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Concentration inequalities quantify the deviation of a random variable from a fixed value. In spite of numerous applications, such as opinion surveys or ecological counting procedures, few concentration results are known for the setting of sampling without replacement from a finite population. Until now, the best general concentration inequality has been a Hoeffding inequality due to ?. In this paper, we first improve on the fundamental result of ?, and further extend it to obtain a Bernstein concentration bound for sampling without replacement. We then derive an empirical version of our bound that does not require the variance to be known to the user.
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Introduction

Few results exist on the concentration properties of sampling without replacement from a finite population X . However, potential applications are numerous, from historical applications such as opinion surveys (?) and ecological counting procedures (?), to more recent approximate Monte Carlo Markov chain algorithms that use subsampled likelihoods (?). In a fundamental paper on sampling without replacement, ? introduced an efficient Hoeffding bound, that is, one which is a function of the range of the population. Bernstein bounds are typically tighter when the variance of the random variable under consideration is small, as their leading term is linear in the standard deviation of X , while the range only influences higher-order terms. This paper is devoted to Hoeffding and Bernstein bounds for sampling without replacement.

Setting and notations. Let X = (x 1 , . . . , x N ) be a finite population of N real points. We use capital letters to denote random variables on X , and lower-case letters for their possible values. Sampling without replacement a list (X 1 , . . . , X n ) of size n from X can be described sequentially as follows: let first I 1 = {1, . . . , n}, sample an integer I 1 uniformly on I 1 , and set X 1 to be x I1 . Then, for each i = 2, . . . , n, sample I i uniformly on the remaining indices I i = I i-1 \ {I i-1 }. Hereafter we assume that N 2.

Previous work. There have been a few papers on concentration properties of sampling without replacement; see, for instance, (????). One notable contribution is the following reduction result in Hoeffding's seminal paper (?, Theorem 4):

Lemma 1 Let X = (x 1 , . . . , x N ) be a finite population of N real points, X 1 , . . . , X n denote a random sample without replacement from X and Y 1 , . . . , Y n denote a random sample with replacement from X . If f : R → R is continuous and convex, then

Ef n i=1 X i Ef n i=1 Y i .
Lemma ?? implies that the concentration results known for sampling with replacement as Chernoff bounds (?) can be transferred to the case of sampling without replacement. In particular, Proposition ??, due to ?, holds for the setting without replacement.

Proposition 1 (Hoeffding's inequality) Let X = (x 1 , . . . , x N ) be a finite population of N points and X 1 , . . . , X n be a random sample drawn without replacement from X . Let a = min

1 i N
x i and b = max

1 i N x i .
Then, for all ε > 0,

P 1 n n i=1 X i -µ ε exp - 2nε 2 (b -a) 2 , ( 1 
)
where µ = 1 N N i=1
x i is the mean of X . When the variance of X is small compared to the range b -a, another Chernoff bound, known as Bernstein's bound (?), is usually tighter.

Proposition 2 (Bernstein's inequality) With the notations of Proposition ??, let

σ 2 = 1 N N i=1 (x i -µ) 2
be the variance of X . Then, for all ε > 0,

P 1 n n i=1 X i -µ ε exp - nε 2 2σ 2 + 2 3 (b -a)ε .
Although these are interesting results, it appears that the bounds in Propositions ?? and ?? are actually very conservative, especially when n is large, say, n N/2. Indeed, ? proved that the term n in the RHS of (??) can be replaced by n 1-(n-1)/N ; see Theorem ?? below, where the result of Serfling is restated in our notation and slightly improved. As n approaches N , the bound of ? improves dramatically, which corresponds to the intuition that when sampling without replacement, the sample mean becomes a very accurate estimate of µ as n approaches N .

Contributions and outline.

In Section ??, we slightly modify Serfling's result, yielding a Hoeffding-Serfling bound in Theorem ?? that dramatically improves on Hoeffding's in Proposition ??. In Section ??, we contribute in Theorem ?? a similar improvement on Proposition ??, which we call a Bernstein-Serfling bound. To allow practical applications of our Bernstein-Serfling bound, we finally provide an empirical Bernstein-Serfling bound in Section ??, in the spirit of (?), which does not require the variance of X to be known beforehand.

