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FROM LOCAL CLASS FIELD TO THE CURVE AND VICE VERSA

LAURENT FARGUES

Abstract. We begin by reviewing our joint work with J.-M. Fontaine about the fundamental
curve of p-adic Hodge theory. We then explain our results obtained in [4] about the classification

of G-bundles on this curve and its link with local class field theory. We finish by formulating

conjectures that would extend those results.

Contents

Introduction 1
1. The curve 2
2. Vector bundles 4
3. The curve compared to P1 6
4. G-bundles on the curve ([4]) 6
5. Archimedean/p-adic twistors 8
6. The fundamental class of the curve is the fundamental class of class field theory ([4]) 10
7. Conjectures: ramified local systems and coverings 10
8. Speculations: Fourier transform and p-adic local Langlands correspondence 13
References 14

Introduction

Following work of Tate ([28]) Fontaine developed the domain of p-adic Hodge theory by intro-
ducing the so-called p-adic period rings (see [10] for example). In our joint work with Fontaine
([7], [8]) we introduced a new object called ”the curve”. This has different incarnations. One of
those incarnations is a Dedekind scheme over the p-adic numbers that, although not being of finite
type, shares a lot of properties with ”classical” proper smooth algebraic curves over a field.

A lot of the classical objects showing up in p-adic Hodge theory have an interpretation on
the curve. For example Fontaine’s period ring BdR shows up as the completion of the local ring
of this curve at a closed point at infinity. Fontaine’s filtered ϕ-modules, some p-adic analog of
archimedean Hodge structures, give rise to vector bundles on this curve. This has allowed us
to reprove some important results of p-adic Hodge theory by studying vector bundles and their
modifications on it. In some sense it is an analog of the twister projective line used in archimedean
Hodge theory (see section 5).

In this article we first review the basic properties of this object and vector bundles on it. We
then explain some more recent results obtained by the author in [4] about the study of G-bundles
on the curve for G a reductive group, and local class field theory.

Date: February 3, 2017.
L’auteur a bénéficié du support du projet ANR-14-CE25 ”PerCoLaTor”.
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opportunity to talk about this subject at the AMS 2015 Summer Research Institute on Algebraic
Geometry and giving him the occasion to write this report.

1. The curve

Let E be a finite extension of Qp with residue field Fq and uniformizing element π. Let F |Fq
be a complete non-archimedean perfect field, for example Fq((T 1/∞)) or

÷Fq((T )). In our joint work
with Fontaine ([7]) we have associated to this datum a ”curve” that has two incarnations:

• The ”algebraic” curve X, a one dimensional noetherian regular scheme of dimension 1
over E (that is to say the gluing of a finite set of spectra of Dedekind rings)

• The ”adic” curve Xad that is in a sense the p-adic Riemann surface associated to X.

Both are not of finite type over E in the schematical sense for X or in the topological sense for
Xad. Nonetheless, they satisfy striking properties analogous to the ones satisfied by proper smooth
algebraic curve, resp. compact Riemann surfaces.

1.1. The adic curve. The algebraic curve was discovered first but it is now easier to present the
adic one first. For this consider

Y = Spa(WOE
(OF ),WOE

(OF )) \ V (π[$F ])

where $F ∈ F satisfies 0 < |$F | < 1. This is an adic space over E in Huber’s sense ([15]) that one
may think of as being a Stein p-adic Riemann surface that is an open punctured disk where the
variable is π and the coefficients of the holomorphic functions are in F . More precisely consider

WOE
(OF ) =

{∑
n≥0

[xn]πn | xn ∈ OF
}
,

the ramified Witt vectors of OF (the usual Witt vectors when E = Qp). The preceding Teichmüller
power series expansion is unique (here we used that the ringOF is perfect to have such a description
of the Witt vectors). One may consider

O(Y )b := WOE
(OF )

[
1
π ,

1
[$F ]

]
=
{ ∑
n�−∞

[xn]πn | xn ∈ F, sup
n
|xn| <∞

}
that is the algebra of holomorphic functions on Y meromorphic at π = 0 (the origin of our
”punctured” disk) and bounded near the radius 1 (the ”exterior circle” of our ”radius 1 open
punctured disk”). For any radius ρ ∈]0, 1[ there is an associated Gauss norm |.|ρ on O(Y )b (”the
supremum norm” of an holomorphic function on the annulus with radius ρ) defined by∣∣∑

n

[xn]πn
∣∣
ρ

= sup
n
|xn|ρn.

By definition, the Frechet algebra of holomorphic functions on Y is

O(Y ) = completion of O(Y )b with respect to (|.|ρ)ρ∈]0,1[.

The space Y being Stein, O(Y ) determines completely the space Y itself.

There is a Frobenius ϕ acting on the Witt vectors given by

ϕ
(∑

n

[xn]πn
)

=
∑
n

[xqn]πn.

