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Abstract: Concentration inequalities quantify the deviation of a random variable from a fixed
value. In spite of numerous applications, such as opinion surveys or ecological counting proce-
dures, few concentration results are known for the setting of sampling without replacement from
a finite population. Until now, the best general concentration inequality has been a Hoeffding
inequality due to ?. In this paper, we first improve on the fundamental result of ?, and further
extend it to obtain a Bernstein concentration bound for sampling without replacement. We then
derive an empirical version of our bound that does not require the variance to be known to the
user.
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1. Introduction

Few results exist on the concentration properties of sampling without replacement from a finite pop-
ulation X . However, potential applications are numerous, from historical applications such as opinion
surveys (?) and ecological counting procedures (?), to more recent approximate Monte Carlo Markov
chain algorithms that use subsampled likelihoods (?). In a fundamental paper on sampling without
replacement, ? introduced an efficient Hoeffding bound, that is, one which is a function of the range
of the population. Bernstein bounds are typically tighter when the variance of the random variable
under consideration is small, as their leading term is linear in the standard deviation of X , while the
range only influences higher-order terms. This paper is devoted to Hoeffding and Bernstein bounds for
sampling without replacement.

Setting and notations. Let X = (x1, . . . , xN ) be a finite population of N real points. We use cap-
ital letters to denote random variables on X , and lower-case letters for their possible values. Sampling
without replacement a list (X1, . . . , Xn) of size n from X can be described sequentially as follows:
let first I1 = {1, . . . , n}, sample an integer I1 uniformly on I1, and set X1 to be xI1 . Then, for each
i = 2, . . . , n, sample Ii uniformly on the remaining indices Ii = Ii−1 \ {Ii−1}. Hereafter we assume
that N > 2.

Previous work. There have been a few papers on concentration properties of sampling without
replacement; see, for instance, (????). One notable contribution is the following reduction result in
Hoeffding’s seminal paper (?, Theorem 4):

1
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Lemma 1 Let X = (x1, . . . , xN ) be a finite population of N real points, X1, . . . , Xn denote a random
sample without replacement from X and Y1, . . . , Yn denote a random sample with replacement from X .
If f : R→ R is continuous and convex, then

Ef
( n∑
i=1

Xi

)
6 Ef

( n∑
i=1

Yi

)
.

Lemma ?? implies that the concentration results known for sampling with replacement as Chernoff
bounds (?) can be transferred to the case of sampling without replacement. In particular, Proposi-
tion ??, due to ?, holds for the setting without replacement.

Proposition 1 (Hoeffding’s inequality) Let X = (x1, . . . , xN ) be a finite population of N points
and X1, . . . , Xn be a random sample drawn without replacement from X . Let

a = min
16i6N

xi and b = max
16i6N

xi.

Then, for all ε > 0,

P
(

1

n

n∑
i=1

Xi − µ > ε
)
6 exp

(
− 2nε2

(b− a)2

)
, (1)

where µ = 1
N

∑N
i=1 xi is the mean of X .

When the variance of X is small compared to the range b − a, another Chernoff bound, known as
Bernstein’s bound (?), is usually tighter.

Proposition 2 (Bernstein’s inequality) With the notations of Proposition ??, let

σ2 =
1

N

N∑
i=1

(xi − µ)2

be the variance of X . Then, for all ε > 0,

P
(

1

n

n∑
i=1

Xi − µ > ε
)
6 exp

(
− nε2

2σ2 + 2
3 (b− a)ε

)
.

Although these are interesting results, it appears that the bounds in Propositions ?? and ?? are
actually very conservative, especially when n is large, say, n > N/2. Indeed, ? proved that the term
n in the RHS of (??) can be replaced by n

1−(n−1)/N ; see Theorem ?? below, where the result of

Serfling is restated in our notation and slightly improved. As n approaches N , the bound of ? improves
dramatically, which corresponds to the intuition that when sampling without replacement, the sample
mean becomes a very accurate estimate of µ as n approaches N .

Contributions and outline. In Section ??, we slightly modify Serfling’s result, yielding a Hoeffding-
Serfling bound in Theorem ?? that dramatically improves on Hoeffding’s in Proposition ??. In Sec-
tion ??, we contribute in Theorem ?? a similar improvement on Proposition ??, which we call a
Bernstein-Serfling bound. To allow practical applications of our Bernstein-Serfling bound, we finally
provide an empirical Bernstein-Serfling bound in Section ??, in the spirit of (?), which does not require
the variance of X to be known beforehand.

Illustration. To give the reader a visual intuition of how the above mentioned bounds compare
in practice and motivate their derivation, in Figure ??, we plot the bounds given by Proposition ??
and Theorem ?? for Hoeffding bounds, and Proposition ?? and Theorem ?? for Bernstein bounds for
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ε = 10−2, in some common situations. We set X to be an independent sample of size N = 104 from
each of the following four distributions: unit centered Gaussian, log-normal with parameters (1, 1), and
Bernoulli with parameter 1/10 and 1/2. An estimate of the probability P(n−1

∑n
i=1Xi − µ > 10−2) is

obtained by averaging over 1000 repeated samples of size n taken without replacement. In Figures ??,
??, and ??, Hoeffding’s bound and the Hoeffding-Serfling bound of Theorem ?? are close for n 6 N/2,
after which the Hoeffding-Serfling bound decreases to zero, outperforming Hoeffding’s bound. Bern-
stein’s and our Bernstein-Serfling bound behave similarly, both outperforming their counterparts that
do not make use of the variance of X . However, Figure ?? shows that one should not always prefer
Bernstein bounds. In this case, the standard deviation is as large as roughly half the range, mak-
ing Hoeffding’s and Bernstein’s bounds identical, and Hoeffding-Serfling actually slightly better than
Bernstein-Serfling. We emphasize here that Bernstein bounds are typically useful when the variance is
small compared to the range.
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(b) Log-normal lnN (1, 1)
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(c) Bernoulli B(0.1)
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Fig 1. Comparing known bounds on p = P(n−1
∑n

i=1Xi−µ > 0.01) with our Hoeffding-Serfling and Bernstein-Serfling
bounds. X is here a sample of size N = 104 from each of the four distributions written below each plot. An estimate
(black plain line) of p is obtained by averaging over 1000 repeated subsamples of size n, taken from X uniformly without
replacement.

