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Abstract

In this paper, we introduce a novel approach, called Input Output Kernel Regression
(IOKR), for learning mappings between structured inputs and structured outputs. The
approach belongs to the family of Output Kernel Regression methods devoted to regres-
sion in feature space endowed with some output kernel. In order to take into account
structure in input data and benefit from kernels in the input space as well, we use the
Reproducing Kernel Hilbert Space theory for vector-valued functions. We first recall the
ridge solution for supervised learning and then study the regularized hinge loss-based
solution used in Maximum Margin Regression. Both models are also developed in the
context of semi-supervised setting. We also derive an extension of Generalized Cross
Validation for model selection in the case of the least-square model. Finally we show
the versatility of the IOKR framework on two different problems: link prediction seen
as a structured output problem and multi-task regression seen as a multiple and inter-
dependent output problem. Eventually, we present a set of detailed numerical results
that shows the relevance of the method on these two tasks.

1 Introduction

Many real world applications involve objects with an explicit or implicit discrete structure.
Texts, images and videos in document processing and retrieval as well as genes and proteins
in computational biology are all examples of implicit structured data that we may want to
use as inputs or outputs in a prediction system. Besides these structured objects, structured
output prediction can also concern multiple outputs linked by some relationship that is rele-
vant to take into account. Surprisingly, although a lot of attention has been paid to learning
from structured inputs for now two decades, this problem, often referred as structured output
learning, has emerged relatively recently as a field of interest in statistical learning. In the
literature, structured output prediction has been addressed from two main angles. A first
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angle consists in discriminative learning algorithms that provide predictions by maximizing
a scoring function over the output space. Conditional Random Fields (Lafferty et al., 2001)
and their extension to kernels (Lafferty et al., 2004) were first proposed for discriminative
modeling of graph-structured data and sequence labeling. Other discriminative learning al-
gorithms based on maximum margin such as structured SVM (Tsochantaridis et al., 2004,
2005), Maximum Margin Markov Networks (M3N) (Taskar et al., 2004) or Maximum Mar-
gin Regression (Szedmak et al., 2005) have then be developed and thoroughly studied. A
common approach to those methods consists in defining a linear scoring function based on
the image of an input-output pair by a joint feature map. Both methods, either based on
Conditional Random Fields or maximum-margin techniques, are costly to train and gener-
ally assume that the output set Y is discrete. Keeping the idea of a joint feature map over
inputs and outputs, a generative method called Joint Kernel Support Estimation has been
recently proposed (Lampert and Blaschko, 2009). In this approach, a one-class SVM is used
to learn the support of the joint-probability density p(x, y). More recently, another angle to
structured output prediction, that we called Output Kernel Regression (OKR), has emerged
around the idea of using the kernel trick in the output space and making predictions in a
feature space associated to the output kernel. As a first example, the seminal work of Kernel
Dependency Estimation (KDE) was based on the definition of an input kernel as well as an
output kernel. After a first version using kernel PCA to define a finite-dimensional output
feature space (Weston et al., 2003), a more general KDE framework consisting in learning
a linear function from the input feature space to the output feature space was proposed by
Cortes et al. (2005). In this setting, predictions in the original output space are retrieved
by solving a pre-image problem. Interestingly, the idea of Output Kernel Regression can be
implemented without defining an input kernel as it is shown with Output Kernel Tree-based
methods (Geurts et al., 2006, 2007a,b). In these approaches, a regression tree whose outputs
are linear combinations of the training outputs in the output feature space is built using
the kernel trick in the output space: the loss function which is locally minimized during
the construction only involves inner products between training outputs. These methods are
not limited to discrete output sets and they do not require expensive computations to make
a prediction nor to train the model. Combined in ensembles such as random forests and
boosting, they exhibit excellent performance. However these tree-based approaches suffer
from two drawbacks: trees do not take into account structured input data except by using
a flat description of them and the associated (greedy) building algorithm cannot be easily
extended to semi-supervised learning.

In this work, we therefore propose to extend the methodology of Output Kernel Re-
gression to another large family of nonparametric regression tools that allows to tackle
structured data in the input space as well as in the output space. Moreover we will show
that this new family of tools is useful in a semi-supervised context. Called Input Output
Kernel Regression, this novel family for structured output prediction from structured inputs
relies on Reproducing Kernel Hilbert Spaces (RKHS) for vector-valued functions with the
following specificity: the output vector belongs to some output feature space associated to a
chosen output kernel, as introduced in the following works (Brouard et al., 2011; Brouard,
2013). Let us recall that in the case of scalar-valued functions, the RKHS theory offers
a flexible framework for penalized regression as witnessed by the abundant literature on
the subject (Wahba, 1990; Pearce and Wand, 2006). A penalized regression problem is

2



seen as a minimization problem in a functional space built on an input scalar-valued ker-
nel. Depending the nature of the prediction problem, appropriate penalties can be defined
and representer theorem can be proven, facilitating the minimization problem to be further
solved. In the RKHS theory, regularization constraint on the geometry of the probability
distribution of labeled and unlabeled data can also be added to perform semi-supervised
regression (Belkin et al., 2006). When functions are vector-valued, the adequate RKHS the-
ory makes use of operator-valued kernels (Pedrick, 1957; Senkene and Tempel’man, 1973;
Micchelli and Pontil, 2005). Operator-valued kernels have already been proposed to solve
problems of multi-task regression (Evgeniou et al., 2005; Baldassarre et al., 2012), struc-
tured classification (Dinuzzo et al., 2011), vector autoregression (Lim et al., 2013) as well
as functional regression (Kadri et al., 2010). The originality of this work is to consider that
the output space is a feature space associated to a chosen output kernel. This new approach
not only enhances setting of pattern recognition tasks by requiring to pay attention on both
input and output sets but also opens new perspectives in machine learning. It encompasses
in a unique framework kernel-based regression tools devoted to structured inputs as well as
structured outputs.

1.1 Related Works

The paper of Micchelli and Pontil (2005) is devoted to the problem of learning functions
with output values in a Hilbert space. They present the RKHS theory for vector-valued
functions and study some regularization functionals in this context. Based on the work of
Micchelli and Pontil (2005), Caponnetto et al. (2008) addressed the issue of universality
of operator-valued kernels. Álvarez et al. (2012) reviewed the different methods that have
been proposed to design or learn kernel in multi-output or multi-task learning. In this
review, they also analyzed the connections existing between the bayesian and regularization
frameworks.

In Brouard et al. (2011), the RKHS theory for vector-valued functions was used to
address the output kernel regression problem in the semi-supervised setting. This approach
was used to solve the link prediction problem. By working in the framework of RKHS theory
for vector-valued functions, we extended the manifold regularization framework introduced
by Belkin et al. (2006) to functions with values in a Hilbert space. We have also shown
that the first step of KDE (Cortes et al., 2005) is a special case of IOKR using a particular
operator-valued kernel.

Kadri et al. (2013) studied a formulation of KDE using operator-valued kernels. The
first step of this approach is identical to the IOKR framework developed in Brouard et al.
(2011) and Brouard (2013). The second step consists in extending the pre-image step
of KDE using the RKHS theory for functions with values in a Hilbert space. They also
proposed two operator-valued kernels based on covariance operators. They show that using
these operator-valued kernels allow to express the pre-image problem using only input and
output Gram matrices.

In parallel of Brouard et al. (2011), Minh and Sindhwani (2011) generalized the manifold
regularization framework proposed by Belkin et al. (2006) for semi-supervised learning to
functions with values in a Hilbert space.
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1.2 Contributions

We introduce Input Output Kernel Regression (IOKR), a novel class of penalized regression
problems based on the definition of an output scalar-valued kernel and an input operator-
valued kernel. This article is an extended version of Brouard et al. (2011), that addresses
more generally the problem of structured output prediction. In this work, we present sev-
eral contributions regarding the RKHS theory for functions with values in a Hilbert space.
We present the representer theorem for vector-valued functions in the semi-supervised set-
ting. Based on this representer theorem, we study two particular models obtained using
two different loss functions: the IOKR-ridge model introduced in Brouard et al. (2011) and
a new model called IOKR-margin. This model extends the Maximum Margin Regression
(MMR) framework introduced by Szedmak et al. (2005) to operator-valued kernels and to
the semi-supervised setting. In this paper, we also put the reformulation of Kernel Depen-
dency Estimation proposed by Cortes et al. (2005) into perspective in the Output Kernel
Regression framework. We present the solutions corresponding to decomposable kernels. In
the case of the least-squared loss function, we describe a new tool for model selection, which
was first introduced in Brouard (2013). The selection of the hyperparameters is done by
estimating the averaged error obtained with leave-one-out cross-validation as a closed-form
solution. We show the versatility of the IOKR framework on two different problems: link
prediction and multi-task regression. Finally, we present numerical results obtained with
IOKR on these two tasks.

1.3 Organization of the Paper

This paper is organized as follows. In Section 2, we introduce the Output Kernel Regression
approach, which can be used to solve structured output prediction problems. In Section 3 we
describe the RKHS theory devoted to vector-valued function and present our contributions
to this theory in the supervised and semi-supervised settings. We also present in this section
models based on decomposable operator-valued kernels. We then show in Section 4 that, in
the case of the least-squares loss function, the leave-one-out criterion can be estimated by
a closed-form solution. The Section 5 is devoted to the framework of Input Output Kernel
Regression (IOKR). In Section 6, the IOKR approach is applied on different link prediction
problems and is illustrated on a multi-task regression problem.

