component α in a four-dimensional reference space ωα. The
conservation of matter for each component requires

ρα detFa = ρα0 (Xα) with Fa =
∂x

∂Xα

, (1)

where index α0 corresponds to the reference density in ωα and det (∂x/∂Xα) is the Jacobian determinant of
the motion of the component α of density ρα. In differentiable cases Eqs (1) are equivalent to the equations of
density balances

∂ρα
∂t

+ div(ραvα) = 0, (2)

where vα denotes the velocity of each component α. The Lagrangian of the binary system is

L =

2∑

α=1

(
1

2
ρα v

2

α − ραΩα

)
− η(ρ1, ρ2, s1, s2,u),

where the summation is taken over the fluid components (α = 1, 2), sα are the specific entropies, u = v2−v1

is the relative velocity of components, Ωα are the external force potentials, η is a potential per unit volume of
the mixture. The Lagrangian L is a function of ρα,vα, sα and we introduce the quantities

Rα ≡
∂L

∂ρα
=

1

2
v2

α −
∂η

∂ρα
− Ωα, kT

α ≡
1

ρα

∂L

∂vα

= vT
α −

(−1)α

ρα

∂η

∂u
, ρα Tα ≡ −

∂L

∂sα
=

∂η

∂sα
, (3)

where T denotes the transposition and ∂L/∂vα, ∂η/∂u are linear forms. Relation (3)3 defines the tempera-
tures Tα (α = 1, 2) which are dynamical quantities depending on ρ1, ρ2, s1, s2 and u.

To obtain the equations of component motions by means of the Hamilton principle, we consider variations of
particle motions in the form of surjective mappings Xα = Ξα(t,x;κα), where scalars κα are defined in a
neighborhood of zero ; they are associated with a two-parameter family of virtual motions. The real motions
correspond to κα = 0 such that Ξα(t,x;0) = φα(t,x) and virtual Lagrange displacements are

δαXα =
∂Ξα(t,x;κα)

∂κα
|κα=0 , (α = 1, 2). (4)

The Hamilton action is a =

∫

ω

L dv dt. We first consider the Hamilton principle in the form

δαa ≡

(
da

dκα

)

|κα=0

= δα

∫

ω

L dv dt = 0,

under constraints (1), where δαa are the variations of a associated with Rel. (4).
From the definition of virtual motions, we obtain the values of δαvα (x, t), δαρα (x, t) and δαsα (x, t) where
the notation δαb(t,x) represents the variation of function b at (t, x) fixed. The functions are assumed to be
smooth enough in the domain ωα and δαXα = 0 on its boundary. It follows [10],

δαa =

∫

ωα

ρα0

(
−
∂Rα

∂Xα

+
∂

∂λ
(kT

α Fα)− Tα

∂sα0
∂Xα

)
δαXα dvα dt,

and we get the component motion equations in Lagrangian coordinates,
∂

∂λ
(kT

α Fα)−
∂Rα

∂Xα

−Tα

∂sα0
∂Xα

= 0.

By taking into account the identity
dαFα

dt
−

∂vα

∂x
Fα = 0 and for λ = t, we rewrite the equations in Eulerian

coordinates,
dαk

T
α

dt
+ kT

α

∂vα

∂x
=

∂Rα

∂x
+ Tα

∂sα
∂x

.
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To obtain the equation of energy, we need a second variation of motions associated with the time parameter.
The variation corresponds to a virtual motion in the form λ = ϕ(t;κ), where scalar κ is defined in a neigh-
borhood of zero. The real motion of the mixture corresponds to κ = 0 such that ϕ(t, 0) = t ; the associated
virtual displacement is

δλ =
∂ϕ(t;κ)

∂κ
|κ=0 .

In multi-component fluids, due to exchanges of energy between the components, the entropies cannot be
conserved along component paths ; in the reference spaces ωα, the specific entropies sα depend also on λ

sα = sα0 (λ,Xα) .