2. A reminder of Serfling’s fundamental result.

In this section, we recall an initial result and proof by ?, and slightly improve on his final bound.



R. Bardenet and O.-A. Maillard/Concentration inequalities for sampling without replacement 4

We start by identifying the following martingales structures. Let us introduce, for 1 6 k 6 N ,

Zk =
1

k

k∑
t=1

(Xt − µ) and Z?k =
1

N − k

k∑
t=1

(Xt − µ) , where µ =
1

N

N∑
i=1

xi . (2)

Lemma 2 The following forward martingale structure holds for {Z?k}k6N :

E
[
Z?k

∣∣∣Z?k−1, . . . , Z?1] = Z?k−1 . (3)

Similarly, the following reverse martingale structure holds for {Zk}k6N :

E
[
Zk

∣∣∣Zk+1, . . . , ZN−1

]
= Zk+1 . (4)

Proof: We first prove (??). Let 1 6 k 6 N . We start by noting that

Z?k =
1

N − k

k−1∑
t=1

(Xt − µ) +
Xk − µ
N − k

=
N − k + 1

N − k
Z?k−1 +

Xk − µ
N − k

. (5)

Since Xk is uniformly distributed on the remaining elements of X after X1, . . . , Xk−1 have been drawn,
its conditional expectation given X1, . . . , Xk−1 is the average of the N − k+ 1 remaining points in X .
Since points in X add up to µ, we obtain

E
[
Xk

∣∣∣Z?k−1, . . . , Z?1] = E
[
Xk

∣∣∣Xk−1, . . . , X1

]
=

Nµ−
∑k−1
i=1 Xi

N − k + 1
= µ− Z?k−1 . (6)

Combined with (??), this yields (??).
We now turn to proving (??). First, let 1 6 k 6 N and note that the σ-algebra σ(Zk+1, . . . , ZN−1) is

equal to σ(Xk+2, . . . , XN ). Let us remark that (X1, . . . , XN ) is uniformly distributed on the permuta-
tions of {1, . . . , N}, so that (X1, . . . , XN−k) and (Xk+1, . . . , XN ) have the same marginal distribution.
Consequently,

E
[
Xk+1

∣∣∣Zk+1, . . . , ZN−1

]
= E

[
Xk+1

∣∣∣Xk+2 . . . , XN

]
=
Sk+1

k + 1
.

Finally, we prove (??) along the same lines as (??):

E
[
Zk

∣∣∣Zk+1, . . . , ZN−1

]
= E

[
Sk − kµ

k

∣∣∣∣Zk+1, . . . , ZN−1

]
= E

[
Sk+1 −Xk+1

k

∣∣∣∣Zk+1, . . . , ZN

]
− µ

=
Sk+1

k
− Sk+1

k(k + 1)
− µ

= Zk+1.

�

A Hoeffding-Serfling inequality. Let us now state the main result of (?). This is a key re-
sult to derive a concentration inequality, a maximal concentration inequality and a self-normalized
concentration inequality, as explained in (?).
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Proposition 3 (?) Let us denote a = min16i6N xi, and b = max16i6N xi. Then, for any λ > 0, it
holds that

logE exp
(
λnZn

)
6

(b− a)2

8
λ2n

(
1− n− 1

N

)
.

Moreover, for any λ > 0, it also holds that

logE exp
(
λ max

16k6n
Z?k

)
6

(b− a)2

8

λ2

(N − n)2
n
(

1− n− 1

N

)
.

Proof: First, (??) yields that for all λ′ > 0,

λ′Z?k = λ′Z?k−1 + λ′
Xk − µ+ Z?k−1

N − k
. (7)

Furthermore, we know from (??) that−Z?k−1 is the conditional expectation ofXk−µ givenX1, . . . , Xk−1.
Thus, since Xk − µ ∈ [a− µ, b− µ], Proposition ?? applies and we get that, for all 2 6 k 6 n,

logE
[

exp
(
λ′
Xk − µ+ Z?k−1

N − k

)∣∣∣∣Z?1 , . . . , Z?k−1] 6 (b− a)2

8

λ′
2(

N − k
)2 . (8)

Similarly, we can apply Proposition ?? to Z?1 = (X1 − µ)/(N − 1) to obtain

logE exp
(
λ′Z?1

)
6

(b− a)2

8

λ′
2(

N − 1
)2 . (9)

Upon noting that Zn = N−n
n Z?n, and combining (??) and (??) together with the decomposition (??),

we eventually obtain the bound

logE exp
(
λ′

n

N − n
Zn

)
6

(b− a)2

8

n∑
k=1

λ′
2

(N − k)2
.

In particular, for λ such that λ′ = (N − n)λ, the RHS of this equation contains the quantity

n∑
k=1

(N − n)2

(N − k)2
= 1 + (N − n)2

N−1∑
k=N−n+1

1

k2

6 1 + (N − n)2
((N − 1)− (N − n))

(N − n)N
= 1 +

(N − n)(n− 1)

N

= 1 + n− 1− nn− 1

N
= n

(
1− n− 1

N

)
, (10)

where we used in the second line the following approximation from (?, Lemma 2.1): for 1 6 j 6 m, it
holds

l∑
k=j+1

1

k2
6

l − j
j(l + 1)

.

This concludes the proof of the first result of Proposition ??. The second result follows from applying
Doob’s maximal inequality combined with the previous derivation. �

The result of Proposition ?? reveals a powerful feature of the no replacement setting: the factor
n(1− n−1

N ) in the exponent, as opposed to n in the case of sampling with replacement. This leads to a
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dramatic improvement of the bound when n is large, as can be seen on Figure ??. ? mentioned that a
factor 1− n

N would be intuitively more natural, as indeed when n = N the mean µ is known exactly,
so that ZN is deterministically zero.