The notations used in this paper are summarized in Table 1.

2 From Output Kernel Regression to Input Output Kernel
Regression

We consider the general regression task consisting in learning a mapping between an input
set X and an output set Y. We assume that both X and Y are sample spaces and that
Sn = {(xi, yi), i = 1...n} is an i.i.d. sample drawn from the joint probability law P defined
on X × Y. Outputs are supposed to be structured, for example objects such as sequences,
graphs, nodes in a graph, or simply vectors of interdependent variables. It is realistic
to assume that one can build a similarity κy : Y × Y → R between the elements of the
output set Y, such that κy takes into account the inherent structure of the elements of Y
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Meaning Symbol

number of labeled examples `
number of unlabeled examples n
input set X
set of labeled examples X`
union of the labeled and unlabeled sets X`+n
output set Y
input scalar kernel κx : X × X → R
output scalar kernel κy : Y × Y → R
input feature space Fx
output feature space Fy
input feature map ϕx : X → Fx
output feature map ϕy : Y → Fy
set of bounded operators from an Hilbert space F to itself B(F)
set of bounded operators from F to an Hilbert space G B(F ,G)
operator-valued kernel Kx : X × X → B(Fy)
reproducing kernel Hilbert space of Kx H,HKx

canonical feature map of Kx φx : X → B(Fy,H)
gram matrix of Kx on X` and X`+n Kx` ,Kx`+n

gram matrix of κx on X` and X`+n Kx` ,Kx`+n

gram matrix of κy on Y` Ky`

graph laplacian L
matrix vectorization vec
Kronecker product ⊗
Hadamard product (element-wise product) ◦

Table 1: Notations used in this paper

and has the properties of a positive definite kernel. Then, due to the Moore-Aronszajn
theorem (Aronszajn, 1950), there exists a Hilbert space Fy, called a feature space, and a
corresponding function ϕy : Y → Fy, called a feature map such that:

∀(y, y′) ∈ Y × Y, κy(y, y′) = 〈ϕy(y), ϕy(y
′)〉Fy .

The regression problem between X and Y can be decomposed into two tasks (see Figure 1):

• the first task is to learn a function h from the set X to the Hilbert space Fy
• the second one is to define or learn a function f from Fy to Y to provide an output

in the set Y.

We call the first task, Output Kernel Regression (OKR), referring to previous works
based on Output Kernel Trees (OK3) (Geurts et al., 2006, 2007a) and the second task, a
pre-image problem. In this paper, we develop a general theoretical and practical framework
for the OKR task, allowing to deal with structured inputs as well as structured outputs. To
illustrate our approach, we have chosen two structured output learning tasks which do not
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Figure 1: Schema of the Output Kernel Regression approach.

require to solve a pre-image problem. One is multi-task regression for which the dimension
of the output feature space is finite, and the other one is link prediction for which prediction
in the original set Y is not required. However, the approach we propose can be combined
with pre-image solvers now available on the shelves. The interested reader may want to
refer to Honeine and Richard (2011) or Kadri et al. (2013) to benefit from existing pre-image
algorithms to solve structured output learning tasks.

In this work, we propose to build a family of models and learning algorithms devoted to
Output Kernel Regression that present two additional properties compared to OK3-based
methods: namely, models are able to take into account structure in input data and can be
learned within the framework of penalized regression, enjoying various penalties including
smoothness penalties for semi-supervised learning. To achieve this goal, we choose to use
kernels both in the input and output spaces. As the models have values in a feature
space and not in R, we turn to the vector-valued reproducing kernel Hilbert spaces theory
(Pedrick, 1957; Senkene and Tempel’man, 1973; Burbea and Masani, 1984) to provide a
general framework for penalized regression of nonparametric vector-valued functions. In
that theory, the values of kernels are operators on the output vectors which belong to some
Hilbert space. Introduced in machine learning by the seminal work of Micchelli and Pontil
(2005) to solve multi-task regression problems, operator-valued kernels (OVK) have then
been studied under the angle of their universality (Caponnetto et al. (2008); Carmeli et al.
(2010)) and developed in different contexts such as structured classification (Dinuzzo et al.,
2011), functional regression (Kadri et al., 2010), link prediction (Brouard et al., 2011) or
semi-supervised learning (Minh and Sindhwani, 2011; Brouard et al., 2011). With operator-
valued kernels, models of the following form can be constructed:

∀x ∈ X , h(x) =
n∑
i=1

Kx(x, xi)ci, ci ∈ Fy, xi ∈ X , (1)

extending nicely the usual kernel-based models devoted to real-valued functions.

In the case of IOKR, the output Hilbert space Fy is defined as a feature space related to
a given output kernel. We therefore need to define a triplet (κy,Fy,Kx) as a pre-requisite
to solve the structured output learning task. By explicitly requiring to define an output
kernel we emphasize the fact that an input operator-valued kernel cannot be defined without
calling into question the output space, Fy, and therefore, the output kernel κy. We will
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Figure 2: Diagrams describing Kernel Dependency Estimation (KDE) on the left and Input
Output Kernel Regression (IOKR) on the right.

show in Section 6 that the same structured output prediction problem can be solved in
different ways using different values for the triplet (κy,Fy,Kx).

Interestingly, IOKR generalizes Kernel Dependency Estimation (KDE), a problem that
was introduced in Weston et al. (2003) and was reformulated in a more general way by
Cortes et al. (2005). If we call Fx a feature space associated to a scalar input kernel
κx : X × X → R and ϕx : X → Fx a corresponding feature map, KDE uses Kernel Ridge
regression to learn a function h from X to Fy by building a function g from Fx to Fy and
composing it with the feature map ϕx (see Figure 2). The function h is modeled as a linear
function: h(x) = Wϕx(x), where W ∈ B(Fx,Fy) is a linear operator from Fx to Fy. The
second phase consists in computing the pre-image of the obtained prediction.

In the case of IOKR, we build models of the general form introduced in Equation (1).
Denoting φx the canonical feature map associated to the OVK Kx, which is defined as:
φx(x) = Kx(·, x), we can draw the chart depicted in Figure 2 on the right. The function φx
maps inputs from X to B(Fy,H). Indeed the value φx(x)y = Kx(·, x)y is a function of the
RKHS H for all y in Fy.

The model h is seen as the composition of a function g from B(Fy,H) to the output
feature space Fy and the input feature map φx. It writes as follows:

∀x ∈ X , h(x) = φx(x)∗
n∑
i=1

φx(xi)ci.

We can therefore see on Figure 2 how IOKR extends KDE. In Brouard et al. (2011), we have
shown that we retrieve the model used in KDE when considering the following operator-
valued kernel:

Kx(x, x′) = κx(x, x′) ∗ I,

where I is the identity operator from Fy to Fy. Unlike KDE, that learns independently each
component of the vectors ϕy(y), IOKR takes into account the structure existing between
these components.

The next section is devoted to the RKHS theory for vector-valued functions and to our
contributions to this theory in the supervised and semi-supervised settings.
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3 Operator-Valued Kernel Regression

In the following, we briefly recall the main elements of the RKHS theory devoted to vector-
valued functions (Senkene and Tempel’man, 1973; Micchelli and Pontil, 2005) and then
present our contributions to this theory.

Let X be a set and Fy a Hilbert space. In this section, no assumption is needed about
the existence of an output kernel κy. We note ỹ the vectors in Fy. Given two Hilbert spaces
F and G, we note B(F ,G) the set of bounded operators from F to G and B(F) the set of
bounded operators from F to itself. Given an operator A, A∗ denotes the adjoint of A.

Definition 1 An operator-valued kernel on X ×X is a function Kx : X ×X → B(Fy) that
verifies the two following conditions:

• ∀(x, x′) ∈ X × X , Kx(x, x′) = Kx(x′, x)∗,

• ∀m ∈ N, ∀Sm = {(xi, ỹi)}mi=1 ⊆ X × Fy,
∑m

i,j=1〈ỹi,Kx(xi, xj)ỹj〉Fy ≥ 0 .

The following theorem shows that given any operator-valued kernel, it is possible to
build a reproducing kernel Hilbert space associated to this kernel.

Theorem 2 (Senkene and Tempel’man (1973); Micchelli and Pontil (2005))
Given an operator-valued kernel Kx : X ×X → B(Fy), there is a unique Hilbert space HKx

of functions h : X → Fy which satisfies the following reproducing property:

∀h ∈ HKx , ∀x ∈ X , h(x) = Kx(x, ·)h,

where Kx(x, ·) is an operator in B(HKx ,Fy).
As a consequence, ∀x ∈ X , ∀ỹ ∈ Fy,∀h ∈ HKx , 〈Kx(·, x)ỹ, h〉HKx

= 〈ỹ, h(x)〉Fy .

The Hilbert space HKx is called the reproducing kernel Hilbert space associated to the
kernel Kx. This RKHS can be built by taking the closure of span{Kx(·, x)α |x ∈ X ,α ∈
Fy}. The scalar product on HKx between two functions f =

∑n
i=1Kx(·, xi)αi and g =∑m

j=1Kx(·, tj)βj , xi, tj ∈ X , αi,βj ∈ Fy, is defined as:

〈f, g〉HKx
=

n∑
i=1

m∑
j=1

〈αi,Kx(xi, tj)βj〉Fy .