Illustration. To give the reader a visual intuition of how the above mentioned bounds compare in practice and motivate their derivation, in Figure ??, we plot the bounds given by Proposition ?? and Theorem ?? for Hoeffding bounds, and Proposition ?? and Theorem ?? for Bernstein bounds for ε = 10 -2 , in some common situations. We set X to be an independent sample of size N = 10 4 from each of the following four distributions: unit centered Gaussian, log-normal with parameters (1, 1), and Bernoulli with parameter 1/10 and 1/2. An estimate of the probability P(n -1 n i=1 X i -µ 10 -2 ) is obtained by averaging over 1000 repeated samples of size n taken without replacement. In Figures ??, ??, and ??, Hoeffding's bound and the Hoeffding-Serfling bound of Theorem ?? are close for n N/2, after which the Hoeffding-Serfling bound decreases to zero, outperforming Hoeffding's bound. Bernstein's and our Bernstein-Serfling bound behave similarly, both outperforming their counterparts that do not make use of the variance of X . However, Figure ?? shows that one should not always prefer Bernstein bounds. In this case, the standard deviation is as large as roughly half the range, making Hoeffding's and Bernstein's bounds identical, and Hoeffding-Serfling actually slightly better than Bernstein-Serfling. We emphasize here that Bernstein bounds are typically useful when the variance is small compared to the range. Comparing known bounds on p = P(n -1 n i=1 X i -µ 0.01) with our Hoeffding-Serfling and Bernstein-Serfling bounds. X is here a sample of size N = 10 4 from each of the four distributions written below each plot. An estimate (black plain line) of p is obtained by averaging over 1000 repeated subsamples of size n, taken from X uniformly without replacement.

A reminder of Serfling's fundamental result.

In this section, we recall an initial result and proof by ?, and slightly improve on his final bound.

We start by identifying the following martingales structures. Let us introduce, for 1 k N ,

Z k = 1 k k t=1 (X t -µ) and Z k = 1 N -k k t=1 (X t -µ) , where µ = 1 N N i=1 x i .
(2)

Lemma 2 The following forward martingale structure holds for {Z k } k N :

E Z k Z k-1 , . . . , Z 1 = Z k-1 . (3) 
Similarly, the following reverse martingale structure holds for {Z k } k N :

E Z k Z k+1 , . . . , Z N -1 = Z k+1 . (4) 
Proof: We first prove (??). Let 1 k N . We start by noting that

Z k = 1 N -k k-1 t=1 (X t -µ) + X k -µ N -k = N -k + 1 N -k Z k-1 + X k -µ N -k . ( 5 
)
Since X k is uniformly distributed on the remaining elements of X after X 1 , . . . , X k-1 have been drawn, its conditional expectation given X 1 , . . . , X k-1 is the average of the N -k + 1 remaining points in X . Since points in X add up to µ, we obtain

E X k Z k-1 , . . . , Z 1 = E X k X k-1 , . . . , X 1 = N µ - k-1 i=1 X i N -k + 1 = µ -Z k-1 . (6) 
Combined with (??), this yields (??). We now turn to proving (??). First, let 1 k N and note that the σ-algebra σ(Z k+1 , . . . , Z N -1 ) is equal to σ(X k+2 , . . . , X N ). Let us remark that (X 1 , . . . , X N ) is uniformly distributed on the permutations of {1, . . . , N }, so that (X 1 , . . . , X N -k ) and (X k+1 , . . . , X N ) have the same marginal distribution. Consequently,

E X k+1 Z k+1 , . . . , Z N -1 = E X k+1 X k+2 . . . , X N = S k+1 k + 1 .
Finally, we prove (??) along the same lines as (??):

E Z k Z k+1 , . . . , Z N -1 = E S k -kµ k Z k+1 , . . . , Z N -1 = E S k+1 -X k+1 k Z k+1 , . . . , Z N -µ = S k+1 k - S k+1 k(k + 1) -µ = Z k+1 .
A Hoeffding-Serfling inequality. Let us now state the main result of (?). This is a key result to derive a concentration inequality, a maximal concentration inequality and a self-normalized concentration inequality, as explained in (?).

Proposition 3 (?) Let us denote a = min 1 i N x i , and b = max 1 i N x i . Then, for any λ > 0, it holds that

log E exp λnZ n (b -a) 2 8 λ 2 n 1 - n -1 N .
Moreover, for any λ > 0, it also holds that

log E exp λ max 1 k n Z k (b -a) 2 8 λ 2 (N -n) 2 n 1 - n -1 N .
Proof: First, (??) yields that for all λ > 0,

λ Z k = λ Z k-1 + λ X k -µ + Z k-1 N -k . (7) 
Furthermore, we know from (??