It extends to an action on O(Y ) inducing an automorphism ϕ of Y . This maps the annulus with
radius ρ to the annulus with radius ρ1/q (since ϕ raises the coefficients to the q-power and leaves
invariant the variable π it is an arithmetic Frobenius and thus dilates compared to a geometric
Frobenius that would contract like in [11]). The action of ϕ on Y is thus totally discontinuous
and we set

Xad := Y/ϕZ.

One important point is the following. We put an index E when we want so specify we use one of
the spaces constructed using the field E. Let E′|E be a finite unramified extension of degree h
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whose residue field is contained in F . Since YE = YE′ (the ramified Witt vectors showing up in
the definition of YE do not change under an unramified change of E) is defined over E′ one has

YE ⊗E E′ =
∐

Gal(E′|E)

YE′

where the Frobenius ϕE permutes transitively the different components and ϕE′ = ϕhE . From this
one deduces that the finite Galois cover

Xad
E′ = Xad

E ⊗E E′ −→ Xad
E

can be identified with the unfolding morphism

YE/ϕ
hZ −→ YE/ϕ

Z.

In an another direction, if E′|E is a complete perfectoid extension of E then Xad
E ⊗̂EE′ is a

perfectoid space ([24]). We thus have the following picture:

unfold the covering Y → Y/ϕZ

scalar extension

unramified

44

ramified

++
go to the perfectoid world.

1.2. The algebraic curve. There is a natural line bundle O(1) on Xad whose pullback to Y is
trivial and given by the automorphy factor ϕ 7→ π−1. Its geometric realization is

Y ×
ϕZ

A1 −→ Y/ϕZ

where ϕ acts on A1 by multiplication by π−1. We set

P =
⊕
d∈N

H0(Xad,O(d))

as a graded algebra where

H0(Xad,O(d)) = O(Y )ϕ=πd

= {f ∈ O(Y ) | ϕ(f) = πdf}.
One has P0 = H0(Xad,OXad) = E,

P1 =
{∑
n∈Z

[xq
−n

]πn
∣∣ x ∈ F, |x| < 1

}
,

but the E-Banach spaces Pd for d ≥ 2 are more complicated (contrary to P1 their elements do not
have à priori a Laurent expansion around π = 0 in general). Nevertheless those Banach spaces are
finite dimensional in some extended sense defined by Colmez ([2]).

We now declare O(1) is ample and set

X = Proj(P ).

One of the major discoveries of [7] is that this is a one dimensional noetherian regular scheme.
This has profound consequences in p-adic Hodge theory, one of the main ones being the following.

Suppose F = C[p '
◊�Fp((T )). Then X is canonically equipped with a closed point∞ ∈ X such that:

• if Bcris is Fontaine’s ring of crystalline periods ([9])

Γ(X \ {∞},OX) = Bϕ=Id
cris ,

• if BdR is Fontaine’s field of de Rham periods then“OX,∞ = B+
dR.
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The stunning fact now is that Bϕ=Id
cris is a principal ideal domain !

The link between the adic an the algebraic curve is given by a morphism of ringed spaces

Xad −→ X

that reflects the fact that Xad is to be thought of as the analytification of X in some generalized
sense. For example:

• it induces a bijection

|Xad|cl ∼−−→ |X|
between the ”classical Tate points” of Xad and the closed points of X

• for xad 7→ x via the preceding bijection“OXad,xad
∼−−→ “OX,x.

Finally let us note that the curve X is ”complete” in the following sense. Let E(X) be the
function field of X. Then for any f ∈ E(X)× one has

deg(div(f)) = 0.

Here to define the degree of a divisor we should explain that we have a natural definition of the
degree of a closed point of X. The definition is a little bit involved in general, let us just say
that if F is algebraically closed then the degree of any closed point is 1. This completeness of X is
fundamental for the proof of the classification of vector bundles in theorem 2.1 that follows. In fact
it allows us to define the degree of a vector bundle and prove that they have Harder-Narasimhan
filtrations as in the ”classical setting”.

2. Vector bundles

We suppose from now on that F is algebraically closed.

Before going further let us say that Pic0(X) = 0 and

Pic(X) =< [O(1)] >
deg−−−→
∼

Z.

This is linked to the fact that the ring Bϕ=Id
cris is principal (for F non-algebraically closed the

equivalent of this ring is only Dedekind and Pic0(X) is non-zero in general).

Let Fq be the algebraic closure of Fq in F and L = WOE
(Fq)Q = ‘Eun the completion of the

maximal unramified extension of E. Let σ = ϕ be the Frobenius of L. We denote

ϕ-ModL = {(D,ϕ)}
the corresponding category of isocrystals where D is a finite dimensional L-vector space and ϕ
a σ-linear automorphism of D. Dieudonné and Manin have given a slope classification of such
objects. The space Y is defined over L. Thanks to this we can construct a functor

ϕ-ModL −→ BunXad

(D,ϕ) 7−→ E (D,ϕ)ad

where the geometric realization of E (D,ϕ)ad is

Y ×
ϕZ
D −→ Y/ϕZ.