The corresponding norm ‖ · ‖HKx
is defined by ‖ f ‖2HKx

= 〈f, f〉HKx
. For sake of simplicity

we replace the notation HKx by H in the rest of the paper.
As for scalar-valued functions, one of the most appealing feature of RKHS is to provide

a theoretical framework for regularization with the representer theorems.

3.1 Regularization in Vector-Valued RKHS

Based on the RKHS theory for vector-valued functions, Micchelli and Pontil (2005) have
proved a representer theorem for convex loss functions in the supervised case.

We note S` = {(xi, ỹi)}`i=1 ⊆ X ×Fy the set of labeled examples and H the RKHS with
reproducing kernel Kx : X × X → B(Fy).
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Theorem 3 (Micchelli and Pontil (2005)) Let L be a convex loss function, and λ1 > 0
a regularization parameter. The minimizer of the following optimization problem:

argmin
h∈H

J (h) =
∑̀
i=1

L(h(xi), ỹi) + λ1‖h‖2H ,

admits an expansion:

ĥ(·) =
∑̀
j=1

Kx(·, xj)cj ,

where the coefficients cj , j = 1, · · · , ` are vectors in the Hilbert space Fy.

In the following, we plug the expansion form of the minimizer into the optimization prob-
lem and consider the problem of finding the coefficients cj for two different loss functions:
the least-squares loss and the hinge loss.

3.1.1 Penalized Least Squares

Considering the least-squares loss function for regularization of vector-valued functions, the
minimization problem becomes:

argmin
h∈H

J (h) =
∑̀
i=1

‖h(xi)− ỹi‖2Fy
+ λ1‖h‖2H . (2)

Theorem 4 (Micchelli and Pontil (2005)) Let cj ∈ Fy, j = 1, · · · , `, be the coefficients

of the expansion admitted by he minimizer ĥ of the optimization problem in Equation (2).
The vectors cj ∈ Fy satisfy the equations:

∑̀
i=1

(Kx(xj , xi) + λ1δij)ci = ỹj ,

where δ is the Kronecker symbol: δii = 1 and ∀j 6= i, δij = 0.

3.1.2 Maximum Margin Regression

Szedmak et al. (2005) formulated a Support Vector Machine algorithm with vector output,
called Maximum Margin Regression (MMR). The optimization problem of MMR in the
supervised setting is the following:

argmin
h
J (h) =

∑̀
i=1

max(0, 1− 〈ỹi, h(xi)〉Fy) + λ1‖h‖2H. (3)

In Szedmak et al. (2005), the function h was modeled as: h(x) = Wϕx(x) + b, where
ϕx is a feature map associated to a scalar-valued kernel. In this subsection, we extend this
maximum margin based regression framework to the context of the vector-valued RKHS
theory by searching h in the RKHS H associated to Kx.
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Similarly to SVM, the MMR problem (3) can be expressed according to a primal for-
mulation that involves the optimization of h ∈ H and slack variables ξi ∈ R, i = 1, . . . , `,
as well as its dual formulation which is expressed according to the Lagrangian parameters
α = [α1, . . . , α`]

T ∈ R`. The latter leads to solve a quadratic problem, for which efficient
solvers exist. Both formulations are given below.

The primal form of the MMR optimization problem can be written as

min
h∈H,{ξi}∈R

λ1‖h‖2H +
∑̀
i=1

ξi

s.t. 〈ỹi, h(xi)〉Fy ≥ 1− ξi, i = 1, . . . , `

ξi ≥ 0, i = 1, . . . , `

The Lagrangian of the above problem is given by:

La(h, ξ,α,η) = λ1‖h‖2H +
∑̀
i=1

ξi −
∑̀
i=1

αi(〈Kx(·, xi)ỹi, h〉H − 1 + ξi)−
∑̀
i=1

ηiξi,

with αi and ηi being Lagrange multipliers. By differentiating the Lagrangian with respect
to ξi and h and setting the derivatives to zero, the dual form of the optimization problem
can be expressed as:

min
α∈R`

1

4λ1

∑̀
i,j=1

αiαjỹ
T
i Kx(xi, xj)ỹj −

∑̀
i=1

αi

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , `

and the solution ĥ can be written as: ĥ(·) = 1
2λ1

∑`
j=1 αjKx(·, xj)ỹj .

Note that, similarly to KDE, we retrieve the original MMR solution when using the
following operator-valued kernel: Kx(x, x′) = κx(x, x′) I.

3.2 Extension to Semi-Supervised Learning

In the case of real-valued functions, Belkin et al. (2006) have introduced a novel framework,
called manifold regularization. This approach is based on the assumption that the data
lie in a low-dimensional manifold. Belkin et al. (2006) have proved a representer theorem
devoted to semi-supervised learning by adding a new regularization term which exploit the
information of the geometric structure. This regularization term forces the target function
h to be smooth with respect to the underlying manifold. In general, the geometry of
this manifold is not known but it can be approximated by a graph. In this graph, nodes
correspond to labeled and unlabeled data and edges reflect the local similarities between
data in the input space. For example, this graph can be built using k-nearest neighbors.
The representer theorem of Belkin et al. (2006) has been extended to the case of vector-
valued functions in Brouard et al. (2011) and Minh and Sindhwani (2011). In the following,
we present this theorem and derive the solutions for the least-squares loss function and
maximum margin regression.
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Let L be a convex loss function. Given a set of ` labeled examples {(xi, ỹi)}`i=1 ⊆ X×Fy
and an additional set of n unlabeled examples {xi}`+ni=`+1 ⊆ X , we consider the following
optimization problem:

argmin
h∈H

J (h) =
∑̀
i=1

L(h(xi), ỹi) + λ1‖h‖2H + λ2

`+n∑
i,j=1

Wij‖h(xi)− h(xj)‖2Fy
, (4)

where λ1, λ2 > 0 are two regularization hyperparameters and W is the adjacency matrix of
a graph built from labeled and unlabeled data. This matrix measures the similarity between
objects in the input space. This optimization problem can be rewritten as:

argmin
h∈H

J (h) =
∑̀
i=1

L(h(xi), ỹi) + λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈h(xi), h(xj)〉Fy ,

where L is the graph Laplacian given by L = D − W , and D is the diagonal matrix of
general term Dii =

∑`+n
j=1 Wij . Instead of the graph Laplacian, other matrices, such as

iterated Laplacians or diffusion kernels (Kondor and Lafferty, 2002), can also be used.

Theorem 5 (Brouard et al. (2011); Minh and Sindhwani (2011)) The minimizer of
the optimization problem in Equation (4) admits an expansion:

ĥ(·) =

`+n∑
j=1

Kx(·, xj)cj ,

for some vectors cj ∈ Fy, j = 1, · · · , `+ n.

This theorem extends the representer theorem proposed by Belkin et al. (2006) to vector-
valued functions. Besides, it also extends Theorem 3 to the semi-supervised framework.

3.2.1 Semi-Supervised Penalized Least-Squares

Considering the least-squares cost, the optimization problem becomes:

argmin
h∈H

J (h) =
∑̀
i=1

‖h(xi)− ỹi‖2Fy
+ λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈h(xi), h(xj)〉Fy . (5)

Theorem 6 (Brouard et al. (2011); Minh and Sindhwani (2011)) The coefficients
cj ∈ Fy, j = 1, · · · , `+ n of the expansion admitted by the minimizer ĥ of the optimization
problem (5) satisfy this equation:

Jj

`+n∑
i=1

Kx(xj , xi)ci + λ1cj + 2λ2

`+n∑
i=1

Lij

`+n∑
m=1

Kx(xi, xm)cm = Jj ỹj ,

where Jj ∈ B(Fy) is the identity operator if j ≤ ` and the null operator if ` < j ≤ (`+ n).
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3.2.2 Semi-Supervised Maximum Margin Regression

The optimization problem in the semi-supervised case using the hinge loss is the following:

argmin
h∈H

J (h) =
∑̀
i=1

max(0, 1− 〈ỹi, h(xi)〉Fy) + λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈h(xi), h(xj)〉Fy . (6)

Theorem 7 The solution of the optimization problem (6) is given by

h(·) =
1

2
B−1

(∑̀
i=1

αiKx(·, xi)ỹi
)
,

where B = λ1I + 2λ2
∑`+n

i,j=1 LijKx(·, xi)Kx(xj , ·) is an operator from H to H, and α is the
solution of

min
α∈R`

1

4

∑̀
i,j=1

αiαj〈Kx(·, xi)ỹi, B−1Kx(·, xj)ỹj〉 −
∑̀
i=1

αi

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , `

(7)

The proof of this theorem is detailed in the Appendix A.

3.3 Solutions when Fy = Rd

In this subsection we consider that the dimension of Fy is finite and equal to d. We first
introduce the following notations:

• Ỹ` = (ỹ1, . . . , ỹ`) is a matrix of size d× `,

• C` = (c1, . . . , c`), C`+n = (c1, . . . , c`+n),

• Φx` = (Kx(·, x1), . . . ,Kx(·, x`)), Φx`+n
= (Kx(·, x1), . . . ,Kx(·, x`+n)),

• Kx` is a `× ` block matrix, where each block is a d× d matrix. The (j, k)-th block of
Kx` is equal to Kx(xj , xk),

• Kx`+n
is a (`+n)× (`+n) block matrix such that the (j, k)-th block of Kx`+n

is equal
to Kx(xj , xk),

• I`d and I(`+n)d are identity matrices of size (`d)× (`d) and (`+ n)d× (`+ n)d,

• J = (I`, 0) is a `× (`+ n) matrix that contains an identity matrix of size `× ` on the
left hand side and a zero matrix of size `× n on the right hand side,

• ⊗ denotes the Kronecker product and vec(A) denotes the vectorization of a matrix
A, formed by stacking the columns of A into a single column vector.