) that -Z k-1 is the conditional expectation of X k -µ given X 1 , . . . , X k-1 . Thus, since X k -µ ∈ [a -µ, b -µ],
Proposition ?? applies and we get that, for all 2 k n,

log E exp λ X k -µ + Z k-1 N -k Z 1 , . . . , Z k-1 (b -a) 2 8 λ 2 N -k 2 . (8) 
Similarly, we can apply Proposition ?? to

Z 1 = (X 1 -µ)/(N -1) to obtain log E exp λ Z 1 (b -a) 2 8 λ 2 N -1 2 . (9) 
Upon noting that Z n = N -n n Z n , and combining (??) and (??) together with the decomposition (??), we eventually obtain the bound

log E exp λ n N -n Z n (b -a) 2 8 n k=1 λ 2 (N -k) 2 .
In particular, for λ such that λ = (N -n)λ, the RHS of this equation contains the quantity

n k=1 (N -n) 2 (N -k) 2 = 1 + (N -n) 2 N -1 k=N -n+1 1 k 2 1 + (N -n) 2 ((N -1) -(N -n)) (N -n)N = 1 + (N -n)(n -1) N = 1 + n -1 -n n -1 N = n 1 - n -1 N , (10) 
where we used in the second line the following approximation from (?, Lemma 2.1): for 1 j m, it holds

l k=j+1 1 k 2 l -j j(l + 1)
.

This concludes the proof of the first result of Proposition ??. The second result follows from applying Doob's maximal inequality combined with the previous derivation.

The result of Proposition ?? reveals a powerful feature of the no replacement setting: the factor n(1 -n-1 N ) in the exponent, as opposed to n in the case of sampling with replacement. This leads to a dramatic improvement of the bound when n is large, as can be seen on Figure ??. ? mentioned that a factor 1 -n N would be intuitively more natural, as indeed when n = N the mean µ is known exactly, so that Z N is deterministically zero.

Serfling did not publish any result with 1 -n N . However, it appears that a careful examination of the previous proof and of the use of Equation (??), in lieu of (??), allows us to get such an improvement. We detail this in the following proposition. More than a simple cosmetic modification, it is actually a slight improvement on Serfling's original result when n > N/2. Proposition 4 Let (Z k ) be defined by (??). For any λ > 0, it holds that

log E exp λnZ n (b -a) 2 8 λ 2 (n + 1) 1 - n N .
Moreover, for any λ > 0, it also holds that

log E exp λ max n k N -1 Z k (b -a) 2 8 λ 2 n 2 (n + 1) 1 - n N . Proof: Let us introduce the notation Y k = Z N -k for 1 k N -1. From (??), it comes E Y N -k Y 1 , . . . , Y N -k-1 = Y N -k-1 .
By a change of variables, this can be rewritten as

E Y k Y 1 , . . . , Y k-1 = Y k-1 .
Now we remark that the following decomposition holds:

λY k = λ N -k i=1 (X i -µ) N -k = λY k-1 -λ X N -k+1 -µ -Y k-1 N -k . ( 11 
) Since Y k-1 is the conditional mean of X N -k+1 -µ ∈ [a -µ, b -µ],
Proposition ?? yields that, for all 2 k n,

log E exp λ X N -k+1 -µ -Y k-1 N -k Y 1 , . . . , Y k-1 (b -a) 2 8 λ 2 N -k 2 . ( 12 
)
On the other hand it holds by definition of Y 1 that

Y 1 = Z N -1 = N -1 i=1 (X i -µ) N -1 ∈ [a -µ, b -µ] .
Along the lines of the proof of Proposition ??, we obtain

log E exp λ Y 1 (b -a) 2 8 λ 2 N -1 2 . ( 13 
)
Combining Equations (??) and (??) with the decomposition (??), it comes

log E exp λ Y n (b -a) 2 8 n k=1 λ 2 (N -k) 2 (b -a) 2 8 λ 2 (N -n) 2 n 1 - n -1 N ,
where in the last line we made use of (??). Rewriting this inequality in terms of Z, we obtain that, for all 1 n N -1,

log E exp λ(N -n)Z N -n (b -a) 2 8 λ 2 n 1 - n -1 N ,
that is, by resorting to a new change of variable,

log E exp λnZ n (b -a) 2 8 λ 2 (N -n) 1 - N -n -1 N (b -a) 2 8 λ 2 (N -n) n + 1 N (b -a) 2 8 λ 2 (n + 1) 1 - n N .
The second part of the proposition follows from applying Doob's inequality for martingales to Y n .

Theorem 1 (Hoeffding-Serfling inequality) Let X = (x 1 , . . . , x N ) be a finite population of N > 1 real points, and (X 1 , . . . , X n ) be a list of size n < N sampled without replacement from X . Then for all ε > 0, the following concentration bounds hold

P max n k N -1 k t=1 (X t -µ) k ε exp - 2nε 2 (1 -n/N )(1 + 1/n)(b -a) 2 P max 1 k n k t=1 (X t -µ) N -k nε N -n exp - 2nε 2 (1 -(n -1)/N )(b -a) 2 ,
where a = min 1 i N x i and b = max 1 i N x i .

