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Abstract—Mobile users increasingly make use of location-
based online services enabled by localization systems. Not only do
they share their locations to obtain contextual services in return
(e.g., ‘nearest restaurant’), but they also share, with their friends,
information about the venues (e.g., the type, such as a restaurant
or a cinema) they visit. This introduces an additional dimension to
the threat to location privacy: location semantics, combined with
location information, can be used to improve location inference by
learning and exploiting patterns at the semantic level (e.g., people
go to cinemas after going to restaurants). Conversely, the type
of the venue a user visits can be inferred, which also threatens
her semantic location privacy. In this paper, we formalize this
problem and analyze the effect of venue-type information on
location privacy. We introduce inference models that consider
location semantics and semantic privacy-protection mechanisms
and evaluate them by using datasets of semantic check-ins from
Foursquare, totaling hundreds of users in six large cities. Our
experimental results show that there is a significant risk for
users’ semantic location privacy and that semantic information
improves inference of user locations.

I. INTRODUCTION

Advanced localization-technologies and continuous Internet
connectivity on mobile devices enable people to adopt an
online life style; increasingly more people use mobile devices
to enjoy location-based services and location-based social
networks. Users of such systems provide location information
to the service providers in return for useful information, such
as the location of the nearest restaurant, cinema or nearby
friends, or simply to keep their friends posted about their
activities. Many of these services and systems are presented
as free, but in fact, they obtain fine-grained user traces that
can be used to infer more personal information: the price a
user pays for benefiting from such services is her location
data, which is detrimental to her privacy. This problem has
been extensively investigated by the research community,
focusing mostly on geographical location privacy and related
protection mechanisms [1]. Researchers have also studied how
an adversary can locate/track users’ whereabouts based on
location samples that are, in some cases, anonymized and/or
obfuscated, and on mobility history (e.g., [2], [3]).

Many online service providers interact with their users
on a multidimensional scale. Foursquare, for instance, lets
its users check-in at specific nearby venues (selected from
the Foursquare database of registered and confirmed venues,
e.g., ‘Super Duper Burger’ in San Francisco), attach pictures
and messages to their check-ins and report co-location with
other users. Such location check-ins by themselves contain
geographical information but also semantic information: For

instance, the aforementioned venue is located at ‘2304 Market
St’ and is tagged as ‘Burger Joint’, which is a sub-category
of ‘Restaurant’, which itself is a sub-category of ‘Food’ in
Foursquare categories (see Figure 2). Hence, the approach
to location privacy from a purely geographical perspective
is not sufficient anymore. Additional dimensions of informa-
tion about the activity of users can be exploited by service
providers, thus reducing the effectiveness of existing privacy-
protection mechanisms and threatening users’ privacy. First,
semantic information serves as additional location informa-
tion: Knowing that a user is in a restaurant reveals some
information about her location. Second, semantic information,
combined with location information, can be exploited by
learning patterns at the semantic level (e.g., people go to
cinemas after going to restaurants). Such patterns are already
available to (and used by) Foursquare, which makes next-
venue recommendations to its users, e.g., “Places people like
to go after ‘Super Duper Burger’: ‘Castro Theatre (Movie
Theatre, 429 Castro St)’” (see Figure 2).

Figure 1 depicts two examples where the semantic dimen-
sion (i.e., the venue type) of a location can be exploited to
infer the actual location and where the semantics of the user’s
location is not being protected at all. In Figure 1a, we observe
that a user who visits a cinema discloses that she is in the
depicted cloaking area and at a cinema. Because there is only
one cinema in this cloaking area, one can easily pinpoint
the user. In another example, depicted in Figure 1c, a user
is at a hospital and wants to protect her location privacy.
Unfortunately, her cloaking area is mostly occupied by the
hospital, hence even though her exact location might not be
pinpointed, the fact that she is at a hospital can be inferred
with high confidence.