12



In the supervised setting, the solutions for the least-squares loss and MMR can be
rewritten as:

hridge(·) = Φx`(λ1I`d + Kx`)
−1 vec(Ỹ`),

hmmr(·) =
1

2λ1
Φx` vec(Ỹ` diag (α)).

In the semi-supervised setting, these solutions become:

hridge(·) = Φx`+n

(
λ1I(`+n)d + ((JTJ + 2λ2L)⊗ Id)Kx`+n

)−1
vec(Ỹ`J), (8)

hmmr(·) = Φx`+n

(
2λ1I(`+n)d + 4λ2(L⊗ Id)Kx`+n

)−1
vec(Ỹ` diag (α)J).

For MMR, the vector α is obtained by solving the following optimization problem:

min
α∈R`

1

4
vec
(
Ỹ` diag (α)J

)T
(
λ1I(`+n)d + 2λ2Kx`+n

(L⊗ Id)
)−1

Kx`+n
vec
(
Ỹ` diag (α

)
J)−αT1

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , `.

(9)

3.4 Models for General Decomposable Kernel

In the remainder of this section we propose to derive models based on on a simple but
powerful family of operator-values kernels (OVK) based on scalar-valued kernels, called
decomposable kernels or separable kernels (Álvarez et al., 2012; Baldassarre et al., 2012).
They correspond to the simplest generalization of scalar kernels to operator-valued kernel.
Decomposable kernels were first defined to deal with multi-task regression (Evgeniou et al.,
2005; Micchelli and Pontil, 2005) and later, with structured multi-class classification (Din-
uzzo et al., 2011). Other kernels (Caponnetto et al., 2008; Álvarez et al., 2012) have also
been proposed: for instance, Lim et al. (2013) introduced a Hadamard kernel based on the
Hadamard product of decomposable kernels and transformable kernels to deal with nonlin-
ear vector autoregressive models. Caponnetto et al. (2008) proved that they are universal,
meaning that an operator-valued regressor built on them is a universal approximator in Fy.

Proposition 8 The class of decomposable operator-valued kernels is composed of kernels
of the form:

Kx : X × X → B(Fy)
(x, x′) 7→ κx(x, x′)A

where κx : X × X → R is a scalar-valued input kernel and A ∈ B(Fy) is a positive semi-
definite operator.

In the multi-task learning framework, Fy = Rd is a finite dimensional output space and the
matrix A encodes the existing relations among the d different tasks. This matrix can be
estimated from labeled data or being learned simultaneously with the matrix C (Dinuzzo
et al., 2011).
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3.4.1 Penalized Least-Squares Regression

In this section, we will use the following notations: Fx and the function ϕx : X → Fx
correspond respectively to the feature space and the feature map associated to the input
scalar kernel κx. We note Φx` = (ϕx(x1), . . . , ϕx(x`)) the matrix of dimension dim(Fx)× `,
and Φx`+n

= (ϕx(x1), . . . , ϕx(x`+n)). Let Kx` = ΦT
x`

Φx` and Kx`+n
= ΦT

x`+n
Φx`+n

be
respectively the Gram matrices of κx over the sets X` and X`+n. I` denotes the identity
matrix of size `. We assume that Fy = Rd.

The minimizer h of the optimization problem for the penalized least-squares cost in the
supervised setting (2) using a decomposable OVK can be expressed as:

∀x ∈ X , h(x) = A
∑̀
i=1

κx(x, xi)ci = AC`Φ
T
x`
ϕx(x) = (ϕx(x)TΦx` ⊗A) vec(C`)

= (ϕx(x)TΦx` ⊗A) (λ1I`d +Kx` ⊗A)−1 vec(Ỹ`).

(10)

Therefore, the computation of the solution h requires to compute the inverse of a matrix of
size `d× `d. A being a real symmetric matrix, we can write an eigen-decomposition of A:

A = EΓET =

d∑
i=1

γieie
T
i ,

where E = (e1, . . . , ed) is a d×d matrix and Γ is a diagonal matrix containing the eigenvalues
of A: Γ = diag (γ1, . . . , γd). Using the eigen-decomposition of A, we can prove that the
solution ĥ(x) can be obtained by solving d independent problems:

Proposition 9 The minimizer of the optimization problem for the supervised penalized
least squares cost (2) in the case of a decomposable operator-valued kernel can be expressed
as:

∀x ∈ X , hridge(x) =

d∑
j=1

γjeje
T
j Ỹ`(λ1I` + γjKx`)

−1ΦT
x`
ϕx(x), (11)

and in the semi-supervised setting (5), it writes as

∀x ∈ X , hridge(x) =
d∑
j=1

γjeje
T
j Ỹ`J

(
λ1I`+n + γjKx`+n

(JTJ + 2λ2L)
)−1

ΦT
x`+n

ϕx(x).

We observe that, in the supervised setting, the complexity to solve Equation (10) is equal
to O((`d)3), while the complexity for solving Equation (11) is O(d3 + `3).

3.4.2 Maximum Margin regression

Proposition 10 Given Kx(x, x′) = κx(x, x′)A, the dual formulation of the MMR opti-
mization problem (7) in the supervised setting becomes:

min
α∈R`

1

4λ1
αT (Ỹ T

` AỸ` ◦Kx`)α−αT1

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , `
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and the solution is given by: hmmr(·) = 1
2λ1

AỸ` diag (α)ΦT
x`
.

In the semi-supervised MMR minimization problem (6), it writes as:

min
α∈R`

1

2
αT (

d∑
i=1

γiỸ
T
` eie

T
i Ỹ` ◦ J(2λ1I`+n + 4λ2γiKx`+n

L)−1Kx`+n
JT )α−αT1

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , `

The corresponding solution is:

hmmr(·) =
1

2

d∑
j=1

γjeje
T
j Ỹ` diag (α)J

(
λ1I`+n + 2γjλ2Kx`+n

L
)−1

ΦT
x`+n

.

Proofs of propositions (9) and (10) are given in Appendix A.

4 Model Selection

Real-valued kernel-based models enjoy a closed-form solution for the estimate of the leave-
one-out criterion in the case of kernel ridge regression (Golub et al., 1979; Rifkin and Lippert,
2007). In order to select the hyperparameters of OVK-based models with a least-squares
loss presented below, we develop a closed-form solution for the leave-one-out estimate of
the sum of square errors. This solution extends Allen’s predicted residual sum of squares
(PRESS) statistics (Allen, 1974) to vector-valued functions. This result was first presented
in french in the phd thesis of Brouard (2013) in the case of decomposable kernels. In the
following, we will use the notations used by Rifkin and Lippert (2007). We assume in this
section that the dimension of Fy is finite.

Let S = {(x1, ỹ1), . . . , (x`, ỹ`)} be the training set composed of ` labeled points. We
define Si, 1 ≤ i ≤ `, as the labeled data set with the ith point removed:

Si = {(x1, ỹ1), . . . , (xi−1, ỹi−1), (xi+1, ỹi+1), . . . , (x`, ỹ`)}.

In this section, hS denotes the function obtained when the regression problem is trained on
the entire training set S and we note hSi(xi) the ith leave-one-out value, that is the value
at the point xi of the function obtained when the training set is Si. The PRESS criterion
corresponds to the sum of the ` leave-one-out square errors:

PRESS =
∑̀
i=1

‖ỹi − hSi(xi)‖2Ỹ .

As for scalar-valued functions, we show that it is possible to compute this criterion
without evaluating explicitly hSi(xi) for i = 1, . . . , ` and for each value of the grid of
parameters.

Assuming we know hSi , we define the matrix Ỹ i
` = (ỹi1, . . . , ỹ

i
`), where the vector ỹij is

given by:

ỹij =

{
ỹj if j 6= i

hSi(xi) if j = i
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In the following, we show that when using Ỹ i
` instead of Ỹ`, the optimal solution corre-

sponds to hSi :

∑̀
j=1

‖ỹij−hS(xj)‖2Ỹ + λ1‖hS‖2H + λ2

`+n∑
j,k=1

Wjk‖hS(xj)− hS(xk)‖2Ỹ

≥
∑
j 6=i
‖ỹij − hS(xj)‖2Ỹ + λ1‖hS‖2H + λ2

`+n∑
j,k=1

Wjk‖hS(xj)− hS(xk)‖2Ỹ

≥
∑
j 6=i
‖ỹij − hSi(xj)‖2Ỹ + λ1‖hSi‖2H + λ2

`+n∑
j,k=1

Wjk‖hSi(xj)− hSi(xk)‖2Ỹ

≥
∑̀
j=1

‖ỹij − hSi(xj)‖2Ỹ + λ1‖hSi‖2H + λ2

`+n∑
j,k=1

Wjk‖hSi(xj)− hSi(xk)‖2Ỹ .