Proof: Applying Proposition ?? together with Markov's inequality, we obtain that, for all λ > 0,

P max n k N -1 k t=1 (X t -µ) k ε exp -λε + (b -a) 2 8 λ 2 n 2 (n + 1)(1 -n/N ) .
We now optimize the previous bound in λ. The optimal value is given by

λ = ε 4 (b -a) 2 n 2 (n + 1)(1 -n/N ) .
This gives the first inequality of Theorem ??. The proof of the second inequality follows the very same lines.

Inverting the result of Theorem ?? for n < N and remarking that the resulting bound still holds for n = N , we straightforwardly obtain the following result.

Corollary 1 For all n N , for all δ ∈ [0, 1], with probability higher than 1 -δ, it holds

n t=1 (X t -µ) n (b -a) ρ n log(1/δ) 2n ,
where

ρ n = (1 -f n-1 ) if n N/2 (1 -f n )(1 + 1/n) if n > N/2 .
3. A Bernstein-Serfling inequality.

In this section, we consider σ 2 = N -1 N i=1 (x i -µ) 2 is known, and extend Theorem ?? to that situation.

Similarly to Lemma ??, the following structural lemma will be useful:

Lemma 3 It holds E (X k -µ) 2 Z 1 , . . . Z k-1 = σ 2 -Q k-1 where Q k-1 = k-1 i=1 (X i -µ) 2 -σ 2 N -k + 1 ,
where the Z i s are defined in (??). Similarly, it holds

E (X k+1 -µ) 2 Z k+1 , . . . Z N -1 = σ 2 + Q k+1 where Q k+1 = k+1 i=1 (X i -µ) 2 -σ 2 k + 1 .
Proof: We simply remark again that, conditionally on X 1 , . . . , X k-1 , the variable X k is distributed uniformly over the remaining points in X , so that

E (X k -µ) 2 Z 1 , . . . Z k-1 = E (X k -µ) 2 X 1 , . . . X k-1 = 1 N -k + 1 N σ 2 - k-1 i=1 (X i -µ) 2 = σ 2 -Q k-1 .
The second equality of Lemma ?? follows from the same argument, as in the proof of Lemma ??.

Let us now introduce the following notations:

µ <,k+1 = E X k+1 -µ Z k+1 , . . . Z N -1 , µ >,k = E X k -µ Z 1 , . . . Z k-1 , σ 2 <,k+1 = E (X k+1 -µ) 2 Z k+1 , . . . Z N -1 -µ 2 <,k+1 , σ 2 >,k = E (X k -µ) 2 Z 1 , . . . Z k-1 -µ 2 >,k .
We are now ready to state Proposition ??, which is a Bernstein version of Proposition ??.

Proposition 5 For any λ > 0, it holds that

log E exp λnZ n -λ 2 N -n k=1 ϕ 2(b -a)λ N -k σ 2 <,N -k+1 n 2 (N -k) 2 0 , log E exp λnZ n -λ 2 n k=1 ϕ 2(b -a)λ N -n N -k σ 2 >,k (N -n) 2 (N -k) 2 0 ,
where we introduced the function ϕ(c) = e c -1-c c 2

. Moreover, for any λ > 0, it also holds that log E exp λ max

1 k n Z k - n k=1 ϕ 2(b -a)λ N -k σ 2 >,k λ 2 (N -k) 2 0 , log E exp λ max n k N -1 Z k - N -n k=1 ϕ 2(b -a)λ N -k σ 2 <,N -k+1 λ 2 (N -k) 2 0 .
Proof: The key point is to replace Equations (??) and (??) in the proof of Proposition ??, which make use of the range of X , by equivalent ones that involve the variance. We only detail the proof of the first inequality, the proof of the three others follows the same steps.

A standard result from the proof of Bennett's inequality (see (?, page 11) or (?, proof of Theorem 2.9)) applied to the random variable X N -k+1 -µ, with conditional mean µ <,N -k+1 and conditional variance σ 2 <,N -k+1 , yields

E exp λ X N -k+1 -µ+Y k-1 N -k -σ 2 <,N -k+1 ϕ 2(b -a)λ N -k λ 2 N -k 2 Y 1 , . . . , Y k-1 1 , (14) 
where we used the notation Y k = Z N -k of Proposition ??, and introduced ϕ the function

ϕ(c) = e c -1 -c c 2 . Similarly, Y 1 satisfies log E exp λ Y 1 = log E exp λ µ -X N N -1 σ 2 <,N ϕ 2(b -a)λ N -1 λ 2 N -1 2 . ( 15 
)
where σ 2 <,N = σ 2 is deterministic. Thus, combining (??) and (??) together with the decomposition (??), we eventually get the bound

log E exp λ Y n - n k=1 ϕ 2(b -a)λ N -k σ 2 <,N -k+1 λ 2 (N -k) 2 0 .
Using the result of Proposition ??, we could immediately derive a simple Bernstein inequality for sampling without replacement via an application of Theorem ?? to the random variables Z i = (X i -µ) 2 . However, ? and ? showed that, in the case of sampling with replacement, a careful use of self-bounded properties of the variance yields better bounds. We now explain how to get a similar improvement on the naive Bernstein inequality in the case of sampling without replacement. We start with a technical lemma.