Serfling did not publish any result with 1− n
N . However, it appears that a careful examination of the

previous proof and of the use of Equation (??), in lieu of (??), allows us to get such an improvement.
We detail this in the following proposition. More than a simple cosmetic modification, it is actually a
slight improvement on Serfling’s original result when n > N/2.

Proposition 4 Let (Zk) be defined by (??). For any λ > 0, it holds that

logE exp
(
λnZn

)
6

(b− a)2

8
λ2(n+ 1)

(
1− n

N

)
.

Moreover, for any λ > 0, it also holds that

logE exp
(
λ max
n6k6N−1

Zk

)
6

(b− a)2

8

λ2

n2
(n+ 1)

(
1− n

N

)
.

Proof: Let us introduce the notation Yk = ZN−k for 1 6 k 6 N − 1. From (??), it comes

E
[
YN−k

∣∣∣Y1, . . . , YN−k−1] = YN−k−1 .

By a change of variables, this can be rewritten as

E
[
Yk

∣∣∣Y1, . . . , Yk−1] = Yk−1 .

Now we remark that the following decomposition holds:

λYk = λ

∑N−k
i=1 (Xi − µ)

N − k

= λYk−1 − λ
XN−k+1 − µ− Yk−1

N − k
. (11)

Since Yk−1 is the conditional mean of XN−k+1 − µ ∈ [a− µ, b− µ], Proposition ?? yields that, for all
2 6 k 6 n,

logE
[

exp
(
λ′
XN−k+1 − µ− Yk−1

N − k

)∣∣∣∣Y1, . . . , Yk−1] 6 (b− a)2

8

λ′
2(

N − k
)2 . (12)

On the other hand it holds by definition of Y1 that

Y1 = ZN−1 =

∑N−1
i=1 (Xi − µ)

N − 1
∈ [a− µ, b− µ] .

Along the lines of the proof of Proposition ??, we obtain

logE exp
(
λ′Y1

)
6

(b− a)2

8

λ′
2(

N − 1
)2 . (13)

Combining Equations (??) and (??) with the decomposition (??), it comes

logE exp
(
λ′Yn

)
6

(b− a)2

8

n∑
k=1

λ′
2

(N − k)2

6
(b− a)2

8

λ′
2

(N − n)2
n
(
1− n− 1

N

)
,
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where in the last line we made use of (??). Rewriting this inequality in terms of Z, we obtain that,
for all 1 6 n 6 N − 1,

logE exp
(
λ(N − n)ZN−n

)
6

(b− a)2

8
λ2n

(
1− n− 1

N

)
,

that is, by resorting to a new change of variable,

logE exp
(
λnZn

)
6

(b− a)2

8
λ2(N − n)

(
1− N − n− 1

N

)
6

(b− a)2

8
λ2(N − n)

n+ 1

N

6
(b− a)2

8
λ2(n+ 1)

(
1− n

N

)
.

The second part of the proposition follows from applying Doob’s inequality for martingales to Yn. �

Theorem 1 (Hoeffding-Serfling inequality) Let X = (x1, . . . , xN ) be a finite population of N > 1
real points, and (X1, . . . , Xn) be a list of size n < N sampled without replacement from X . Then for
all ε > 0, the following concentration bounds hold

P
(

max
n6k6N−1

∑k
t=1(Xt − µ)

k
> ε

)
6 exp

(
− 2nε2

(1− n/N)(1 + 1/n)(b− a)2

)
P
(

max
16k6n

∑k
t=1(Xt − µ)

N − k
>

nε

N − n

)
6 exp

(
− 2nε2

(1− (n− 1)/N)(b− a)2

)
,

where a = min16i6N xi and b = max16i6N xi.

Proof: Applying Proposition ?? together with Markov’s inequality, we obtain that, for all λ > 0,

P
(

max
n6k6N−1

∑k
t=1(Xt − µ)

k
> ε

)
6 exp

(
− λε+

(b− a)2

8

λ2

n2
(n+ 1)(1− n/N)

)
.

We now optimize the previous bound in λ. The optimal value is given by

λ? = ε
4

(b− a)2
n2

(n+ 1)(1− n/N)
.

This gives the first inequality of Theorem ??. The proof of the second inequality follows the very same
lines. �

Inverting the result of Theorem ?? for n < N and remarking that the resulting bound still holds
for n = N , we straightforwardly obtain the following result.

Corollary 1 For all n 6 N , for all δ ∈ [0, 1], with probability higher than 1− δ, it holds∑n
t=1(Xt − µ)

n
6 (b− a)

√
ρn log(1/δ)

2n
,

where

ρn =

{
(1− fn−1) if n 6 N/2

(1− fn)(1 + 1/n) if n > N/2
.
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3. A Bernstein-Serfling inequality.

In this section, we consider σ2 = N−1
∑N
i=1(xi − µ)2 is known, and extend Theorem ?? to that

situation.
Similarly to Lemma ??, the following structural lemma will be useful:

Lemma 3 It holds

E
[
(Xk − µ)2

∣∣∣Z1, . . . Zk−1

]
= σ2 −Q?k−1 where Q?k−1 =

∑k−1
i=1

(
(Xi − µ)2 − σ2

)
N − k + 1

,

where the Zis are defined in (??). Similarly, it holds

E
[
(Xk+1 − µ)2

∣∣∣Zk+1, . . . ZN−1

]
= σ2 +Qk+1 where Qk+1 =

∑k+1
i=1

(
(Xi − µ)2 − σ2

)
k + 1

.

Proof: We simply remark again that, conditionally on X1, . . . , Xk−1, the variable Xk is distributed
uniformly over the remaining points in X , so that

E
[
(Xk − µ)2

∣∣∣Z1, . . . Zk−1

]
= E

[
(Xk − µ)2

∣∣∣X1, . . . Xk−1

]
=

1

N − k + 1

[
Nσ2 −

k−1∑
i=1

(Xi − µ)2

]
= σ2 −Q?k−1 .