The second inequality comes from the fact that hSi is defined as the minimizer of the
optimization problem when the ith point is removed from the training set. As hSi is the
optimal solution when Ỹ` is replaced with Ỹ i

` , it can be written as:

∀i = 1, . . . , `, hSi(xi) = φx(xi)
TΦx`+n

B vec(Ỹ i
` ) = (KB)i,· vec(Ỹ i

` ),

where K = Kx`×(`+n)
is the input gram matrix between the sets X` and X`+n and B =

(λ1I(`+n)d + ((JTJ + 2λ2L)⊗ Id)Kx`+n
)−1(JT ⊗ Id). (KB)i,· corresponds to the ith row of

the matrix KB and (KB)i,j is the value of the matrix corresponding to the row i and the
column j.

We can then derive an expression of hSi by computing the difference between hSi(xi)
and hS(xi):

hSi(xi)− hS(xi) = (KB)i,· vec(Ỹ i
` − Ỹ`)

=
∑̀
k=1

(KB)i,k(ỹ
i
k − ỹk)

= (KB)i,i(hSi(xi)− ỹi),

which leads to

(Id − (KB)i,i)hSi(xi) = hS(xi)− (KB)i,iỹi

⇒ (Id − (KB)i,i)hSi(xi) = (KB)i,· vec(Ỹ`)− (KB)i,iỹi

⇒ hSi(xi) = (Id − (KB)i,i)
−1
(

(KB)i,· vec(Ỹ`)− (KB)i,iỹi

)
.

Let Loo = (hS1(x1), . . . , hS`(x`)) be the matrix containing the leave-one-out vector values
over the training set. The equation above can be rewritten as:

vec(Loo) = (I`d − diag b(KB))−1 (KB − diag b(KB)) vec(Ỹ`),

where diag b corresponds to the block diagonal of a matrix.
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The Allen’s PRESS statistic can be expressed as:

PRESS = ‖ vec(Ỹ`)− vec(Loo)‖2

= ‖(I`d − diag b(KB))−1 (I`d − diag b(KB)−KB + diag b(KB)) vec(Ỹ`)‖2

= ‖(I`d − diag b(KB))−1 (I`d −KB) vec(Ỹ`)‖2.

This closed-form expression allows to evaluate the PRESS criterion without having to solve
` problems involving the inversion of a matrix of size (`+ n− 1)d.

5 Input Output Kernel Regression

We now have all the needed tools to approximate vector-valued functions. In this section,
we go back to Input Output Kernel Regression and consider that Fy is the feature space
associated to some output kernel κy : Y × Y → R. Several feature spaces can be defined,
including the unique RKHS associated to the kernel κy. This choice has direct consequences
on the choice of the input operator-valued kernel Kx. Depending on the application, we
might be interested for instance on choosing Fy as a functional space to get integral operators
or as the finite-dimensional euclidean space Rd to get matrices. It is important to notice
that this reflects a radically new approach in machine learning where we usually focus on
the choice of the input feature space and do not discuss a lot the output space. Moreover,
the choice of a given triplet (κy,Fy,Kx) has a great impact of the learning task both in
terms of complexity in time and potentially of performance. In the following, we explain
how Input Output Kernel Regression can be used to solve link prediction and multi-task
problems.

5.1 Link Prediction

Link prediction is a challenging machine learning problem that has been defined recently
in social networks as well as biological networks. Let us formulate this problem using the
previous notations: X = Y = U is the set of candidate nodes we are interested in. We want
to estimate some relation between these nodes, for example a social relationship between
persons or some physical interaction between molecules. During the training phase we are
given G` = (U`, A`), a non oriented graph defined by the subset U` ⊆ U and the adjacency
matrix A` of size `× `. Supervised link prediction is usually addressed by learning a binary
pairwise classifier f : U ×U → {0, 1} that predicts if there exists a link between two objects
or not, from the training information G`. One way to solve this learning task is to built
a pairwise classifier. However, the link prediction problem can also be formalized as an
output kernel regression task (Geurts et al., 2007a; Brouard et al., 2011).

The OKR framework for link prediction is based on the assumption that an approxi-
mation of the output kernel κy will provide valuable information about the proximity of
the objects of U as nodes in the unknown graph defined on U . Given that assumption, a
classifier fθ is defined from the approximation κ̂y by thresholding its output values:

fθ(u, u
′) = sgn(κ̂y(u, u

′)− θ).
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An approximation of the target output kernel κy is built from the scalar product between
the outputs of a single variable function h : U → Fy: κ̂y(u, u′) = 〈h(u), h(u′)〉Fy . Using
the kernel trick in the output space therefore allows to reduce the problem of learning a
pairwise classifier to the problem of learning a single variable function with output values
in a Hilbert space (the output feature space Fy).

In the case of IOKR, the function h is learnt in an appropriate RKHS by using the
operator-valued kernel regression approach presented in Section 3. In the following, we
describe the output kernel and the input operator-valued kernel that we propose to use for
solving the link prediction problem with IOKR.

Regarding the output kernel, we do not have a kernel κy defined on U × U in the link
prediction problem but we can define a Gram matrix Ky` defined on the training set U`.
Here, we define the output Gram matrix Ky` from the known adjacency matrix A` of the
training graph such that it encodes the proximities in the graph between the labeled nodes.
For instance, we can choose the diffusion kernel matrix (Kondor and Lafferty, 2002), which
is defined as:

Ky` = exp(−βLY`),
where LY` = D` −A` is the graph Laplacian, with D` the diagonal matrix of degrees.

We assume that there exists a kernel κy : U × U → R, such that:

∀i, j ∈ {1, . . . , `}, κy(ui, uj) = (Ky`)i,j .

The feature space Fy is assumed to be the RKHS defined by κy.

Regarding the operator-valued kernel, we consider here the identity decomposable kernel:

∀(u, u′) ∈ U × U , Kx(u, u′) = κx(u, u′)I.

We underline that even if this kernel may seem simple, we must be aware that in this
task, we do not have the explicit expressions of outputs ϕy(u) and prediction in Fy is not the
final target. Therefore this operator-valued kernel allows us to work properly with output
Gram matrix values.

Of particular interest for us is the expression of the scalar product which is the only one
we need for link prediction. When using the identity decomposable kernel, the approxima-
tion of the output kernel can be written as follows:

κ̂y(u, u
′) = 〈ĥ(u), ĥ(u′)〉Fy = ϕx(u)TBTKy`Bϕx(u′),

where B is a matrix of size `× dim(Fx) that depends of the loss function and the learning
setting used (see Table 2). We can notice that we do not need to know the explicit ex-
pressions of outputs ϕy(u) to compute this scalar product. Besides, this formulation shows
that the expression of the scalar product ϕy(u)Tϕy(u

′) is approximated by a modified scalar
product between inputs ϕx(u) and ϕx(u′).

5.2 Multi-Task Learning

In multi-task learning problem, it may happen that the tasks are not disjoint and are
characterized by a relationship such as inclusion or similarity. Examples of multi-task
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B = Supervised learning Semi-supervised learning

Ridge (λ1I` +Kx`)
−1ΦT

x`
J(λ1I`+n +Kx`+n

(JTJ + 2λ2L))−1ΦT
x`+n

MMR 1
2λ1

diag (α)ΦT
x`

1
2 diag (α)J(λ1I`+n + 2λ2Kx`+n

L)−1ΦT
x`+n

Table 2: Matrix B corresponding to the different settings and loss functions for the
models obtained when using the identity decomposable kernel. These models write as:
∀u ∈ U , h(u) = Φy`Bϕx(u).

learning problems can be found in document categorization as well as in protein functional
annotation prediction. Dependencies among target variables can also be encountered in the
case of multiple regression. We consider here d tasks having the same input and output
domains. Y = Fy = Rd is a finite dimensional output space.

We compared three models to solve this structured regression task:

• Model 0: κy(y,y
′) = yTy′, with the identity kernel Kx(x, x′) = κx(x, x′) I,

• Model 1: κy(y,y
′) = yTA1y

′, with the identity kernel Kx(x, x′) = κx(x, x′) I,

• Model 2: κy(y,y
′) = yTy′, with the decomposable kernel Kx(x, x′) = κx(x, x′)A2.

In the first case, the different tasks are learned independently :

∀x ∈ X , ĥ0(x) = Y`J
(
λ1I`+n +Kx`+n

(JTJ + 2λ2L)
)−1

ΦT
x`+n

ϕx(x),

while in the other cases, the tasks relatedness is taken into account :

∀x ∈ X , ĥ1(x) =
√
A1Y`J

(
λ1I`+n +Kx`+n

(JTJ + 2λ2L)
)−1

ΦT
x`+n

ϕx(x),

∀x ∈ X , ĥ2(x) =

d∑
j=1

γjeje
T
j Y`J(λ1I`+n + γjKx`+n

(JTJ + 2λ2L))−1ΦT
x`+n

ϕx(x),

where γj and ej are the eigenvalues and eigenvectors of A2.
We consider a matrix M of size d × d that encodes the relations existing between the

different tasks. This matrix can be considered as the adjacency matrix of a graph between
tasks. We note LM the graph laplacian associated to this matrix. The matrices A1 and A2

are defined as follow:

A1 = µM + (1− µ)Id,

A2 = (µLM + (1− µ)Id)
−1,

where µ is a parameter in [0, 1].
The matrix A2 was proposed by Evgeniou et al. (2005) and Sheldon (2008) for multi-

task learning. Given a decomposable kernel defined with this matrix A2, the norm of the
function h2 in H can be written as:

‖h2‖2H =
µ

2

d∑
i,j=1

Mij‖h(i)2 − h
(j)
2 ‖2 + (1− µ)

d∑
i=1

‖h(i)2 ‖2,
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where h2 = [h
(1)
2 , . . . , h

(d)
2 ] and h

(i)
2 corresponds to the i-th component of h. This regulariza-

tion term forces two tasks h
(i)
2 and h

(j)
2 to be close to each other when the similarity value

Mij is high and conversely.