The morphism Xad → X induces a GAGA functor

BunX −→ BunXad

such that E (D,ϕ)ad is the analytification of a vector bundle E (D,ϕ) on X associated to the graded
P -algebra ⊕

d≥0

H0(Xad,E (D,ϕ)ad(d)) =
⊕
d≥0

(
D ⊗L O(Y )

)ϕ⊗ϕ=πd

.
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We have the following classification theorem that is one of the main results of [7].

Theorem 2.1 ([7]). The functor

ϕ-ModL
E (−)−−−−→ BunX

is essentially surjective.

Via the Dieudonné-Manin theorem one can translate this theorem in the following way. For
each slope λ ∈ Q there is defined a slope λ stable bundle

O(λ)

on X. If λ = d
h with (d, h) = 1 and Eh|E is the degree h unramified extension, O(λ) is the push

forward of OXEh
(d) to XE via the finite Galois covering XEh

→ XE .
The preceding theorem then says that any vector bundle on X is isomorphic to⊕

i

O(λi)

for a collection of slopes (λi)i. Another way to state it in terms of semi-stability is the following
two statements:

(1) Any semi-stable vector bundle of slope λ is isomorphic to a direct sum of O(λ).
(2) The Harder-Narasimhan filtration of a vector bundle is split.

The main tools used to prove the preceding classification theorem are the following two deep
statements about periods of p-divisible reinterpreted in terms of the curve:

(1) (Lafaille/Gross-Hopkins) Any modification E ↪→ O( 1
n ) of degree −1 of O( 1

n ) is such that
E ' On, a trivial vector bundle.

(2) (Drinfeld) Any degree 1 modification On ↪→ E of On is such that E ' O( 1
r ) ⊕ On−r for

some r satisfying 1 ≤ r ≤ n.

Conversely, the preceding classification theorem can be used to obtain important informations
about periods of p-divisible groups/periods of p-adic Galois representations in general (see for
example chap. 10 of [7] and [26]). The curve/vector bundles on it together with the formalism
of Harder-Narasimhan filtrations is a machinery that starts with the preceding two results as an
input and recycles them by producing more general statements.

Finally let us remark that we have a GAGA theorem

BunX
∼−−→ BunXad .

The GAGA functor and the preceding GAGA equivalence where first introduced and proven in
([6]) with the purpose of understanding the link between the preceding classification theorem and
Kedlaya classification theorem of ϕ-modules over the so-called Robba ring associate to F ([16]). In
fact one checks using the expansion property of the action of ϕ on Y that BunXad , that is to say
ϕ-equivariant vector bundles on Y , are the same as germs of ϕ-equivariant vector bundles around
the center π = 0 of the ”punctured disk” Y . Those last objects are exactly the ϕ-modules over
the Robba ring. One then checks easily that Kedlaya’s classification and the one of [7] match up
via the GAGA functor. Kedlaya and Liu have since given a much more natural proof of GAGA
in ([17]) that allows us to deduce each classification theorem from the other one.

Finally let us note that there is more support to the fact that X is ”complete”. In fact for any
vector bundle E on X

H0(X,E ) and H1(X,E ) are finite dimensional...in the sense of Colmez ([2]).

We are going to look at an example to see what this means. For this let us pick a point∞ ∈ |X| with
residue field C. Then C is a complete algebraically closed extension of Qp (in general when F is not
algebraically closed those residue fields are perfectoid extensions of Qp). Fix t ∈ H0(X,O(1)) = P1

non-zero. There is an exact sequence

0 −→ OX
×t−−−→ OX(1) −→ i∞∗C −→ 0.
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Taking cohomology and using that H1(X,OX) = 0 (the curve has ”genus 0”, see the following
section) one obtains an exact sequence

0 −→ E −→ H0(X,O(1)) −→ C −→ 0.

This proves H0(X,O(1)) is an extension of a finite dimensional C-vector space by a finite dimen-
sional E-vector space and thus is finite dimensional in Colmez sense. Let us note too that the
preceding exact sequence is in fact nothing else than the so called fundamental exact sequence of
p-adic Hodge theory ([9]) and this type of devissage of the cohomology of vector bundles sheds
new light on it.

3. The curve compared to P1

There is a striking analogy between the classification theorem 2.1 and Grothendieck’s clas-
sification of vector bundles on P1 ([13]). In fact it is interesting to note the following coinci-
dences/discrepancies:

• Like P1, for any integer d ≥ 0 one has H1(X,O(d)) = 0. In particular, H1(X,OX) = 0
and X ”has genus 0”.