The variation of Hamilton’s action associated with the second family of virtual motions yields

δa ≡ δ

∫

ω

L dv dt =

∫

ω

∂L

∂λ
δλ dv dt = 0.

From
∂L

∂λ
=

2∑

α=1

∂L

∂sα

∂sα0
∂λ

, we deduce when λ = t,
∂L

∂λ
= −

2∑

α=1

ραTα
dαsα
dt

, where
dαsα
dt

=
∂sα
∂t

+
∂sα
∂x

vα

is the material derivative with respect to velocity vα. We obtain for the total mixture

2∑

α=1

ραTα

dαsα
dt

= 0. (5)

Due to Eqs. (2) we obtain the equivalent form

2∑

α=1

Qα = 0 with Qα =

(
∂ραsα
∂t

+ div(ραsαvα)

)
Tα. (6)

Equation (6) expresses that the exchange of energy between components has a null total amount. In case of
mixtures with two entropies, the Hamilton principle is not able to close the system of motion equations ; we
need additional arguments to obtain the evolution equations for each entropy sα by considering the behaviors
of Qα. A possibility to close the system of equations is to consider that the momenta and heat exchanges
between the components are rapid enough to have a common temperature. Another possibility, used by Landau
for quantum fluids [2], is to assume that the total specific entropy s is convected along the first component
trajectory. These assumptions are not valid for heterogeneous mixtures where each phase has different pressures
and temperatures [12, 13].

3 Mixtures weakly out of equilibrium.

We consider the case when the mixture is weakly out of equilibrium such that the difference of velocities u and
the difference of temperatures T2 − T1 are small enough with respect to the main field variables.

In the following, ρv =

2∑

α=1

ραkα =

2∑

α=1

ραvα is the total momentum and ρ =

2∑

α=1

ρα is the mixture density.

For the sake of simplicity, we neglect the external forces. Generally, the volume potential η is developed in the

form 1

η(ρ1, ρ2, s1, s2,u) = e(ρ1, ρ2, s1, s2)− b(ρ1, ρ2, s1, s2)u
2,

where b is a positive function of ρ1, ρ2, s1, s2. We consider the linear approximation when |u| is small with
respect to |v1| and |v2|. In linear approximation the volume potential is equal to the volume internal energy e
[11],

η(ρ1, ρ2, s1, s2,u) ≈ e(ρ1, ρ2, s1, s2) = ρ ε(ρ1, ρ2, s1, s2),

where ε denotes the internal energy per unit mass. Let us note that the diffusion vector j = ρ1(v1 − v) ≡
ρ2(v − v2) is a small momentum vector deduced both from velocities and densities of the components. The
equations of density balances (1) can be written in the form

dρ

dt
+ ρdivv = 0 and ρ

dc

dt
+ div j = 0, (7)

1. In Ref. [9], the internal energy is the sum of the internal energies of the components
(

ρ ε =
∑

2

α=1
ραεα(ρα, sα)

)

.
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Mécanique & Industries 10, 239-243 (2009) DOI: 10.1051/meca/2009052

where c = ρ1/ρ denotes the concentration of component 1 and d/dt = ∂/∂t + ∂/∂x .v is the material
derivative with respect to the average velocity of the mixture. The divergence of a linear operator A is the

covector divA such that, for any constant vector a, (divA)a = div (A a) and we write vαv
T
α ≡ vα ⊗ vα.

Let us denote by hα ≡ ∂e/∂ρα the specific enthalpy of the component α. For processes with weak diffusion,
the equations of component motions get the form,

ραΓα ≡
∂ραvα

∂t
+ div(ραvα ⊗ vα)

T = ραTα grad sα − ρα grad hα.