6 Numerical Experiments

In this section, we present the performances obtained with the IOKR approach on two
different problems: link prediction and multi-task regression. In these experiments, we
examine the effect of the smoothness constraint through the variation of its related hy-
perparameter λ2, using supervised method as a baseline. We evaluate the method in the
transductive setting, that is we assume that all the examples (labeled and unlabeled) are
known at the beginning of the learning phase and the goal is to predict the correct outputs
for the unlabeled examples.

6.1 Link Prediction

For the link prediction problem, we considered experiments on three datasets: a collection
of synthetic networks, a co-authorship network and a protein-protein interaction (PPI)
network.

6.1.1 Protocol

For different percentages of labeled nodes, we randomly selected a subsample of nodes
as labeled nodes and used the remaining ones as unlabeled nodes. Labeled interactions
correspond to interactions between two labeled nodes. This means that when 10% of labeled
nodes are selected, it corresponds to only 1% of labeled interactions. The performances
were evaluated by averaging the areas under the ROC curve and the precision-recall curve
(denoted AUC-ROC and AUC-PR) over ten random choices of the training set. A gaussian
kernel was used for the scalar input kernel κx. Its corresponding bandwidth σ was selected
by a leave-one-out cross-validation procedure on the training set to maximize the AUC-
ROC, jointly with the hyperparameter λ1. In the case of the least-squares loss function, we
used the leave-one-out estimates approach introduced in Section 4. The output kernel used
is a diffusion kernel of parameter β. Another diffusion kernel of parameter β2 was also used

for the smoothing penalty: exp(−β2L) =
∑∞

i=0
(−β2L)i

i! . Preliminary runs have shown that
the values of β and β2 have a limited influence on the performances, we then have set both
parameters to 1. Finally we set W to Kx`+n

.

6.1.2 Synthetic Networks

We first illustrate our method on synthetic networks where the input kernel was chosen as a
very good approximation of the output kernel. In these experiments we wanted to measure
the improvement brought by the semi-supervised method in extreme cases, i.e. when the
percentage of labeled nodes is very low.

The output networks were obtained by sampling random graphs containing 700 nodes
from a Erdős-Renyi law with different graph densities. The graph density corresponds to
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the probability of presence of edges in the graph. In this experiment we chose three densities
that are representative of real network densities: 0.007, 0.01 and 0.02. For each network,
we used the diffusion kernel as output kernel and chose the diffusion parameter such that
it maximizes an information criterion. To built an input kernel corresponding to a good
approximation of the output kernel, we applied kernel PCA on the output kernel and used
the components capturing 95% of the variance as input vectors. We then build a gaussian
kernel based on these inputs.

Figures 3 and 4 report respectively the averaged values and standard deviations for the
AUC-ROC and AUC-PR obtained for different network densities and different percentages
of labeled nodes. We observe that IOKR-ridge outperforms IOKR-margin in the supervised
and in the semi-supervised cases. This improvement is particularly significant for AUC-
PR, especially when the network density is strong and the percentage of labeled data is
high. It is thus very significant for 10% and 20% of labeled data. In the supervised case,
this observation can be explained by the difference between the complexities of the models.
The solutions obtained in the supervised case for both models are written in the form
ĥ(u) = C`Φ

T
x`
ϕx(u). For the IOKR-ridge model, C` = Φy`(λ1I` + Kx`)

−1, while for the
IOKR-margin model we have: C` = 1

2λ1
Φy` diag (α). The synthetic networks may require

a more complex predictor.

We observe an improvement of the performances in terms of AUC-ROC and AUC-PR
for both approaches in the semi-supervised setting compared to the supervised setting.
This improvement is more significant for IOKR-margin. This can be explained by the
fact that the IOKR-margin models obtained in the supervised and in the semi-supervised
cases do not have the same complexity. The solution in the supervised case writes as
ĥ(u) = C`Φ

T
x`
ϕx(u) with C` = 1

2λ1
Φy` diag (α), while in the semi-supervised case, the

solution can be written as ĥ(u) = C`+nΦT
x`+n

ϕx(u), where C`+n is a much richer matrix:

C`+n = Φy` diag (α)J(2λ1I`+n + 4λ2Kx`+n
L)−1. For IOKR-ridge, the improvement of the

performance is only observed for low percentages of labeled data. We can therefore make the
assumption that for this model, using unlabeled data increases the AUCs for low percentages
of labeled data. But when enough information can be found in the labeled data, semi-
supervised learning does not improve the performance.

Based on these results, we can also formulate the assumption that link prediction is
harder in the case of dense networks.

6.1.3 NIPS Co-authorship Network

We applied our method on a co-authorship network containing information on publications
of the NIPS conferences between 1988 to 2003 (Globerson et al., 2007). In this network,
vertices represent authors and an edge connects two authors if they have at least one NIPS
publication in common. Among the 2865 authors, we considered the ones with at least two
links in the co-authorship network in order to have a significant density and trying to keep
close to the original data. We therefore focused on a network containing 2026 authors with
an empirical link density of 0.002. Each author was described by a vector of 14036 values,
corresponding to the frequency with which he uses each given word in his papers.

Figure 5 reports the averaged AUC-ROC and AUC-PR obtained on the NIPS co-
authorship network for different values of λ2 and different percentages of labeled nodes. As
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Figure 3: Averaged AUC-ROC for the reconstruction of three synthetics networks with
IOKR-margin (left) and IOKR-ridge (right). The rows correspond to different graph den-
sities (denoted pdens), which are 0.007, 0.01 and 0.02 respectively.
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Figure 4: Averaged AUC-PR for the reconstruction of three synthetics networks with IOKR-
margin (left) and IOKR-ridge (right). The rows correspond to different graph densities
(denoted pdens), which are 0.007, 0.01 and 0.02 respectively.
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Figure 5: AUC-ROC and AUC-PR obtained for the NIPS co-authorship network inference
with the IOKR-margin model (left) and the IOKR-ridge model (right).

previously, we can observe that the semi-supervised approach improves the performances
compared to the supervised one for both models. For AUC-ROC values, this improvement
is especially important when the percentage of labeled nodes is low. Indeed, with 2.5%
of labeled nodes, the improvement can reach in average up to 0.14 points of AUC-ROC
for IOKR-margin and up to 0.11 points for IOKR-ridge. As for the synthetic networks,
the IOKR-ridge model outperforms IOKR-margin model in terms of AUC-ROC and AUC-
PR, especially when the proportion of labeled examples is large. The explanation provided
for the synthetic networks regarding the complexity of the solutions for IORK-margin and
IOKR-ridge holds here also.

6.1.4 Protein-Protein Interaction Network

We also performed experiments on a protein-protein interaction (PPI) network of the yeast
Saccharomyces Cerevisiae. This network was built using the DIP database (Salwinski et al.,

24



2004), which contains protein-protein interactions that have been experimentally deter-
mined and manually curated. We used more specifically the high confidence DIP core
subset of interactions (Deane et al., 2002). For the input kernels, we used the annotations
provided by Gene Ontology (GO) (Ashburner et al., 2000) in terms of biological processes,
cellular components and molecular functions. These annotations are organized in three
different ontologies. Each ontology is represented by a directed acyclic graph, where each
node is a GO annotation and edges correspond to relationships between the annotations,
like sub-class relationships for example. A protein can be annotated to several terms in an
ontology. We chose to represent each protein ui by a vector si, whose dimension is equal to
the total number of terms of the considered ontology. If a protein ui is annotated by the
term t, then :

s
(t)
i = − ln

(
number of proteins annotated by t

total number of proteins

)
.

This encoding allows to take into account the specificity of a term in the ontology.
We then used these representations to built a gaussian kernel for each GO ontology. By
considering the set of proteins being annotated for each input kernel and being involved in
at least one physical interaction, we obtained a PPI network containing 1242 proteins.

Based on the previous numerical results, we chose to consider only IOKR-ridge in the
following experiments. We compared our approach to several supervised methods proposed
for biological network inference:

• Naive (Yamanishi et al., 2004): this approach predicts an interaction between two
proteins u and u′ if κx(u, u′) is greater than a threshold θ.

• kCCA (Yamanishi et al., 2004): kernel CCA is used to detect correlations existing
between the input kernel and a diffusion kernel derived from the adjacency matrix of
the labeled PPI network.

• kML (Vert and Yamanishi, 2005): kernel Metric Learning consists in learning a new
metric such that interacting proteins are close to each other, and conversely for non
interacting proteins.

• Local (Bleakley et al., 2007): a local model is built for each protein in order to learn the
subnetwork associated to each protein and these models are then combined together.

• OK3+ET (Geurts et al., 2006, 2007a): Output Kernel Tree with extra-trees is a tree-
based method where the output is kernelized and is combined with ensemble methods.

The pairwise kernel method (Ben-Hur and Noble, 2005) was not considered here because
this method requires to define a Gram matrix between pairs of nodes, which raises some
practical issues in terms of computation time and storage.