The second equality of Lemma ?? follows from the same argument, as in the proof of Lemma ??. �

Let us now introduce the following notations:

µ<,k+1 = E
[
Xk+1 − µ

∣∣∣Zk+1, . . . ZN−1

]
,

µ>,k = E
[
Xk − µ

∣∣∣Z1, . . . Zk−1

]
,

σ2
<,k+1 = E

[
(Xk+1 − µ)2

∣∣∣Zk+1, . . . ZN−1

]
− µ2

<,k+1 ,

σ2
>,k = E

[
(Xk − µ)2

∣∣∣Z1, . . . Zk−1

]
− µ2

>,k .

We are now ready to state Proposition ??, which is a Bernstein version of Proposition ??.

Proposition 5 For any λ > 0, it holds that

logE exp
(
λnZn − λ2

N−n∑
k=1

ϕ
(2(b− a)λ

N − k

)σ2
<,N−k+1n

2

(N − k)2

)
6 0 ,

logE exp
(
λnZn − λ2

n∑
k=1

ϕ
(

2(b− a)λ
N − n
N − k

)σ2
>,k(N − n)2

(N − k)2

)
6 0 ,

where we introduced the function ϕ(c) = ec−1−c
c2 . Moreover, for any λ > 0, it also holds that

logE exp
(
λ
(

max
16k6n

Z?k

)
−

n∑
k=1

ϕ
(2(b− a)λ

N − k

) σ2
>,kλ

2

(N − k)2

)
6 0 ,

logE exp
(
λ
(

max
n6k6N−1

Zk

)
−
N−n∑
k=1

ϕ
(2(b− a)λ

N − k

)σ2
<,N−k+1λ

2

(N − k)2

)
6 0 .
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Proof: The key point is to replace Equations (??) and (??) in the proof of Proposition ??, which
make use of the range of X , by equivalent ones that involve the variance. We only detail the proof of
the first inequality, the proof of the three others follows the same steps.

A standard result from the proof of Bennett’s inequality (see (?, page 11) or (?, proof of Theorem
2.9)) applied to the random variable XN−k+1 − µ, with conditional mean µ<,N−k+1 and conditional
variance σ2

<,N−k+1, yields

E
[
exp
(
λ′
XN−k+1−µ+Yk−1

N − k
− σ2

<,N−k+1ϕ
(2(b− a)λ′

N−k

) λ′
2(

N−k
)2)∣∣∣∣Y1, . . . , Yk−1]61 , (14)

where we used the notation Yk = ZN−k of Proposition ??, and introduced ϕ the function

ϕ(c) =
ec − 1− c

c2
.

Similarly, Y1 satisfies

logE exp
(
λ′Y1

)
= logE exp

(
λ′
µ−XN

N − 1

)
6 σ2

<,Nϕ
(2(b− a)λ′

N − 1

) λ′
2(

N − 1
)2 . (15)

where σ2
<,N = σ2 is deterministic.

Thus, combining (??) and (??) together with the decomposition (??), we eventually get the bound

logE exp
(
λ′Yn −

n∑
k=1

ϕ
(2(b− a)λ′

N − k

)σ2
<,N−k+1λ

′2

(N − k)2

)
6 0 .

�
Using the result of Proposition ??, we could immediately derive a simple Bernstein inequality for

sampling without replacement via an application of Theorem ?? to the random variables Zi = (Xi−µ)2.
However, ? and ? showed that, in the case of sampling with replacement, a careful use of self-bounded
properties of the variance yields better bounds. We now explain how to get a similar improvement on
the naive Bernstein inequality in the case of sampling without replacement. We start with a technical
lemma.

Lemma 4 For all δ ∈ [0, 1], with probability larger than 1− δ, it holds

max
16k6n

σ2
>,k 6 σ

2 +
σ(b− a)(n− 1)

N − n+ 1

√
2 log(1/δ)

n− 1
. (16)

Similarly, with probability larger than 1− δ, it holds

max
n6k6N−1

σ2
<,k+1 6 σ

2 +
σ(b− a)(N − n− 1)

n+ 1

√
2 log(1/δ)

N − n− 1
. (17)

Remark 1 When N → ∞, the upper bound on max16k6n σ
2
>,k reduces to σ2. Indeed, this limit case

intuitively corresponds to sampling with replacement, for which the conditional variance equals σ2.

Proof: We first prove (??). By definition and Lemma ??, it holds that

σ2
>,k = σ2 −Q?k−1 − Z?k−1

2

6 σ2 − 1

N − k + 1

k−1∑
i=1

[(
Xi − µ

)2 − σ2
]
. (18)
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Let Vk−1 = 1
k−1

∑k−1
i=1

(
Xi − µ

)2
. (??) yields

max
16k6n

σ2
>,k 6 σ

2 + max
16k6n

k − 1

N − k + 1

(
σ2 − Vk−1

)
.

The rest of the proof proceeds by establishing a suitable maximal concentration bound for the quantity
Vk−1, the mean of which is σ2.

We remark that −Q?k−1 = k−1
N−k+1

(
σ2 − Vk−1

)
is a martingale. Indeed, it satisfies

E
[
−Q?k−1

∣∣∣Q?k−2, . . . , Q?1]
=

1

N − k + 1
E
[ k−1∑
i=1

(
σ2 − (Xi − µ)2

)∣∣∣Q?k−2, . . . , Q?1]
=

1

N − k + 1

k−2∑
i=1

(
σ2 − (Xi − µ)2

)
+

1

N − k + 1
E
[(
σ2 − (Xk−1 − µ)2

)∣∣∣Q?k−2, . . . , Q?1]
= −N − k + 2

N − k + 1
Q?k−2 +

1

N − k + 1
Q?k−2

= −Q?k−2 .