The equation of total momentum is [10] :
∂ρv

∂t
+ div

(
2∑

α=1

(ραvα ⊗ vα)− t

)T

= 0,

where t =
∑

2

α=1
tα is the total stress tensor such that tανγ = −pα δνγ , pα = ρραε,ρα

= ραe,ρα
−

ραe/ρ , p =
∑

2

α=1
pα . The internal energy is a natural function of densities and entropies. Due to Def. (3)3,

ρ1 T1 = ρ
∂ε

∂s1
(ρ1, ρ2, s1, s2) and ρ2 T2 = ρ

∂ε

∂s2
(ρ1, ρ2, s1, s2). (8)

Let us denote by ε the expression of the specific internal energy as a function of ρ, c, s1, s2 such that ε(ρ, c, s1, s2) =
ε(ρ1, ρ2, s1, s2) ; we get :

ρ
dε

dt
= ρ

∂ε

∂ρ

dρ

dt
+ ρ

∂ε

∂c

dc

dt
+ ρ

∂ε

∂s1

ds1
dt

+ ρ
∂ε

∂s2

ds2
dt

.

Due to the fact that ρ2
∂ε

∂ρ
= p and

∂ε

∂c
= h1 − h2, we obtain

ρ
dε

dt
=

p

ρ

dρ

dt
+ ρ (h1 − h2)

dc

dt
+ ρ1 T1

ds1
dt

+ ρ2 T2

ds2
dt

. (9)

By taking into account that
dαsα
dt

=
dsα
dt

+
∂sα
∂x

(vα − v) and by using Eqs. (5), (7), Eq. (9) yields

ρ
dε

dt
+ p divv + (h1 − h2) div j+ (T1 grad s1 − T2 grad s2)

T j = 0. (10)

Due to Eqs. (8), the internal energy can be expressed as a function of densities and temperatures of components

ε̃(ρ1, ρ2, T1, T2) = ε(ρ1, ρ2, s1, s2).

As we wrote in [9], we define the average temperature T associated with T1 and T2 through the implicit solution
of the equation

ε̃(ρ1, ρ2, T, T ) = ε̃(ρ1, ρ2, T1, T2). (11)

We denote by Θα = Tα − T the difference between component and average temperatures, which are non-
equilibrium thermodynamical variables. Near equilibrium, Eq. (11) can be expanded to the first order ; then

2∑

α=1

cαv Θα = 0 with cαv =
∂ε̃

∂Tα

(ρ1, ρ2, T, T ). (12)

Due to the fact that ρ dε =

2∑

α=1

ρα Tα dsα +
pα
ρα

dρα, then

ρ c1v = T

2∑

α=1

ρα
∂sα
∂T1

(ρ1, ρ2, T, T ) and ρ c2v = T

2∑

α=1

ρα
∂sα
∂T2

(ρ1, ρ2, T, T ). (13)

The definition of the total entropy s of the mixture is

ρ s =

2∑

α=1

ραsα(ρ1, ρ2, T1, T2). (14)
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The first order expansion of Eq. (14) yields

ρ s =

2∑

α=1

ραsα(ρ1, ρ2, T, T ) + ραsα
∂sα
∂T1

(ρ1, ρ2, T, T )Θ1 + ραsα
∂sα
∂T2

(ρ1, ρ2, T, T )Θ2.

Due to Rels. (12), (13), ρ s =

2∑

α=1

ραsα(ρ1, ρ2, T, T ) and the specific entropy s does not depend on Θ1 and

Θ2 but only on ρ1, ρ2 and T . We denote by ε̂ the internal specific energy as a function of ρ, c, T :

ε̂(ρ, c, T ) = ε̃(ρ1, ρ2, T, T ),

which satisfies the Gibbs equation

Tds = dε̂−
po
ρ2

dρ+ (µ2 − µ1) dc

where po (ρ, c, T ) is the equilibrium pressure at temperature T and µ2−µ1, difference of component chemical
potentials, is the chemical potential of the whole mixture. By taking into account of equation (7), we get

ρ
dε̂

dt
+ po divv + (µ1 − µ2) div j− ρT

ds

dt
= 0.