Lemma 4 For all δ ∈ [0, 1], with probability larger than 1 -δ, it holds max

1 k n σ 2 >,k σ 2 + σ(b -a)(n -1) N -n + 1 2 log(1/δ) n -1 . ( 16 
)
Similarly, with probability larger than 1 -δ, it holds

max n k N -1 σ 2 <,k+1 σ 2 + σ(b -a)(N -n -1) n + 1 2 log(1/δ) N -n -1 . ( 17 
)
Remark 1 When N → ∞, the upper bound on max 1 k n σ 2 >,k reduces to σ 2 . Indeed, this limit case intuitively corresponds to sampling with replacement, for which the conditional variance equals σ 2 .

Proof: We first prove (??). By definition and Lemma ??, it holds that

σ 2 >,k = σ 2 -Q k-1 -Z k-1 2 σ 2 - 1 N -k + 1 k-1 i=1 X i -µ 2 -σ 2 . ( 18 
) Let V k-1 = 1 k-1 k-1 i=1 X i -µ 2 . (??) yields max 1 k n σ 2 >,k σ 2 + max 1 k n k -1 N -k + 1 σ 2 -V k-1 .
The rest of the proof proceeds by establishing a suitable maximal concentration bound for the quantity V k-1 , the mean of which is σ 2 . We remark that

-Q k-1 = k-1 N -k+1 σ 2 -V k-1 is a martingale. Indeed, it satisfies E -Q k-1 Q k-2 , . . . , Q 1 = 1 N -k + 1 E k-1 i=1 σ 2 -(X i -µ) 2 Q k-2 , . . . , Q 1 = 1 N -k + 1 k-2 i=1 σ 2 -(X i -µ) 2 + 1 N -k + 1 E σ 2 -(X k-1 -µ) 2 Q k-2 , . . . , Q 1 = - N -k + 2 N -k + 1 Q k-2 + 1 N -k + 1 Q k-2 = -Q k-2 .
Doob's maximal inequality thus yields that, for all λ > 0,

P max 1 k n -Q k-1 ε = P max 1 k n exp(-λQ k-1 ) exp(λε) E exp -λQ n-1 -λε = E exp λ n -1 N -n + 1 σ 2 -V n-1 - N -n + 1 n -1 ε .
At this point, we fix λ > 0 and apply Lemma ?? to the random variables X i = (X i -µ) 2 and function f : x → exp(-λ(n -1)x). We deduce that, for all ε > 0 and λ > 0,

P max 1 k n σ 2 >,k -σ 2 n -1 N -n + 1 ε E exp -λ(V n-1 -σ 2 + ε ) E exp -λ( Ṽn-1 -σ 2 + ε ) , (19) 
where we introduced in the last line the notation Ṽn-

1 = 1 n-1 n-1 i=1 Y i -µ 2 , with the {Y i } 1 i n-1
being sampled from X with replacement. Note that Ṽn-1 has mean σ 2 too. Now, we check that the assumptions of Theorem 13 of ? hold. We first introduce the modification

Y j,y 1:n-1 = {Y 1 , . . . , Y j-1 , y, Y j+1 , . . . , Y n-1 } of Y 1:n-1
, where Y j is replaced by y ∈ X . Writing Ṽn-1 = Ṽn-1 (Y 1:n-1 ) to underline the dependency on the sample set Y 1:n-1 , it straightforwardly comes, on the one hand, that for all y ∈ X

Ṽn-1 (Y 1:n-1 ) -Ṽn-1 (Y j,y 1:n-1 ) = 1 n -1 (Y j -µ) 2 -(y -µ) 2 1 n -1 (Y j -µ) 2 1 n -1 (b -a) 2 ,
and, on the other hand, that the following self-bounded property holds:

n-1 j=1 Ṽn-1 (Y 1:n-1 ) -inf y∈X Ṽn-1 (Y j,y 1:n-1 ) 2 1 (n -1) 2 n-1 j=1 (Y j -µ) 4 (b -a) 2 n -1
Ṽn-1 (Y 1:n-1 ) .