• Contrary to P1 one has H1(X,O(−1)) 6= 0 (and it is even infinite dimensional over E).

In fact this last assertion can be reinterpreted in the following ways:

• Take a non-split extension

0 −→ O −→ E −→ O(1) −→ 0

given by a non-zero class in Ext1(O(1),O) = H1(X,O(−1)). Then one checks easily that
necessarily the rank 2 vector bundle E is stable of slope 1

2 and in fact is isomorphic to

O( 1
2 ).

• Pick a closed point ∞ ∈ |X| and denote

Be := Γ(X \ {∞},OX), B+
dR := “OX,∞.

Fix t a uniformizing element of B+
dR. Cech cohomology computations around formal

neighborhoods of ∞ lead to the formulas

H1(X,O) = B+
dR[ 1

t ]/(B
+
dR + Be)

H1(X,O(−1)) = B+
dR[ 1

t ]/(tB
+
dR + Be).

Let us denote deg = −ord∞ : Be → N ∪ {−∞}. The vanishing of the first cohomology
group says exactly that (Be,deg) is almost euclidean like P1 in sense that for any x, y ∈ Be
with y 6= 0 there exists a, b such that x = ay+ b with deg(b) ≤ deg(y). The non-vanishing
of the second one says that (Be,deg) is non-euclidean contrary to P1.

We have in thus a set of ”equivalent” properties ([7] sec.5.4) that make X different from P1:

(1) H1(X,O(−1)) 6= 0
(2) There exists a stable vector bundle on X with non-integral slope.
(3) The almost euclidean ring (Be,deg) is non-euclidean.

Finally let us say that the non-vanishing of H1(X,O(−1)) makes the proof of the classification
theorem 2.1 much more difficult than Grothendieck’s for P1.

4. G-bundles on the curve ([4])

4.1. Classification in terms of Kottwitz set. Let G be a reductive group over E. There are
two equivalent definitions of a G-bundle on X:

(1) The Tannakian one: exact tensor functors

Rep(G) −→ BunX

where Rep(G) is the category of linear representations of G.
(2) The geometric one: G-torsors on X locally trivial for the étale topology.
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To go from (1) to (2) one associates to ω : Rep(G)→ BunX the torsor

Isom(ωcan, ω)

where ωcan(V, ρ) = V ⊗E OX . To go from (2) to (1) one associates to T over X the functor

(V, ρ) 7−→ T ×
ρ
V.

Recall Kottwitz set ([20])

B(G) = G(L)/σ-conjugacy.

If b ∈ G(L) it defines an isocrystal with a G-structure

Rep(G) −→ ϕ-ModL

(V, ρ) 7−→ (VL, ρ(b)σ).

Composing with the functor

E (−) : ϕ-ModL −→ BunX

we obtain a G-bundle Eb. The main theorem of [4] is now the following.

Theorem 4.1. The preceding construction induces a bijection of pointed sets

B(G)
∼−−→ H1

ét(X,G)

[b] 7−→ [Eb].

This theorem has very nice features. Let us give some examples:

• There is an inclusion of Galois cohomology

H1(E,G) ⊂ B(G)

that identifiesH1(E,G) with the subset of ”unit root” (that is to say slope 0)G-isocrystals.
At the level of H1(X,G) this is given by the pullback in étale cohomology along the
structural morphism X → Spec(E).

• When G is quasi-split there is a good dictionary between Kottwitz description of the set
B(G) and Atiyah-Bott reduction theory for G-bundles. For example: b is basic if and only
if Eb is semi-stable.

4.2. The case of tori: class field theory shows up. The proof of theorem 4.1 is quite involved
from the p-adic Hodge theoretic point of view. Nevertheless, after having proved this theorem,
the author thought that maybe he should have found a simple proof for tori first. This has lead
him finally to consider the links between the curve and class field theory. Here is how.

Let T be torus over E. The map B(T ) → H1(X,T ) is a morphism of groups. Let F be a
functor from the category of tori over finite extensions of E toward abelian groups. According to
Kottwitz ([20] 2.2) a morphism B(−)→ F is an isomorphism if and only if:

(1) one has F(Gm) = Z,
(2) for E′|E finite one has an identification F(ResE′/ET ) = F(T ),
(3) The functor F is exact on the right.

For H1(X,−) property (1) is easily satisfied since Pic(X) =< [O(1)] >. Property (2) is evident
since, if f : XE′ → XE , H1(XE′ , T ) = H1(XE , f∗T ). To prove property (3) one is naturally lead
to the following theorem.

Theorem 4.2. For T a torus over E on has H2(X,T ) = 0.

A dévissage using an Hochschild-Serre spectral sequence for a finite extension of E shows that it
suffices to proves the result for a split torus, that is to say, up to replacing E by a finite extension,
the following theorem.