Doob’s maximal inequality thus yields that, for all λ > 0,

P
(

max
16k6n

−Q?k−1 > ε
)

= P
(

max
16k6n

exp(−λQ?k−1) > exp(λε)

)
6 E

[
exp

(
− λQ?n−1 − λε

)]
= E

[
exp

(
λ

n− 1

N − n+ 1

(
σ2 − Vn−1 −

N − n+ 1

n− 1
ε
))]

.

At this point, we fix λ > 0 and apply Lemma ?? to the random variables X ′i = (Xi − µ)2 and
function f : x→ exp(−λ(n− 1)x). We deduce that, for all ε′ > 0 and λ > 0,

P
(

max
16k6n

σ2
>,k − σ2 >

n− 1

N − n+ 1
ε′
)
6 E

[
exp

(
− λ(Vn−1 − σ2 + ε′)

)]
6 E

[
exp

(
− λ(Ṽn−1 − σ2 + ε′)

)]
, (19)

where we introduced in the last line the notation Ṽn−1 = 1
n−1

∑n−1
i=1

(
Yi − µ

)2
, with the {Yi}16i6n−1

being sampled from X with replacement. Note that Ṽn−1 has mean σ2 too.
Now, we check that the assumptions of Theorem 13 of ? hold. We first introduce the modification

Yj,y
1:n−1 = {Y1, . . . , Yj−1, y, Yj+1, . . . , Yn−1}

of Y1:n−1, where Yj is replaced by y ∈ X . Writing Ṽn−1 = Ṽn−1(Y1:n−1) to underline the dependency
on the sample set Y1:n−1, it straightforwardly comes, on the one hand, that for all y ∈ X

Ṽn−1(Y1:n−1)− Ṽn−1(Yj,y
1:n−1) =

1

n− 1

(
(Yj − µ)2 − (y − µ)2

)
6

1

n− 1
(Yj − µ)2 6

1

n− 1
(b− a)2 ,
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and, on the other hand, that the following self-bounded property holds:

n−1∑
j=1

(
Ṽn−1(Y1:n−1)− inf

y∈X
Ṽn−1(Yj,y

1:n−1)

)2

6
1

(n− 1)2

n−1∑
j=1

(Yj − µ)4

6
(b− a)2

n− 1
Ṽn−1(Y1:n−1) .

We now apply of the proof of Theorem 13 of ?1 to Z = n−1
(b−a)2 Ṽn−1, together with (??), which yields

P
(

max
16k6n

σ2
>,k − σ2 >

(b− a)2

N − n+ 1
ε

)
6 exp

(
− λε+

λ2

2
E[Z]

)
= exp

(
− (b− a)2ε2

2(n− 1)σ2

)
,

where we used the same value λ = ε
E[Z] = (b−a)2ε

(n−1)σ2 as in (?, Theorem 13).

Finally, we have proven that for all δ ∈ [0, 1], with probability higher than 1− δ,

max
16k6n

σ2
>,k 6 σ2 + 2

√
σ2

(b− a)(n− 1)

N − n+ 1

√
log(1/δ)

2(n− 1)
,

which concludes the proof of (??).
We now turn to proving (??). First, we remark that

σ2
<,k+1 6 E

[
(Xk+1 − µ)2|Zk+1, . . . , ZN−1

]
= E

[
(Xk+1 − µ)2|Xk+2, . . . , XN

]
= E

[
(YN−k − µ)2|Y1, . . . , YN−k−1

]
,

where in the second line we used that Zk+1 = µ −XN − . . . Xk+2, and in the third line we used the
change of variables Yu = XN−u+1. It follows that

max
n6k6N−1

σ2
<,k+1 6 max

n6k6N−1
E
[
(YN−k − µ)2

∣∣∣Y1, . . . , YN−k−1]
= max

16k6N−n
E
[
(Yk − µ)2

∣∣∣Y1, . . . , Yk−1] .
Now (Y1, . . . , YN−n) has the same marginal distribution as (X1, . . . , XN−n), so that the proof of (??)
applies and yields the result. �

We emphasize that we used Hoeffding’s reduction Lemma ?? in the proof of Lemma ??. This allowed
us to apply the key result from ?. We will discuss alternatives to this proof in Section ??. We can now
state our Bernstein-Serfling bound.

Theorem 2 (Bernstein-Serfling inequality) Let X = (x1, . . . , xN ) be a finite population of N > 1
real points, and (X1, . . . , Xn) be a list of size n < N sampled without replacement from X . Then, for
all ε > 0 and δ ∈ [0, 1], the following concentration inequality holds

P
(

max
16k6n

∑k
t=1(Xt−µ)

N − k
>

nε

N−n

)
6 exp

[
−nε2/2

γ2 + 2
3 (b− a)ε

]
+ δ , (20)

1the theorem is stated for P
[
E[Z]− Z > ε

]
but, actually, E

[
exp

(
− λ(Z − E[Z] + ε)

)]
is bounded in the proof.
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where
γ2 = (1− fn−1)σ2 + fn−1cn−1(δ) ,

cn(δ) = σ(b− a)
√

2 log(1/δ)
n , and fn−1 = n−1

N . Similarly, it holds

P
(

max
n6k6N−1

∑k
t=1(Xt−µ)

k
> ε

)
6 exp

[
−nε2/2

γ̃2 + 2
3 (b− a)ε

]
+δ . (21)

where

γ̃2 = (1− fn)
(n+ 1

n
σ2 +

N − n− 1

n
cN−n−1(δ)

)
.