Each method was evaluated through a 5-fold cross-validation (5-cv) experiment and the
hyperparameters were tuned on the training fold using a 4-cv experiment. As the local
method can not be used for predicting interactions between two proteins of the test set,
AUC-ROC and AUC-PR were only computed for the prediction of interactions between
proteins in the test set and proteins in the training set. Input kernel matrices were defined
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a) AUC-ROC :

Methods GO-BP GO-CC GO-MF int

Naive 60.8± 0.8 64.4± 2.5 64.2± 0.8 67.7± 1.5
kCCA 82.4± 3.6 77.0± 1.7 75.0± 0.6 85.7± 1.6
kML 83.2± 2.4 77.8± 1.1 76.6± 1.9 84.5± 1.5
Local 79.5± 1.6 73.1± 1.3 66.8± 1.2 83.0± 0.5

OK3+ET 84.3± 2.4 81.5± 1.6 79.3± 1.8 86.9± 1.6
IOKR-ridge 88.8± 1.9 87.1± 1.3 84.0± 0.6 91.2± 1.2

b) AUC-PR :

Methods GO-BP GO-CC GO-MF int

Naive 4.8± 1.0 2.1± 0.6 2.4± 0.4 8.0± 1.7
kCCA 7.1± 1.5 7.7± 1.4 4.2± 0.5 9.9± 0.4
kML 7.1± 1.3 3.1± 0.6 3.5± 0.4 7.8± 1.6
Local 6.0± 1.1 1.1± 0.3 0.7± 0.0 22.6± 6.6

OK3+ET 19.0± 1.8 21.8± 2.5 10.5± 2.0 26.8± 2.4
IOKR-ridge 15.3± 1.2 20.9± 2.1 8.6± 0.3 22.2± 1.6

Table 3: AUC-ROC and AUC-PR estimated by 5-CV for the yeast PPI network reconstruc-
tion in the supervised setting with different input kernels (GO-BP : GO biological processes;
GO-CC : GO cellular components; GO-MF : GO molecular functions; int : average of the
different kernels).

for GO ontology and an integrated kernel, which was obtained by averaging the three input
kernels, was also considered.

Table 3 reports the results obtained for the comparison of the different methods in the
supervised setting. We can see that output kernel regression based methods work better
on this dataset than the other methods. In terms of AUC-ROC, the IOKR-ridge method
obtains the best results for the four different input kernels, while for AUC-PR, OK3 with
extra-trees presents better performances.

We also compared our method with two transductive approaches: the EM-based ap-
proach (Tsuda et al., 2003; Kato et al., 2005) and Penalized Kernel Matrix Regression
(PKMR) (Yamanishi and Vert, 2007). These two methods regard the link prediction prob-
lem as a kernel matrix completion problem. The EM method fills the missing entries of
the output Gram matrix Ky by minimizing the information geometry, as measured by the
Kullback-Leibler divergence, with the input Gram matrix Kx. The PKMR approach con-
siders the kernel matrix regression problem as a regression problem between the labeled
input Gram matrix Kx` and the labeled output Gram matrix Ky` . We did not compare our
method with the Link Propagation framework (Kashima et al., 2009) because this frame-
work assumes that arbitrary interactions may be considered as labeled while IOKR requires
a subgraph of know interactions.
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Percentage of AUC-ROC AUC-PR
labeled data EM PKMR IOKR EM PKMR IOKR

5 82.2± 0.6 77.5± 2.3 80.6± 0.7 15.7± 1.4 6.1± 1.5 7.1± 1.1
10 82.9± 0.6 80.8± 1.1 83.1± 0.5 16.5± 2.7 9.8± 1.8 11.7± 1.1
20 84.6± 0.6 83.9± 1.2 83.9± 0.5 19.7± 0.7 13.8± 1.2 17.8± 1.5

Table 4: AUC-ROC and AUC-PR obtained for yeast PPI network inference in the trans-
ductive setting using the integrated kernel.

As for previous experiences in the transductive setting, we measured the AUC-ROC
and AUC-PR values for 5%, 10% and 20% of labeled nodes, and for each percentage, we
averaged the AUC over ten random training sets. The hyperparameters were selected by
a 3-fold cross-validation experiment for the three methods. We used as input kernel the
integrated kernel introduced in the supervised experiments.

The results obtained for the comparison in the transductive setting are reported in the
Table 4. Regarding AUC-ROC, the EM approach obtains better results when the percentage
of labeled data is 5%. For 10% and 20% of labeled data, the difference between EM and
IOKR is not significative. In terms of AUC-PR, EM achieves rather good performances
compared to the others, in particular for 5% and 10% of labeled data. For 20%, the IOKR
method behaves as well as the EM method. However, we can notice that the EM-based
approach is purely transductive while IOKR learns a function and can therefore be used in
the semi-supervised learning, which is more general.

6.2 Application to Multi-Task Regression

In the following, we compare the behavior of the IOKR-ridge model regarding the identity
and decomposable kernels presented in Section 3 on a drug activity prediction problem. The
goal of this problem is to predict the activities of molecules in different cancer cell lines. In
this application, X corresponds to the set of molecules and Y = Fy = Rd, where d is the
number of cell lines.

6.2.1 Dataset

We used the data set of Su et al. (2010) that contains the biological activities of molecules
against a set of 59 cancer cell lines. We used the ”No-Zero-Active” version of the data set:
this data set contains the 2303 molecules that are all active against at least one cell line.
Each molecule is represented by a graph, where nodes correspond to atoms and edges to
bonds between atoms. The Tanimoto kernel (Ralaivola et al., 2005), that is based on the
molecular graphs, is used for the scalar input kernel:

κx(x, x′) =
km(x, x′)

km(x, x) + km(x′, x′)− km(x, x′)
.

km is the kernel corresponding to the feature map ϕxm : X → Fxm :

km(x, x′) = 〈ϕxm(x), ϕxm(x′)〉Fxm
,
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where ϕxm(x) is a binary vector indicating the presences and absences in the molecule x ∈ X
of all existing paths containing a maximum of m bonds. In this application, the value of m
was set to 6.

6.2.2 Protocol

We evaluated the behavior of the IOKR-ridge model in the transductive setting. The
performances were measured by computing the mean squared error (MSE) on the unlabeled
set:

MSE =
1

n

`+n∑
i=`+1

‖h(xi)− ϕy(yi))‖2Fy
.

We estimated the similarities existing between the tasks by comparing their values on
the training set:

Mij = exp
(
−γ‖Y (i)

` − Y
(j)
` ‖2

)
, i, j = 1, . . . , d,

where Y
(i)
` = (y

(i)
1 ,y

(i)
2 , . . . ,y

(i)
` ).

The parameter γ of the matrix M was chosen to maximize an information criterion and
the regularization parameter λ1 was set to 1. Regarding the matrix W used in the semi-
supervised term, we sparsified the Gram matrix Kx`+n

of the scalar input kernel κx using a
k-nearest neighbors procedure with k = 50. We then computed the graph laplacian of the
obtained graph and considered the laplacian iterated to degree 5.

6.2.3 Results

The results presented in Figure 6 were obtained from ten random choices of the training set.
The performances obtained with model 1 and model 2 for different percentages of labeled
data are represented as a function of the parameters µ and λ2. We observe on this figure that
for both models, using unlabeled data helps to improve the performances. We also observe
that when µ is increased from 0 to 0.8 or 1, the mean squared errors are decreased. The
obtained results therefore show the benefit of taking into account the relationships existing
between the outputs for both models and both settings (supervised and semi-supervised).

We reported on Figure 7 the MSE obtained with models 1 and 2 for the best parameter
µ and added the results obtained with the model 0, which corresponds to the case where
A = I. We observe on this figure that the model 2 obtains better results than the model 1
when the percentage of labeled data is small (p = 5%). For p = 10%, the two models behave
similarly, while for 20% of labeled data, the model 1 improves significantly the performances,
compared to model 2. Therefore, we observe that using the output structure information
either in the input operator-valued kernel or in the output kernel leads to different results.
And depending on the amount of labeled data, one of the two models can be more interesting
to use.

7 Conclusion and Perspectives

Operator-valued kernels and the associated RKHS theory provide a general framework to
address approximation of functions with values in some Hilbert space. When characterizing
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Figure 6: Mean squared errors obtained with the two models for the prediction of molecular
activities. The results are averaged over ten random choices of the training set and are given
for different percentages of labeled data (5%, 10% and 20%).

29



λ2
0 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1 10

M
ea

n 
Sq

ua
re

d 
Er

ro
r

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
p =5%

Model 0
Model 1
Model 2

λ2
0 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1 10

M
ea

n 
Sq

ua
re

d 
Er

ro
r

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
p =10%

Model 0
Model 1
Model 2

λ2
0 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1 10

M
ea

n 
Sq

ua
re

d 
Er

ro
r

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
p =20%

Model 0
Model 1
Model 2

Figure 7: Mean squared errors obtained for the prediction of molecular activities for the
model 0 (corresponding to A = I), model 1 (µ = 1) and model 2 (µ = 0.8). The results are
averaged over ten random choices of the training set and are given for different percentages
of labeled data (5%, 10% and 20%).
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the output Hilbert space as a feature space related to some real-valued scalar kernel, we
get an original framework to deal with structured outputs. Extending our previous work
(Brouard et al., 2011) which introduced a new representer theorem for semi-supervised
learning with vector-valued functions, we presented solutions of semi-supervised penalized
regression developed for two empirical loss functions, the square loss and the hinge loss in the
general case and in the special case of decomposable kernels using tensors. We also showed
that Generalized Cross-Validation extends in the case of the closed-form solution of IOKR-
ridge, providing an efficient tool for model selection. Perspectives to this work concern
the construction of new models by minimizing loss functions with different penalties, for
instance, penalties that enforce the parsimony of the model. For these non-smooth penalties,
proximal gradient descent methods can be applied such as in Lim et al. (2013). A more
general research direction is related to the design of new kernels and appropriate kernel
learning algorithms. Finally, although the pre-image problem has received a lot of attention
in the literature, there is still room for improvement in order to apply IOKR in other tasks
than link prediction or multiple output structured regression.
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Appendix A. Technical Proofs

In this appendix section, we provide the proofs for some theorems and propositions presented
in the paper.