Theorem 4.3. On has H2(X,Gm) = 0.
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Thanks to Grothendieck ([14] 2.2) this cohomological Brauer group can be identified with the
Brauer group

Br(X) = {Azumaya algebras over X}/ ∼ .
We are thus lead to prove the following theorem.

Theorem 4.4. On has Br(X) = 0.

Here is the key proposition used to prove this theorem. This is where class field theory shows
up in an unexpected way.

Proposition 4.5 (Key proposition). The morphism Br(E)→ Br(X) is zero.

Proof. Let B be a simple E-algebra. Local class field theory (computation of Br(E)) says that
there exists an isoclinic isocrystal (D,ϕ) ∈ ϕ-ModL such that B ' End(D,ϕ). Then one checks
easily that by applying the functor E (−) one has

B⊗E OX
∼−−→ E nd

(
E (D, ϕ)

)
.

�
The remaining part of the proof of theorem 4.4 goes the following way. The PGLn-torsor

associated to an Azumaya algebra of rank n2 on X has a canonical Atiyah-Bott reduction to
a parabolic subgroup. More precisely, for such an Azumaya algebra A its Harder-Narasimhan
filtration (A≥λ)λ∈Q (part of the filtration where the H.N.-slope is greater than or equal to λ)
satisfies properties such as A≥λ.A≥µ ⊂ A≥λ+µ. One then checks that the datum given by the
sub-algebra A≥0 defines such a reduction.

Using a statement analogous to the fact that the Harder-Narasimhan filtration of a vector
bundle is split, one then proves that this has in fact a reduction to a semi-stable torsor of a Levi
subgroup of PGLn. In terms of the preceding notations this semi-stable torsor is associated to the
algebra A≥0/A>0. Now, thanks to theorem 4.1 there is a ⊗-equivalence

H0(X,−) : Buns.s.,slope 0
X

∼−−→ finite dimensional E vector spaces

whose inverse is given by V 7→ V ⊗E OX . We deduce from this that if B is a slope 0 semi-stable
Azumaya algebra then B = B⊗E OX with B a simple E-algebra. We can then apply proposition
4.5 to conclude. �

4.3. Vice Versa. We have seen that local class field theory implies theorem 4.1 for tori. Con-
versely, suppose theorem 4.1 known. Since the map B(GLn)→ B(PGLn) is surjective we deduce
the vanishing theorem 4.4 and thus in particular proposition 4.5. Reversing the proof of propo-
sition 4.5 and using the classification theorem for vector bundles we deduce a new proof of local
class field theory. Of course, this is probably the most complicated proof ever given of local class
field theory. That being said, it is quite natural and tells us that the vanishing theorem 4.4 really
encodes local class field theory.

5. Archimedean/p-adic twistors

Let

P̃1
R = P1

C/z ∼ − 1
z

be the Twistor projective line over R that is to say the real quadric without real point or the
Severi-Brauer variety associated to Hamilton quaternions over R. In the preceding notation P1

C
is considered as a scheme over R by restriction of scalars. It seems like this is the analog of our
curve X for E = R, the analogue for E = C being P1

C.

Over C we have Grothendieck’s classification of vector bundles that looks like classification
theorem 2.1. More generally, for a reductive group G over C, we have a bijection

B(G)
∼−−→ H1(P1

C, G)

[ν] 7−→ [ν∗O(1)]
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where B(G) is Kottwitz set of algebraic morphisms C× → G(C) up to G(C)-conjugation ([19], [13]).

Over R the classification of vector bundles over P̃1
R is remarkably analogous to theorem 2.1.

More precisely, denote

u : P1
C → P̃1

R,

a Z/2Z-Galois covering. One defines for each slope λ ∈ 1
2Z a vector bundle O(λ) on P̃1

R such that:

• if λ /∈ Z then O(λ) = u∗OP1
C
(2λ),

• if λ ∈ Z then u∗O(λ) = OP1
C
(2λ).

Then one checks easily that the exact analogue of theorem 2.1 holds for P̃1
R. More generally, if G

is reductive over R, we have the following proposition.

Proposition 5.1. There is a bijection B(G)
∼−−→ H1(P̃1

R, G).

Here B(G) = H1
alg(WR, G(C)) is Kottwitz set of equivalence classes of cocycles WR → G(C)

(where the Weil group WR acts through its quotient Gal(C|R)) whose restriction to C× is algebraic
([19]). The proof of the preceding proposition is an exercise in descent theory along u. In fact,
WR = C×∪C×c̃ where c̃ is a lift of complex conjugation satisfying c̃2 = −1. Moreover, if f(z) = − 1

z̄

there is an isomorphism v : f∗OP1
C
(1)

∼−−→ OP1
C(1)(1) satisfying

v ◦ f∗v = −1.