Proof: We first prove (??). Applying Proposition ?? together with Markov’s inequality, we obtain
that for all λ, δ > 0,

P
(

max
n6k6N−1

∑k
t=1(Xt − µ)

k
>

log(1/δ)

λ
+ λ

N−n∑
k=1

ϕ
(2(b− a)λ

N − k

)σ2
<,N−k+1

(N − k)2

)
6 δ . (22)

Thus, combining Equations (??) and (??) with a union bound, we get that for all δ, δ′, with prob-
ability higher than 1− δ − δ′, it holds for all λ > 0 that

max
n6k6N−1

∑k
t=1(Xt − µ)

k

6
log(1/δ)

λ
+ λ

N−n∑
k=1

ϕ
(2(b− a)λ

N − k

) 1

(N − k)2

[
σ2 +

N − n− 1

n+ 1
cN−n−1(δ′)

]
6

log(1/δ)

λ
+

λ

n2
ϕ
(2(b− a)λ

n

)[
σ2 +

N − n− 1

n+ 1
cN−n−1(δ′)

]N−n∑
k=1

n2

(N − k)2

6
log(1/δ)

λ
+

λ

n2
ϕ
(2(b− a)λ

n

)[
σ2 +

N − n− 1

n+ 1
cN−n−1(δ′)

]
(n+ 1)

(
1− n

N

)
,

where we introduced

cN−n−1(δ′) = σ(b− a)

√
2 log(1/δ′)

N − n− 1
,

where we used in the second line the fact that ϕ is non-decreasing and where we applied (??) in the
last line. For convenience, let us now introduce the quantities fn = n

N and

γ̃2 = (1− fn)
[
σ2 +

N − n− 1

n+ 1
cN−n−1(δ′)

]
.

The previous bound can be rewritten in terms of ε > 0 and δ′ only, in the form

P
(

max
n6k6N−1

∑k
t=1(Xt − µ)

k
> ε

)
6 exp

(
− λε+

λ2(n+ 1)

n2
ϕ
(2(b− a)λ

n

)
γ̃2
)

+ δ′ . (23)

We now optimize the bound (??) in λ. Let us introduce the function

f(λ) = −λε+
λ2(n+ 1)

n2
ϕ
(2(b− a)λ

n

)
γ̃2 ,

corresponding to the term in brackets in (??). By definition of ϕ, it comes

f(λ) = −λε+
λ2

n2
ϕ
(2(b− a)λ

n

)
γ̃2(n+ 1)

= −λε+
(

exp
(2(b− a)λ

n

)
− 1− 2(b− a)λ

n

) γ̃2

4(b− a)2
(n+ 1) .
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Thus, the derivative of f is given by

f ′(λ) = −ε+
(

exp
(2(b− a)λ

n

)
− 1
) γ̃2(n+ 1)

2(b− a)n
,

and the value λ? that optimizes f is given by

λ? =
n

2(b− a)
log

(
1 +

2(b− a)εn

γ̃2(n+ 1)

)
.

Let us now introduce for convenience the quantity u = 2(b−a)n
γ̃2(n+1) . The corresponding optimal value f(λ?)

is given by

f(λ?) = −ε n

2(b− a)
log(1 + uε) +

γ̃2

4(b− a)2
(n+ 1)

(
uε− log(1 + uε)

)
=

γ̃2(n+ 1)

4(b− a)2

[
− uε log(1 + uε) + uε− log(1 + uε)

]
= − n

2(b− a)u
ζ(uε) ,

where we introduced in the last line the function ζ(u) = (1 +u) log(1 +u)−u. Now, using the identify
ζ(u) > u2/(2 + 2u/3) for u > 0, we obtain

P
(

max
n6k6N−1

∑k
t=1(Xt − µ)

k
> ε

)
6 exp

(
− nε

2(b− a)

uε

2 + 2uε/3

)
+ δ′

6 exp

(
− nε2

2γ̃2(n+ 1)/n+ 4
3 (b− a)ε

)
+ δ′ ,

which concludes the proof of (??). The proof of (??) follows the very same lines, simply using (??)
instead of (??). �

Inverting the bounds of Theorem ??, we obtain Corollary ??.

Corollary 2 Let n 6 N and δ ∈ [0, 1]. With probability larger than 1− 2δ, it holds that∑n
t=1(Xt − µ)

n
6 σ

√
2ρn log(1/δ)

n
+
κn(b− a) log(1/δ)

n
,

where

ρn =

{
(1− fn−1) if n 6 N/2

(1− fn)(1 + 1/n) if n > N/2

and

κn =

{
4
3 +

√
fn
gn−1

if n 6 N/2
4
3 +

√
gn+1(1− fn) if n > N/2

,

with fn = 1− n/N and gn = N/n− 1.

Proof: Let δ, δ′ ∈ [0, 1]. From (??) in Theorem ??, it comes that, with probability higher than 1−δ−δ′,∑n
t=1(Xt − µ)

N − n
6 εδ , where γ2 +B

N − n
n

εδ =
(N − n)2

2n log(1/δ)
ε2δ ,
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where we introduced for convenience B = 2
3 (b− a) and

γ2 = (1− fn−1)σ2 + fn−1σ(b− a)

√
2 log(1/δ′)

n− 1
.

Solving this equation in ε leads to

εδ = n log(1/δ)
BN−n

n +

√
B2
(
N−n
n

)2
+ 4 (N−n)2

2n log(1/δ)γ
2

(N − n)2

=
1

N − n

(√
B2 log(1/δ)2 + 2γ2 log(1/δ)n+B log(1/δ)

)
6

n

N − n

(√
2γ2 log(1/δ)

n
+

2B log(1/δ)

n

)
.

On the other hand, following the same lines but starting from (??) in Theorem ??, it holds that,
with probability higher than 1− δ − δ′,∑n

t=1(Xt − µ)

n
6

√
2γ̃2 log(1/δ)

n
+

2B log(1/δ)

n
,

where we introduced this time

γ̃2 = (1− fn)
(

(1 + 1/n)σ2 +
N − n− 1

n
σ(b− a)

√
2 log(1/δ′)

N − n− 1

)
.