A.1 Proof of Theorem 7

The primal can be written as:

min
h∈H,{ξi}∈R

λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈h(xi), h(xj)〉Ỹ +
∑̀
i=1

ξi

s.t. 〈ỹi, h(xi)〉Ỹ ≥ 1− ξi, i = 1, . . . , `

ξi ≥ 0, i = 1, . . . , `

We write the Lagrangian:

La(h, ξ,α,η) = λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈h(xi), h(xj)〉Ỹ +
∑̀
i=1

ξi

−
∑̀
i=1

αi(〈ỹi, h(xi)〉Ỹ − 1 + ξi)−
∑̀
i=1

ηiξi.

In the following we note Kx = Kx(·, x) and K∗x = Kx(x, ·). By using the reproducing
property the expression of the Lagrangian becomes:

La = λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈K∗xih,K∗xjh〉H −
∑̀
i=1

αi(〈ỹi,K∗xih〉H − 1) +
∑̀
i=1

(1− αi − ηi)ξi

= 〈(λ1I + 2λ2

`+n∑
i,j=1

LijKxjK
∗
xi)h, h〉H −

∑̀
i=1

αi〈Kxi ỹi, h〉H +
∑̀
i=1

αi +
∑̀
i=1

(1− αi − ηi)ξi

= 〈Bh, h〉H −
∑̀
i=1

αi〈Kxi ỹi, h〉H +
∑̀
i=1

αi +
∑̀
i=1

(1− αi − ηi)ξi,

where B ∈ B(h) is the operator defined as: B = λ1I + 2λ2
∑`+n

i,j=1 LijKxiK
∗
xj . Due to the

symmetry of the Laplacian L, this operator is self-adjoint:

B∗ = λ1I+2λ2

`+n∑
i,j=1

LijKxjK
∗
xi = λ1I+2λ2

`+n∑
i,j=1

LjiKxiK
∗
xj = λ1I+2λ2

`+n∑
i,j=1

LijKxiK
∗
xj = B.

Differentiating the Lagrangian with respect to ξi and h gives:

∂La
∂ξi

= 0⇒ 1− αi − ηi = 0

∂La
∂h

= 0⇒ 2Bh−
∑̀
i=1

αiKxi ỹi = 0⇒ h =
1

2
B−1

(∑̀
i=1

αiKxi ỹi

)
.
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B is invertible as it is a positive definite operator:

∀h ∈ H, 〈h,Bh〉H = λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈h,KxjK
∗
xih〉H

= λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈h(xj), h(xi)〉Ỹ

= λ1‖h‖2H + λ2

`+n∑
i,j=1

Wij‖h(xj)− h(xi)‖2Ỹ

> 0 for all non-zero function h.

We formulate a reduced Lagrangian :

Lr(α) =
1

4

∑̀
i,j=1

αiαj〈BB−1Kxi ỹi, B
−1Kxj ỹj〉 −

1

2

∑̀
i,j=1

αiαj〈Kxi ỹi, B
−1Kxj ỹj〉+

∑̀
i=1

αi

= −1

4

∑̀
i,j=1

αiαj〈Kxi ỹi, B
−1Kxj ỹj〉+

∑̀
i=1

αi.

The dual formulation of the optimization problem (6) can thus be expressed as:

min
α∈R`

1

4

∑̀
i,j=1

αiαj〈Kxi ỹi, B
−1Kxj ỹj〉 −

∑̀
i=1

αi

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , `

A.2 Proof of Proposition 9

We start from Equation (8) and replace A by its eigenvalue decomposition:

vec(C`+n) =
(
λ1I(`+n)d +M ⊗A

)−1
vec(Ỹ`J),

where M = (JTJ + 2λ2L)Kx`+n
.

We introduce the vec-permutation matrices Pmn and Pnm defined as:

∀A ∈ Rm×n, vec(AT ) = Pmn vec(A) and vec(A) = Pnm vec(AT ).

For any m× n matrix A and p× q matrix B,

B ⊗A = Ppm(A⊗B)Pnq.
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Using these properties, we can write:

vec(CT`+n) = Pd(`+n) vec(C`+n)

= Pd(`+n)
(
λ1I(`+n)d + P(`+n)d(A⊗M)Pd(`+n)

)−1
vec(Ỹ`J)

=
(
λ1I(`+n)d + Pd(`+n)P(`+n)d(A⊗M)

)−1
Pd(`+n) vec(Ỹ`J)

=
(
λ1I(`+n)d +A⊗M

)−1
vec(JT Ỹ T

` )

=
(
λ1I(`+n)d + EΓET ⊗M

)−1
vec(JT Ỹ T

` ).

We multiply each side by (ET ⊗ I`+n)

(ET ⊗ I`+n) vec(CT`+n) =

(ET ⊗ I`+n)
(
λ1I(`+n)d + (E ⊗ I`+n)(Γ⊗M)(ET ⊗ I`+n)

)−1
vec(JT Ỹ T

` ).

We use the facts that vec(AXB) = (BT ⊗ A) vec(X) and that ETE = Id to obtain the
following equation:

vec(CT`+nE) = (λ1I(`+n)d + Γ⊗M)−1 vec(JT Ỹ T
` E).

The matrix (λ1I(`+n)d + Γ⊗M) being block-diagonal, we have

CT`+nei = (λ1I`+n + γiM)−1 JT Ỹ T
` ei, for i = 1, . . . , `+ n.

Then, we can express the model h as:

∀x ∈ X , h(x) = AC`+nΦT
x`+n

ϕx(x) =
d∑
j=1

γjeje
T
j C`+nΦT

x`+n
ϕx(x)

=
d∑
j=1

γjeje
T
j Ỹ`J(λ1I`+n + γjKx`+n

(JTJ + 2λ2L))−1ΦT
x`+n

ϕx(x).

In the supervised setting (λ2 = 0), the model h writes as:

∀x ∈ X , h(x) =

d∑
j=1

γjeje
T
j Ỹ`(λ1I` + γjKx`)

−1ΦT
x`
ϕx(x).

This completes the proof.

A.3 Proof of Proposition 10

Let Z` = Ỹ` diag (α)J . We start from the expression of the Lagrangian in the case of a
general operator-valued kernel (Equation 9) and replace A by its eigenvalue decomposition:

La(α) =− 1

4
vec (Z`)

T (
λ1I(`+n)d + 2λ2Kx`+n

L⊗A
)−1

(Kx`+n
⊗A) vec(Z`) + αT1

=− 1

4
vec(Z`)

T
(
λ1I(`+n)d + 2λ2(I`+n ⊗ E)(Kx`+n

L⊗ Γ)(I`+n ⊗ ET )
)−1

(I`+n ⊗ E)(Kx`+n
⊗ Γ)(I`+n ⊗ ET ) vec(Z`) + αT1.

=− 1

4
vec
(
ETZ`

)T (
λ1I(`+n)d + 2λ2Kx`+n

L⊗ Γ
)−1

(Kx`+n
⊗ Γ) vec(ETZ`) + αT1.

34



Using the vec-permutation matrices, we can show that:

La(α) = −1

4
vec
(
ZT
` E
)T (

λ1I(`+n)d + 2λ2Γ⊗Kx`+n
L
)−1

(Γ⊗Kx`+n
) vec

(
ZT
` E
)

+ αT1.

As (λ1I(`+n)d + 2λ2Γ⊗Kx`+n
L) is a block diagonal matrix, we can write:

La(α) =− 1

4

d∑
i=1

eT
i Z`(λ1I`+n + 2λ2γiKx`+n

L)−1γiKx`+n
ZT
` ei + αT1

=− 1

4

d∑
i=1

γi trace
(
Ỹ T
` eie

T
i Ỹ` diag (α)J(λ1I`+n + 2λ2γiKx`+n

L)−1Kx`+n
JT diag (α)

)
+ αT1.

Using the fact that yT (A ◦ B)x = trace( diag (y)TAdiag (x)BT ), the Lagrangian can be
written as:

La(α) = −1

4

d∑
i=1

γi α
T (Ỹ T

` eie
T
i Ỹ` ◦ J(λ1I`+n + 2λ2γiKx`+n

L)−1Kx`+n
JT )α + αT1.

In the supervised setting (λ2 = 0), the Lagrangian becomes:

La(α) = − 1

4λ1

d∑
i=1

γi α
T (Ỹ T

` eie
T
i Ỹ` ◦Kx`)α + αT1

= − 1

4λ1
αT (Ỹ T

` AỸ` ◦Kx`)α + αT1,

which concludes the proof.
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P. Geurts, L. Wehenkel, and F. dAlché-Buc. Kernelizing the output of tree-based methods.
In International Conference on Machine Learning (ICML), pages 345–352, 2006.

P. Geurts, N. Touleimat, M. Dutreix, and F. d’Alché-Buc. Inferring biological networks
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