A cocycle computation then shows that

H1
alg(C× o Gal(C|R), G(C))

∼−−→ H1(P1
R, G)

H1
alg(WR, G(C))

∼−−→ H1(P̃1
R, G).

Suppose E = Qp and F = “K[

, in which case X is equipped with an action of Gal(K|K)

stablizing a closed point ∞ whose residue field is “K.

Hodge theory p-adic Hodge theory

Vector bundles on P̃1
R Vector bundles on X

C×-vector bundles on P̃1
R Gal(K|K)-equivariant vector bundles on X®

Modification at ∞ of C×-v.b. E1 to E2

on P̃1
R with E1 s.s. of slope 0

®
Modification at ∞ of Gal(K|K)-v.b. E1 to E2

on X with E1 s.s. of slope 0

For the last line:

• To any real Hodge structure on the real vector space V there is associated such a modifi-
cation with E1 = V ⊗R OP̃1

R
and the modification at ∞ is given by the Hodge filtration of

VC via the lattice Fil0(VC ⊗ C((t))) where CJtK = “OP1
C,∞

, the modification at 0 is given by

the complex conjugate of the Hodge filtration. This gives rises to a Twistor as defined by
Simpson ([27]).

• To any de Rham Galois representation V of Gal(K|K) there is associated such a modifi-
cation with E1 = V ⊗ OX and the modification is given by the lattice DdR(V ) ⊗K B+

dR

where DdR(V ) is the filtered K-vector space defined by Fontaine.

Such equivariant modifications of vector bundles on X show up in a fundamental way in the
chapter 10 of [7]. Finally let us point that in ([6]) the author gave a classification of such modifi-
cation (without the Galois action) in terms of ”Sthukas” that is to say in this context in terms of
some Breuil-Kisin type ϕ-modules over the ring WOE

(OF ).
Recently ([1]) Bhatt, Morrow and Scholze have announced the construction of:

• a cohomology theory for proper smooth algebraic varieties having good reduction over K
producing such ϕ-modules,
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• a q-de Rham cohomology theory for proper smooth algebraic varieties over Q that should
allow to interpolate between the two columns of the preceding array that is to say between
the archimedean place and primes p of good reduction.

6. The fundamental class of the curve is the fundamental class of class field
theory ([4])

6.1. The fundamental class. Using the vanishing 4.3 of H2(X,Gm), the computation of the
Picard group of X and Kummer exact sequence we obtain a trace isomorphism for any integer n

tr : H2(X, lµ.. n)
∼−−→ Z/nZ.

Let us denote

ηX := c1(O(1)) ∈ H2(X, lµ.. n).

One has tr(ηX) = 1 and we call ηX the fundamental class of X.

6.2. Étale cohomology of local systems on the curve. One has the following theorem.

Theorem 6.1 ([7] 8.6). The curve X is geometrically simply connected that is to say any finite
étale cover of X ⊗E E has a section.

Let us denote ΓE = Gal(E|E). From this one deduces an equivalence between finite discrete
ΓE-modules and étale local systems on X. Now, working again with Kummer sequences and
Hoschild-Serre spectral sequences we obtain the following theorem.

Theorem 6.2. Let M be a finite discrete ΓE-module and F the associated local system on Xét.
For 0 ≤ i ≤ 2 one has an an isomorphism

Hi(ΓE ,M)
∼−−→ Hi(X,F ).

The most striking fact is now the following. Via the preceding isomorphism

(1) Br(E)[n] = H2(E, lµ.. n)
∼−−→ H2

ét(X, lµ.. n)

the fundamental class of local class field corresponds to the fundamental class ηX of the curve.

Another way to state it is the following. The fundamental class of class field theory in Br(E)[n]
is the class of the gerb of fibre functors on the Tannakian category of isocrystals whose slopes lie
in 1

nZ. This Tannakian category is a non-geometric algebraic object: it is defined by some tensor
relations among generators of this Tannakian category. The preceding tells us that the pullback
to X of this gerb has a geometric interpretation: this is the gerb of n-roots of O(1). Via the
isomorphism (1) this characterizes completely this gerb.

6.3. Geometric interpretation of some results of Tate in Galois cohomology. Theorem
6.2 allows us to give some nice interpretations of the following two results of Tate:

(1) Tate-Nakayama duality is nothing else than Poincaré duality in étale cohomology of X
(2) Tate’s formula for the Euler-Poincaré characteristic in Galois cohomology is nothing else

than the usual formula for the Euler-Poincaré characteristic of a local system on a curve
(Grothendieck-Ogg-Shafarevich).

7. Conjectures: ramified local systems and coverings

The preceding results on Galois cohomology have lead us to a set of conjectures.
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7.1. The function field of the curve is (C1). Of course, theorem 4.4 would have been much
easier if we had an analog of Tsen’s theorem for X. In fact we conjecture the following.

Conjecture 7.1. The function field of X is (C1).