Finally, we note that

√
γ̃2 6

√
(1− fn)(1 + 1/n)

(
σ +

N − n− 1

n+ 1
(b− a)

√
log(1/δ′)

2(N − n− 1)

)
,

Thus, when n 6 N/2, we deduce that for all 1 6 n 6 N − 1, with probability higher than 1− 2δ, it
holds∑n

t=1(Xt − µ)

n
6

√
1− fn−1

(
σ

√
2 log(1/δ)

n
+

n− 1

N − n+ 1

(b− a) log(1/δ)√
n(n− 1)

)

+
2B log(1/δ)

n
,

6 σ

√
2(1− fn−1) log(1/δ)

n
+

(b− a) log(1/δ)

n

(
4

3
+

√
n(n− 1)

N(N − n+ 1)

)
;

whereas when N > n > N/2, it holds, with probability higher than 1− 2δ, that∑n
t=1(Xt − µ)

n
6

√
(1− fn)(1 + 1/n)

(
σ

√
2 log(1/δ)

n
+
N − n− 1

n+ 1

(b− a) log(1/δ)√
n(N − n− 1)

)

+
2B log(1/δ)

n

6 σ

√
2(1− fn)(1 + 1/n) log(1/δ)

n

+
(b− a) log(1/δ)

n

(
4

3
+

√
(N − n− 1)(N − n)

(n+ 1)N

)
.

Finally we note that when n = N , gn+1(1− fn) = 0 and ρn = 0. So the bound is still satisfied. �
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4. An empirical Bernstein-Serfling inequality

In this section, we derive a practical version of Theorem ?? where the variance σ2 is replaced by an
estimate. A natural (biased) estimator is given by

σ̂2
n =

1

n

n∑
i=1

(Xi − µ̂n)2 =
1

n2

n∑
i,j=1

(Xi −Xj)
2

2
, where µ̂n =

1

n

n∑
i=1

Xi . (24)

We also define, for notational convenience, the quantity σ̂n =
√
σ̂2
n.

Before proving our empirical Bernstein-Serfling inequality, we first need to control the error between
σ̂n and σ. For instance, in the standard case of sampling with replacement, it can be shown (?) that,
for all δ ∈ [0, 1],

P

(
σ >

n

n− 1
σ̂n + (b− a)

√
2 ln(1/δ)

n− 1

)
6 δ .

We now show an equivalent result in the case of sampling without replacement.

Lemma 5 When sampling without replacement from a finite population X = (x1, . . . , xN ) of size N ,
with range [a, b] and variance σ2, the empirical variance σ̂2

n defined in (??) using n < N samples
satisfies the following concentration inequality (using the notation of Corollary ??)

P
(
σ > σ̂n + (b− a)

(
1 +

√
1 + ρn

)√ log(3/δ)

2n

)
6 δ .

Remark 2 We conjecture that it is possible, at the price of a more complicated analysis, to reduce the
term (1 +

√
1 + ρn) to

√
4ρn, which would then be consistent with the analogous result for sampling

with replacement in (?). We further discuss this technically involved improvement in Section ??.

Proof: In order to prove Lemma ??, we again use Lemma ??, which allows us to relate the concen-
tration of the quantity Vn = 1

n

∑n
i=1(Xi − µ)2 to that of its equivalent

Ṽn = Ṽn(Y1:n) =
1

n

n∑
i=1

(Yi − µ)2 ,

where the Yis are drawn from X with replacement. Let us introduce the notation Z = n
(b−a)2 Ṽn(Y1:n).

We know from the proof of Lemma ?? that Z satisfies the conditions of application of (?, Theorem 13).

Let us also introduce for convenience the constant λ = − ε
E[Z] = − (b−a)2ε

nσ2 . Using these notations, it
comes

P
(
σ2 − Vn >

(b− a)2

n
ε

)
6 E

[
exp

(
− λ
( n

(b− a)2
σ2 − n

(b− a)2
Vn − ε

))]
6 E

[
exp

(
− λ
(
E[Z]− Z − ε

))]
6 exp

(
λε+

λ2

2
E[Z]

)
= exp

(
− (b− a)2ε2

2nσ2

)
.

The first line results of the application of Markov’s inequality. The second line follows from the appli-

cation of Lemma ?? to X ′i = (Xi − µ)2 and f(x) = exp
(
− λ n

(b−a)2x
)

. The last steps are the same as

in the proof of Lemma ??.
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So far, we have shown that, with probability at least 1− δ,

σ2 − 2
√
σ2(b− a)

√
log(1/δ)

2n
6 Vn . (25)

Let us remark that

1

n

n∑
i=1

(Xi − µ)2 − 1

n

n∑
i=1

(Xi − µ̂n)2 = (µ̂n − µ)2 ,

that is, Vn = (µ̂n − µ)2 + σ̂2
n. In order to complete the proof, we thus resort twice to Theorem ?? to

obtain that, with probability higher than 1− δ, it holds

(µ̂n − µ)2 6 (b− a)2
ρn log(2/δ)

2n
. (26)

Combining Equations (??) and (??) with a union bound argument yields that, with probability at
least 1− δ,

σ̂2
n > σ2 − 2

√
σ2

√
(b− a)2

log(3/δ)

2n
− (b− a)2

ρn log(3/δ)

2n

=
(
σ −

√
(b− a)2

log(3/δ)

2n

)2
− (b− a)2

(
1 + ρn

) log(3/δ)

2n
.

Finally, we obtain

P
(
σ > σ̂n +

(
1 +

√
1 + ρn

)√
(b− a)2

log(3/δ)

2n

)
6 δ .

�

Eventually, combining Theorem ?? and Lemma ?? with a union bound argument, we finally deduce
the following result.

Theorem 3 (An empirical Bernstein-Serfling inequality) Let X = (x1, . . . , xN ) be a finite pop-
ulation of N > 1 real points, and (X1, . . . , Xn) be a list of size n 6 N sampled without replacement
from X . Then for all δ ∈ [0, 1], with probability larger than 1− 5δ, it holds∑n

t=1(Xt − µ)

n
6 σ̂n

√
2ρn log(1/δ)

n
+
κ(b− a) log(1/δ)

n
,

where

ρn =

{
(1− fn−1) if n 6 N/2

(1− fn)(1 + 1/n) if n > N/2 ,

and κ = 7
3 + 3√

2
.