Moreover,

ρ
ds

dt
=

2∑

α=1

ρα
dαsα
dt

+ div [(s2 − s1)j ]. (15)

Equation (15) yields the relation between the material derivatives of entropy s and entropies s1 and s2. By
taking into account this result in Eq. (10) and ε̂(ρ, c, T ) = ε(ρ1, ρ2, s1, s2), we obtain

T

2∑

α=1

ρα
dαsα
dt

+(p− po) div v+
(
(h1−h2)−(µ1 − µ2)+T (s2−s1)

)
div j+(Θ1grads1 −Θ2grads2)

T
j = 0.

(16)
The differences of temperatures Θ1 ≡ T1 − T and Θ2 ≡ T2 − T are small with respect to T and j is a small
diffusion term with respect to the mixture momentum ρv ; consequently, in an approximation to the first order,
the term

(Θ1 grad s1 −Θ2 grad s2)
T
j

is negligible. Let us consider

K ≡
(
(h1 − h2)− (µ1 − µ2) + T (s2 − s1)

)
div j ;

we get

K =
(
(h1 − T1s1)− (h2 − T2s2)− (µ1 − µ2) + Θ1s1 +Θ2s2

)
div j .

In an approximation to the first order, the term (Θ1s1 +Θ2s2) div j is negligible.

Due to the fact that µα(ρ1, ρ2, T1, T2) = hα − Tαsα is the chemical potential of the component α, when j is a
small diffusion velocity with respect to average velocity v, the term

(
µ1(ρ1, ρ2, T1, T2)− µ2(ρ1, ρ2, T1, T2)−

(
µ1(ρ1, ρ2, T )− µ2(ρ1, ρ2, T )

))
div j

is vanishing in an approximation to the first order.
Consequently, in an approximation to the first order, Eq. (16) reduces to

2∑

α=1

ρα
dαsα
dt

= −
1

T
(p− po) div v. (17)

5



Mécanique & Industries 10, 239-243 (2009) DOI: 10.1051/meca/2009052

The exchange of energy between components must obey the second law of thermodynamics : the total entropy
rate is an increasing function of time and we consider the second law of thermodynamics in the form

2∑

α=1

(
∂ραsα
∂t

+ div(ραsαvα)

)
≥ 0 (18)

Due to Rels. (2) the Clausius-Duhem inequality (18) is equivalent to

2∑

α=1

ρα
dαsα
dt

≥ 0 .

This implies that the second member of Rel. (17) must be positive. Therefore, as usual in thermodynamics of
irreversible processes, the entropy inequality requires

π ≡ p− po = −Λ divv . (19)

This expression defines the Lagrange multiplier Λ of proportionality such that Λ ≥ 0. The dynamical pressure
π is the difference between the pressure in the process out of equilibrium with different temperatures for the
components and the pressure of the mixture assumed in local thermodynamical equilibrium with the common
average temperature T . Let us notice that Eqs. (6,19) allow to obtain Qα values. In fact,

ρ1T (T2 − T1)
d1s1

dt
= ΛT2 (divv)

2 and ρ2T (T1 − T2)
d2s2

dt
= ΛT1 (divv)

2

and the system of field equations is now closed.

4 Conclusion.

The Hamilton principle points out that a dynamical pressure can be obtained by neglecting viscosity, friction or
external heat fluxes. This is a main property of mixtures with multi-temperatures and this fact may have some
applications in plasma of gases and in the evolution of the early universe [14].
The results are in complete accordance with the ones by Gouin & Ruggeri [9] and developed in [10]. This is
an important verification of the fact that the Hamilton principle can be extended to nonconservative mixture
motions when components have different temperature. A difference with classical thermodynamics methods is
that the volume internal energy is not necessary the sum of the volume internal energies of the components. In
[10], the volume internal energy is a nonseparate function of densities and entropies (or temperatures) and is
consequently more general than in [9].
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