In terms of p-adic Hodge theory this function field is

Frac(B+
cris)

ϕ=Id.

Of course, this is not of finite type over E. Note that since X is geometrically connected the
algebraic closure of E in this function field is E itself. Moreover one can deduce from theorem 4.4
the fact that the Brauer group of this function field is zero ([4] 2.5).

Let us remark that for E = C (see sec.5) the preceding conjecture is satisfied by Tsen. For
E = R this is an old conjecture due to Lang ([21] p.379).

7.2. Comparison with the étale cohomology of Xad. The morphism Xad → X induces a
morphism of sites Xad

ét → Xét. We thus pose the following conjecture.

Conjecture 7.2. For any torsion étale sheaf F on Xét there is an isomorphism

H•(X,F )
∼−−→ H•(Xad,F ).

This conjecture should allow us to prove the vanishing of étale cohomology in degrees > 2 for
X. Moreover it should imply the fact that the function field of X has cohomological dimension
≤ 1.

7.3. Local systems on open subsets and constructible sheaves. For F ∈ Dbc(Xét,Z/nZ)
let us set

D(F ) := RH om(F ,Z/nZ(1)[2]).

It is then natural to hope for a generalization of Tate-Nakayama duality aka Poincaré duality for
local systems.

Conjecture 7.3. For F ∈ Dbc(Xét,Z/nZ) the pairing

RΓ(X,F )×RΓ(X,D(F )) −→ H2(X,Z/nZ(1))
∼−→
tr

Z/nZ

is perfect.

This is reduced to proving that for F a Z/nZ-étale local system on an open subset U of X and
0 ≤ i ≤ 2 the pairing

Hi
c(U,F )×H2−i(X,F∨(1)) −→ H2(X,Z/nZ(1))

∼−−→ Z/nZ
is perfect. Here by definition Hi

c(U,F ) := Hi(X, j!F ) where j : U ↪→ X.

There is a good category of étale torsion, resp. Q`, resp. Qp-perverse sheaves on X. Those
categories of perverse sheaves are defined by the exact same formulas defining perverse sheaves
on a ”usual” smooth projective curve over a field (the fact that there is a t-structure on the
corresponding bounded derived category with constructible cohomology needs a proof; one has
to check that for j : U ↪→ X an open embedding and F a local system on U then Rj∗F is
constructible, which is not evident but true). Let us denote Λ ∈ {torsion,Q`,Q`}. There is an
embedding

RepΛ(ΓE) ⊂ PervΛ(X).

where the left member is the category of local systems. This is compatible with Verdier duality
where on RepΛ(ΓE) Verdier duality is nothing else than Cartier duality M 7→M∨(1). Conjecture
7.3 tells us that there should exist an extension of Tate-Nakayma duality to the cohomology of
those perverse sheaves.
In particular, for almost everywhere unramified Galois representations of the function field of X,
that is to say germs of local systems on non-empty open subsets U of X, there exists a coho-
mology theory F 7→ H•(U,F ) := H•(X, j∗F ) with j : U ↪→ X, satisfying a genereralization of
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Tate-Nakayama duality.

Question 7.4. The local Langlands correspondence says there is a natural bijection

RepFrob-s.s.
Q`

(WE)/ ∼ '
∐
n≥1

{
Irreducible smooth Q`-representations of GLn(E)

}
/ ∼ .

Is it possible to extend this to{
(finitely ramified) Weil sheaves on open subsets of X

}
/ ∼ '

{
Some unknown objects

}
/ ∼ ?

From this perspective it would seem interesting to study ramified coverings of the curve. The
author knows very little about their structure (Picard group, computation of h1(O), vector bundles
on them...).

7.4. The fundamental group of an open subset. If A is a profinite set we denote

F (A)

the profinite free-group on A. This means that if G is a profinite group then

Hom(F (A), G) = C (A,G)

(continuous maps). Its topological abelianisation is

F (A)ab = C (A, Ẑ).

Let

U = X \ {x1, . . . , xr}

be an open subset of X. Let us remark that for E′|E finite, in the étale covering XE′ → XE each
closed point is totally decomposed (this is due to the fact that the residue fields at closed points
are algebraically closed since F is algebraically closed itself). In particular in the pro-covering
f : XE → XE the fibre over a closed point x of X is isomorphic as a profinite set to

f−1(x) ' HomE(E, k(x)),

a principal homogeneous space under ΓE . For each i, “OX,xi
is isomorphic (non-canonically) to

k(xi)JT K. One deduces that the π1 of Spec(“OX,xi
[ 1
ti

]) is isomorphic to Ẑ(1). Let us denote

A =
r∐
i=1

HomE(E, k(xi)) ' {1, . . . , r} × ΓE .

The morphism
r∐
i=1

Spec
(“OX,xi [

1
ti

]
)
−→ U

then induces a morphism

F (A) −→ πgéo
1 (U).