Remark 3 First, Theorem ?? has the familiar form of Bernstein bounds. The alternative definition
of ρn guarantees that we get the best reduction out of the no replacement setting. In particular, when n
is large, the factor (1− fn) replaces (1− fn−1) and the corresponding factor eventually equals 0 when
n = N , a feature that was missing in Proposition ??. Second, the constant κ is to relate to the constant
7/3 in (?, Theorem 11) for sampling with replacement.
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Proof: First, by application of Corollary ??, it holds for all δ ∈ [0, 1] that, with probability higher
than 1− 2δ, ∑n

t=1(Xt − µ)

n
6 σ

√
2ρn log(1/δ)

n
+
κn(b− a) log(1/δ)

n
,

where

ρn =

{
(1− fn−1) if n 6 N/2

(1− fn)(1 + 1/n) if n > N/2

and

κn =

{
4
3 +

√
fn
gn−1

if n 6 N/2
4
3 +

√
gn+1(1− fn) if n > N/2

.

We then apply Lemma ?? to get that, with probability higher than 1− 5δ, if n 6 N/2, then∑n
t=1(Xt − µ)

n
6

√
σ̂2
n

√
2 log(1/δ)

n

√
1− fn−1

+
(b− a) log(1/δ)

n

(
4

3
+

√
fn
gn−1

+(1 +
√

2− fn−1)
√

1− fn−1
)
, (27)

and if n > N/2, then∑n
t=1(Xt − µ)

n
6

√
σ̂2
n

√
2 log(1/δ)

n

√
(1− fn)(1 + 1/n)

+
(b− a) log(1/δ)

n

(
4

3
+
√
gn+1(1− fn)

+
√

(1− fn)(1 + 1/n)
(

1 +
√

1 + (1− fn)(1 + 1/n)
))

. (28)

We now simplify this result. Assume first that n 6 N/2. We thus get

fn
gn−1

6
1

2gn−1
=

n− 1

2(N − n+ 1)
6

1

2
,

so that we deduce

4

3
+ (1 +

√
2− fn−1)

√
1− fn−1 +

√
fn
gn−1

6 2 +
1

3
+
√

2 +
1√
2
. (29)

Assume now that n > N/2. In this case, it holds

gn+1(1− fn) =
N − n− 1

n+ 1

N − n
N

6
N − n
N

6
1

2
,

(1− fn)(1 + 1/n) =
(

1− n

N

)
(1 + 1/n) 6

1

2

(
1 +

2

N

)
,

so that we deduce, since N > 2,

4

3
+
√
gn+1(1− fn) +

√
(1− fn)(1 + 1/n)(1 +

√
2− fn−1) 6 2 +

1

3
+

1√
2

+
√

2 . (30)

Respectively combining (??) and (??) with Equations (??) and (??) concludes the proof. �
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5. Discussion

In this section, we discuss the bounds of Theorem ?? and Theorem ?? from the perspective of both
theory and application.

First, both bounds involve either the factor 1−fn−1 or 1−fn, thus leading to a dramatic improvement
on the usual Bernstein or empirical Bernstein bounds, which do not make use of the no replacement
setting. This is crucial, for instance, when the user needs to rapidly compute an empirical mean from
a large number of samples up to some precision level. Now to better understand this improvement, in
Figure ??, we plot the bounds of Corollaries ?? and ??, and Theorem ?? for an example where X is a
sample of size N = 106 from each of the following four distributions: unit centered Gaussian, log-normal
with parameters (1, 1), and Bernoulli with parameter 1/10 and 1/2. As n increases, we keep sampling
without replacement from X until exhaustion, and report the corresponding bounds. Note that all
our bounds have their leading term exactly equal to zero when n = N , though our Hoeffding-Serfling
bound only is exactly zero. In all experiments, the loss of tightness as a result of using the empirical
variance is small. Our empirical Bernstein-Serfling demonstrates here a dramatic improvement on the
Hoeffding-Serfling bound of Corollary ?? in Figures ?? and ??. A slight improvement is demonstrated in
Figure ?? where the standard deviation of X is roughly a third of the range. Finally, Bernstein-Serfling
itself does not improve on Hoeffding-Serfling in Figure ??, where the standard deviation is roughly half
of the range, again indicating that Bernstein bounds are not uniformly better than Hoeffding bounds.

A careful look at Lemmas ?? and ?? indicates that our bounds may be further improved, though at
the price of a more intricate analysis. Indeed, these two lemmas both resort to Hoeffding’s reduction
Lemma ??, in order to be able to apply concentration results known for self-bounded random variables
to the setting of sampling without replacement. As a result, we lose here a potential factor ρn for the
confidence bound around the variance, and we conjecture that the term 1 +

√
1 + ρn in Lemma ??

could ultimately be replaced with 2
√
ρn. A natural tool for this would be a dedicated tensorization

inequality for the entropy in the case of sampling without replacement (???). Indeed, it is not difficult
to show that σ̂2

n satisfies a self-bounded property similar to that of (?, Theorem 11), involving the
factor ρn. Thus, in order to be able to get a version of (?, Theorem 11) in our setting, a specific
so-called tensorization inequality would be enough. Unfortunately, we are unaware of the existence
of such an inequality for sampling without replacement, where the samples are strongly dependent.
We are also unaware of any tensorization inequality designed for U-statistics, which could be another
possible way to get the desired result. Although we believe this is possible, developing such tools goes
beyond the scope of this paper, and the current results of Theorem ?? and Theorem ?? are already
appealing without resorting to further technicalities, which would only affect second-order terms in
the end.
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Fig 2. Comparing the bounds of Corollaries ?? and ??, and Theorem ??. X is here a sample from each of the four
distributions written below each plot, of size N = 106. Unlike Figure ??, as n increases, we keep sampling here without
replacement until exhaustion.
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