We now apply of the proof of Theorem 13 of ? 1 to Z = n-1 (b-a) 2 Ṽn-1 , together with (??), which yields

P max 1 k n σ 2 >,k -σ 2 (b -a) 2 N -n + 1 ε exp -λε + λ 2 2 E[Z] = exp - (b -a) 2 ε 2 2(n -1)σ 2 ,
where we used the same value -a) 2 ε (n-1)σ 2 as in (?, Theorem 13). Finally, we have proven that for all δ ∈ [0, 1], with probability higher than 1 -δ, max

λ = ε E[Z] = (b
1 k n σ 2 >,k σ 2 + 2 √ σ 2 (b -a)(n -1) N -n + 1 log(1/δ) 2(n -1) ,
which concludes the proof of (??). We now turn to proving (??). First, we remark that

σ 2 <,k+1 E (X k+1 -µ) 2 |Z k+1 , . . . , Z N -1 = E (X k+1 -µ) 2 |X k+2 , . . . , X N = E (Y N -k -µ) 2 |Y 1 , . . . , Y N -k-1 ,
where in the second line we used that Z k+1 = µ -X N -. . . X k+2 , and in the third line we used the change of variables Y u = X N -u+1 . It follows that max

n k N -1 σ 2 <,k+1 max n k N -1 E (Y N -k -µ) 2 Y 1 , . . . , Y N -k-1 = max 1 k N -n E (Y k -µ) 2 Y 1 , . . . , Y k-1 . Now (Y 1 , . . . , Y N -n
) has the same marginal distribution as (X 1 , . . . , X N -n ), so that the proof of (??) applies and yields the result.

We emphasize that we used Hoeffding's reduction Lemma ?? in the proof of Lemma ??. This allowed us to apply the key result from ?. We will discuss alternatives to this proof in Section ??. We can now state our Bernstein-Serfling bound.

Theorem 2 (Bernstein-Serfling inequality) Let X = (x 1 , . . . , x N ) be a finite population of N > 1 real points, and (X 1 , . . . , X n ) be a list of size n < N sampled without replacement from X . Then, for all ε > 0 and δ ∈ [0, 1], the following concentration inequality holds

P max 1 k n k t=1 (X t -µ) N -k nε N -n exp -nε 2 /2 γ 2 + 2 3 (b -a)ε + δ , ( 20 
)
1 the theorem is stated for P E[Z] -Z ε but, actually, E exp -λ(Z -E[Z] + ε) is bounded in the proof.
where

γ 2 = (1 -f n-1 )σ 2 + f n-1 c n-1 (δ) , c n (δ) = σ(b -a) 2 log(1/δ) n
, and f n-1 = n-1 N . Similarly, it holds

P max n k N -1 k t=1 (X t -µ) k ε exp -nε 2 /2 γ2 + 2 3 (b -a)ε +δ . ( 21 
)
where γ2 = (1 -f n ) n + 1 n σ 2 + N -n -1 n c N -n-1 (δ) .
Proof: We first prove (??). Applying Proposition ?? together with Markov's inequality, we obtain that for all λ, δ > 0,

P max n k N -1 k t=1 (X t -µ) k log(1/δ) λ + λ N -n k=1 ϕ 2(b -a)λ N -k σ 2 <,N -k+1 (N -k) 2 δ . (22) 
Thus, combining Equations (??) and (??) with a union bound, we get that for all δ, δ , with probability higher than 1 -δ -δ , it holds for all λ > 0 that max

n k N -1 k t=1 (X t -µ) k log(1/δ) λ + λ N -n k=1 ϕ 2(b -a)λ N -k 1 (N -k) 2 σ 2 + N -n -1 n + 1 c N -n-1 (δ ) log(1/δ) λ + λ n 2 ϕ 2(b -a)λ n σ 2 + N -n -1 n + 1 c N -n-1 (δ ) N -n k=1 n 2 (N -k) 2 log(1/δ) λ + λ n 2 ϕ 2(b -a)λ n σ 2 + N -n -1 n + 1 c N -n-1 (δ ) (n + 1) 1 - n N ,
where we introduced

c N -n-1 (δ ) = σ(b -a) 2 log(1/δ ) N -n -1 ,
where we used in the second line the fact that ϕ is non-decreasing and where we applied (??) in the last line. For convenience, let us now introduce the quantities

f n = n N and γ2 = (1 -f n ) σ 2 + N -n -1 n + 1 c N -n-1 (δ ) .
The previous bound can be rewritten in terms of ε > 0 and δ only, in the form

P max n k N -1 k t=1 (X t -µ) k ε exp -λε + λ 2 (n + 1) n 2 ϕ 2(b -a)λ n γ2 + δ . ( 23 
)
We now optimize the bound (??) in λ. Let us introduce the function

f (λ) = -λε + λ 2 (n + 1) n 2 ϕ 2(b -a)λ n γ2 ,
corresponding to the term in brackets in (??). By definition of ϕ, it comes

f (λ) = -λε + λ 2 n 2 ϕ 2(b -a)λ n γ2 (n + 1) = -λε + exp 2(b -a)λ n -1 - 2(b -a)λ n γ2 4(b -a) 2 (n + 1) .
Thus, the derivative of f is given by

f (λ) = -ε + exp 2(b -a)λ n -1 γ2 (n + 1) 2(b -a)n ,
and the value λ that optimizes f is given by

λ = n 2(b -a)
log 1 + 2(b -a)εn γ2 (n + 1) .