Since X is geometrically connected this is surjective.

Conjecture 7.5. The preceding surjective morphism F (A)→ πgéo
1 (U) is an isomorphism.

We remark that this is true for E = C or E = R (see sec. 5).
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7.5. Anabelian interpretation of the fundamental class. One can check the following result
using Gabber’s cohomological absolute purity ([12]).

Theorem 7.6. Conjecture 7.5 is satisfied at the level of the abelianisation of the fundamental
group:

r⊕
i=1

C
(
HomE(E, k(xi)), Ẑ(1)

) ∼−−→ πgeo,ab1 (U).

The πab1 does not depend on the choice of a base point and the preceding theorem takes into
account the action of ΓE independently of this choice of a base point. Now, suppose r = 1. The
extension given by the potentially abelian fundamental group of U is

1 −→ πgeo,ab1 (U) −→ π1(U)/πgeo1 (U)der −→ ΓE −→ 1.

It is gives us a class in

H2
(
ΓE ,C (ΓE , Ẑ)(1)

)
= H2(ΓE , Ẑ(1)).

Conjecture 7.7. The class of the extension given by the potentially abelian fundamental group
is given by the set of compatible fundamental classes of local class field theory in

H2(ΓE , Ẑ(1)) = lim
←−
n

Br(E)[n].

8. Speculations: Fourier transform and p-adic local Langlands correspondence

The starting point is the following. Take E = Qp and F = “Q[p. The curve X is then equipped

with an action of Gal(Qp|Qp). We then have two equivalences: the one we saw before

RepQp

(
Gal(Qp|Qp)

)
' Qp-local systems on Xét

and the following

RepQp

(
Gal(Qp|Qp)

) ∼−−→ Gal(Qp|Qp)-equivariant slope 0 semi-stable vector bundles on X

V 7−→ V ⊗Qp
OX .

We thus deduce in an unnatural way an equivalence between the right sides of the two preced-
ing equivalences. One can even check that this equivalence preserves cohomology, that is to say
Gal(Qp|Qp)-equivariant cohomology of slope 0 semi-stable vector bundles corresponds to Galois
cohomology.

The first question is the following:

• Is there a natural geometric way to describe directly the equivalence between étale Qp
local systems and equivariant slope 0 semi-stable bundle on X ?

• Can it be extended to more general objects: for example Qp-perverse sheaves on one side
and non-semi-stable equivariant vector bundles on the other side ?

A ”related” (the author’s mind on this point is not clear at all) question is the following. Recall
([5]) that we have in terms of Scholze’s diamonds ([25])

Xad,�
F = (Spa(F )× Spa(Qp)�)/ϕZ

where ϕ is the Frobenius of the first factor Spa(F ). We then have two structural maps

Spa(Qp)� × Spa(Qp)�

German strucural map

vv
Australian structural map

((
Spa(Qp)� Spa(Qp)�.

In terms of section 5 the left structural map is linked to the moduli spaces of p-divisible groups
defined and studied by Rapoport and Zink ([23]). In their situation they look at p-divisible groups
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over changing bases. The right structural map is linked to moduli of p-divisible groups defined
and studied by Kisin where the base is fixed but the coefficients vary ([18], [22]). Here is a set of
questions:

(1) Is is possible to use this diagram to define a geometric Fourier transform ?
(2) Is there a way to exploit the automorphism of Spa(Qp)� × Spa(Qp)� defined by switching

both factors ?

Let us note that Kisin already remarked in [18] that the two types of spaces, the Australian one
and the German one, seem to have the same type of singularities, which is a motivation for the
preceding point (2).

This seems related to Colmez local Langlands correspondence ([3]) in the following way. There
is an action

Spa(Qcycp )� × Spa(Qcycp )� N(Qp)~~

where N is the normalizer in GL2(Qp) of the maximal split torus,

N(Qp) = (Q×p ×Q×p ) oS2.

Here to have an action of Q×p on Spa(Qcycp )� we use the action of Z×p = Gal(Qcycp |Qp) and make

pZ act as ϕZ, that is to say
Q×p = Gal(Qcycp |Qp)× ϕZ.

The main difficulty in the construction of [3] is to define an action of the non-trivial element
of the Weyl group of GL2, which corresponds to this permutation of the two factors Spa(Qp)�.
Moreover, what Colmez does is, starting from a (ϕ,Γ)-module, to construct a Kirilov model of a
representation of GL2(Qp). The action of the non-trivial element of the Weyl group on Kirilov
models is linked to epsilon factors...thus to Fourier transform. Once again, the author’s mind on
those problems is not clear at all, but let us point that for any n the Weyl group of GLn appears
as an automorphism group of the following product

Spa(Qp)� × · · · × Spa(Qp)�︸ ︷︷ ︸
n-times

Sn
~~ .
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