Let us now introduce for convenience the quantity u = 2(b-a)n γ2 (n+1) . The corresponding optimal value f (λ ) is given by

f (λ ) = -ε n 2(b -a) log(1 + uε) + γ2 4(b -a) 2 (n + 1) uε -log(1 + uε) = γ2 (n + 1) 4 ( b -a) 2 -uε log(1 + uε) + uε -log(1 + uε) = - n 2(b -a)u ζ(uε) ,
where we introduced in the last line the function ζ(u) = (1 + u) log(1 + u) -u. Now, using the identify ζ(u) u 2 /(2 + 2u/3) for u 0, we obtain

P max n k N -1 k t=1 (X t -µ) k ε exp - nε 2(b -a) uε 2 + 2uε/3 + δ exp - nε 2 2γ 2 (n + 1)/n + 4 3 (b -a)ε + δ ,
which concludes the proof of (??). The proof of (??) follows the very same lines, simply using (??) instead of (??).

Inverting the bounds of Theorem ??, we obtain Corollary ??.

Corollary 2 Let n N and δ ∈ [0, 1]. With probability larger than 1 -2δ, it holds that

n t=1 (X t -µ) n σ 2ρ n log(1/δ) n + κ n (b -a) log(1/δ) n ,
where

ρ n = (1 -f n-1 ) if n N/2 (1 -f n )(1 + 1/n) if n > N/2 and κ n = 4 3 + fn gn-1 if n N/2 4 3 + g n+1 (1 -f n ) if n > N/2 , with f n = 1 -n/N and g n = N/n -1. Proof: Let δ, δ ∈ [0, 1].
From (??) in Theorem ??, it comes that, with probability higher than 1-δ-δ ,

n t=1 (X t -µ) N -n ε δ , where γ 2 + B N -n n ε δ = (N -n) 2 2n log(1/δ) ε 2 δ ,

Discussion

In this section, we discuss the bounds of Theorem ?? and Theorem ?? from the perspective of both theory and application. First, both bounds involve either the factor 1-f n-1 or 1-f n , thus leading to a dramatic improvement on the usual Bernstein or empirical Bernstein bounds, which do not make use of the no replacement setting. This is crucial, for instance, when the user needs to rapidly compute an empirical mean from a large number of samples up to some precision level. Now to better understand this improvement, in Figure ??, we plot the bounds of Corollaries ?? and ??, and Theorem ?? for an example where X is a sample of size N = 10 6 from each of the following four distributions: unit centered Gaussian, log-normal with parameters (1, 1), and Bernoulli with parameter 1/10 and 1/2. As n increases, we keep sampling without replacement from X until exhaustion, and report the corresponding bounds. Note that all our bounds have their leading term exactly equal to zero when n = N , though our Hoeffding-Serfling bound only is exactly zero. In all experiments, the loss of tightness as a result of using the empirical variance is small. Our empirical Bernstein-Serfling demonstrates here a dramatic improvement on the Hoeffding-Serfling bound of Corollary ?? in Figures ?? and ??. A slight improvement is demonstrated in Figure ?? where the standard deviation of X is roughly a third of the range. Finally, Bernstein-Serfling itself does not improve on Hoeffding-Serfling in Figure ??, where the standard deviation is roughly half of the range, again indicating that Bernstein bounds are not uniformly better than Hoeffding bounds.

A careful look at Lemmas ?? and ?? indicates that our bounds may be further improved, though at the price of a more intricate analysis. Indeed, these two lemmas both resort to Hoeffding's reduction Lemma ??, in order to be able to apply concentration results known for self-bounded random variables to the setting of sampling without replacement. As a result, we lose here a potential factor ρ n for the confidence bound around the variance, and we conjecture that the term 1 + √ 1 + ρ n in Lemma ?? could ultimately be replaced with 2 √ ρ n . A natural tool for this would be a dedicated tensorization inequality for the entropy in the case of sampling without replacement (???). Indeed, it is not difficult to show that σ 2 n satisfies a self-bounded property similar to that of (?, Theorem 11), involving the factor ρ n . Thus, in order to be able to get a version of (?, Theorem 11) in our setting, a specific so-called tensorization inequality would be enough. Unfortunately, we are unaware of the existence of such an inequality for sampling without replacement, where the samples are strongly dependent. We are also unaware of any tensorization inequality designed for U-statistics, which could be another possible way to get the desired result. Although we believe this is possible, developing such tools goes beyond the scope of this paper, and the current results of Theorem ?? and Theorem ?? are already appealing without resorting to further technicalities, which would only affect second-order terms in the end. 

  Fig 1.Comparing known bounds on p = P(n -1 n i=1 X i -µ 0.01) with our Hoeffding-Serfling and Bernstein-Serfling bounds. X is here a sample of size N = 10 4 from each of the four distributions written below each plot. An estimate (black plain line) of p is obtained by averaging over 1000 repeated subsamples of size n, taken from X uniformly without replacement.

Fig 2 .

 2 Fig 2.Comparing the bounds of Corollaries ?? and ??, and Theorem ??. X is here a sample from each of the four distributions written below each plot, of size N = 10 6 . Unlike Figure ??, as n increases, we keep sampling here without replacement until exhaustion.

Acknowledgements

This work was supported by both the 2020 Science programme, funded by EPSRC grant number EP/I017909/1, and the Technion.

where we introduced for convenience B = 2 3 (b -a) and

Solving this equation in ε leads to

On the other hand, following the same lines but starting from (??) in Theorem ??, it holds that, with probability higher than 1 -δ -δ , n t=1 (X t -µ) n

where we introduced this time

Finally, we note that

Thus, when n N/2, we deduce that for all 1 n N -1, with probability higher than 1 -2δ, it holds

whereas when N > n > N/2, it holds, with probability higher than 1 -2δ, that

Finally we note that when n = N , g n+1 (1 -f n ) = 0 and ρ n = 0. So the bound is still satisfied.

An empirical Bernstein-Serfling inequality

In this section, we derive a practical version of Theorem ?? where the variance σ 2 is replaced by an estimate. A natural (biased) estimator is given by

We also define, for notational convenience, the quantity σ n = σ 2 n . Before proving our empirical Bernstein-Serfling inequality, we first need to control the error between σ n and σ. For instance, in the standard case of sampling with replacement, it can be shown (?) that, for all δ ∈ [0, 1],

We now show an equivalent result in the case of sampling without replacement.

Lemma 5 When sampling without replacement from a finite population X = (x 1 , . . . , x N ) of size N , with range [a, b] and variance σ 2 , the empirical variance σ 2 n defined in (??) using n < N samples satisfies the following concentration inequality (using the notation of Corollary ??)

Remark 2 We conjecture that it is possible, at the price of a more complicated analysis, to reduce the term (1 + √ 1 + ρ n ) to √ 4ρ n , which would then be consistent with the analogous result for sampling with replacement in (?). We further discuss this technically involved improvement in Section ??.

Proof: In order to prove Lemma ??, we again use Lemma ??, which allows us to relate the concentration of the quantity

where the Y i s are drawn from X with replacement. Let us introduce the notation Z = n (b-a) 2 Ṽn (Y 1:n ). We know from the proof of Lemma ?? that Z satisfies the conditions of application of (?, Theorem 13). Let us also introduce for convenience the constant λ

Using these notations, it comes

The first line results of the application of Markov's inequality. The second line follows from the application of Lemma ?? to X i = (X i -µ) 2 and f (x) = exp -λ n (b-a) 2 x . The last steps are the same as in the proof of Lemma ??.

So far, we have shown that, with probability at least 1 -δ,

Let us remark that

In order to complete the proof, we thus resort twice to Theorem ?? to obtain that, with probability higher than 1 -δ, it holds

Combining Equations (??) and (??) with a union bound argument yields that, with probability at least 1 -δ,

Finally, we obtain

Eventually, combining Theorem ?? and Lemma ?? with a union bound argument, we finally deduce the following result.

Theorem 3 (An empirical Bernstein-Serfling inequality) Let X = (x 1 , . . . , x N ) be a finite population of N > 1 real points, and (X 1 , . . . , X n ) be a list of size n N sampled without replacement from X . Then for all δ ∈ [0, 1], with probability larger than 1 -5δ, it holds

where

Remark 3 First, Theorem ?? has the familiar form of Bernstein bounds. The alternative definition of ρ n guarantees that we get the best reduction out of the no replacement setting. In particular, when n is large, the factor (1 -f n ) replaces (1 -f n-1 ) and the corresponding factor eventually equals 0 when n = N , a feature that was missing in Proposition ??. Second, the constant κ is to relate to the constant 7/3 in (?, Theorem 11) for sampling with replacement.

Proof: First, by application of Corollary ??, it holds for all δ ∈ [0, 1] that, with probability higher than 1 -2δ,

where

We then apply Lemma ?? to get that, with probability higher than 1

We now simplify this result. Assume first that n N/2. We thus get

, so that we deduce

Assume now that n > N/2. In this case, it holds

so that we deduce, since N 2,

Respectively combining (??) and (??) with Equations (??) and (??) concludes the proof.