In this paper, we consider the case where users disclose
not only their (obfuscated) geographical locations but also
the types of venue they are at in the form of check-ins on
social networks, e.g., “Restaurant, downtown San Francisco”.
We focus on the semantic dimension of location check-ins and
study its effects on location privacy, both at the geographical
and semantic levels. Note that, unlike the approaches proposed
in [4], [5], [6], [7], we consider the cases in which the semantic
information of the locations are reported directly by the users
and not inferred from the users’ locations. To the best of our
knowledge, our work is the first to confront, through data-
driven experimentation, semantic information and semantic-
aware location privacy protection mechanisms with a practical
attack conducted by a concrete adversary. In a nutshell, we
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Fig. 1: Illustrative examples of the privacy threat caused by location semantics.(a) A user reports that she is in the depicted
cloaking area and also that she is at a cinema. Her location can be easily pinpointed as there is only one cinema in the
user’s reported cloaking area, and this cinema occupies a small area compared to the cloaking area. The situation depicted
in (b) demonstrates how the issue illustrated in (a) can be reduced by enlarging the cloaking area to include another cinema.
An adversary can still narrow down the set of possible locations in the cloaking area, but now there are two locations with
the tag cinema. (c) A user at a hospital reports a cloaking area without revealing her semantic information. As the hospital
occupies a large proportion of the cloaking area, an adversary can infer that she is at a hospital, thus threatening the user’s
semantic location privacy. The situation depicted in (d) demonstrates how semantic location privacy can be protected better by
generating large cloaking areas to avoid domination of only one type of location in the reported cloaking areas to address the
issue illustrated in (c).

Fig. 2: Illustration of the information available to location-
based social networks such as Foursquare: geographical
(i.e., address) and semantic (i.e., venue category) information,
semantic mobility profiles (i.e., ‘Places people like to go
after. . . ’), etc. The most relevant pieces of information are
circled in red.

formalize the problem and build specific Bayesian networks to
model users’ behavior on which an adversary runs its inference
attacks and we experimentally evaluate both geographical and
semantic location privacy under such an adversarial model. In
our experiments, we use the semantically-annotated location
traces composed of Foursquare check-ins (collected through
Twitter’s public stream) of hundreds of users distributed across
six large cities in North America and Europe. We also rely on
a predictive utility model for obfuscated Foursquare check-
ins [8]. We show that disclosing information about the type of

visited locations, i.e., semantic location-information, decreases
geographical location privacy by as much as 60%. We also
present the threat on semantic location privacy that deteriorates
quickly as the adversary gains background information on
user-mobility profiles, that are easy to build by crawling
data publicly available on various social networks. To the
best of our knowledge, this is the first work that quantifies
semantic location privacy and demonstrates the effects of
location semantics on location privacy.

The remainder of the paper is organized as follows: We
introduce the reader to the context and define the system model
in Section II. In Section III, we present our adversarial model,
inference approach and describe how we measure privacy. We
explain our experimental setup and the datasets in Section IV
and report the evaluation results. In Section V, we discuss the
limitations of our approach and we propose improvement as
future work. In Section VI, we survey related work. Finally,
we conclude the paper and discuss future work in Section VII.

II. BACKGROUND AND SYSTEM MODEL

We consider mobile users equipped with smartphones that
have localization capabilities and Internet connectivity. These
users move in a geographical area and make use of location-
based online services. We consider that users sporadically
report their (potentially obfuscated) locations and, in some
cases, semantic information (i.e., the type, in the form of
tags such as ‘restaurant’) of their locations. Note that we do
not consider the case where the adversary extracts semantic
information from the users’ location traces, as considered in
e.g., [4]. In this setting, we consider an honest-but-curious
service provider that is interested in inferring, based on its
observations, users’ actual geographical locations and the



semantic tags associated with them, if any. Table I lists the
notations used in the paper.

A. Users

Mobile users with GPS-equipped connected devices move
in a given geographical area that is partitioned into M non-
overlapping geographical regions R = {R1, R2, . . . RM}.
Geographical areas are usually coarse-grained (typically cells
associated with cell towers or regular square tiles of a several
hundreds of meters). A subset of, or all, the areas in R
contain venues annotated with semantic tags from the set
{S1, S2, . . . , SK}, i.e., a predefined list of categories
(e.g., Foursquare defines such a list, organized as a tree,1

and all registered venues are tagged with such a category).
Whenever a venue is visited by a user, it is mapped to the
geographical region from R it falls in. We denote by ⊥
the semantics of regions for the case when a user is in a
geographical region, but does not visit a particular venue
with a semantic tag, meaning that her location does not have
semantic information. Hence, we define the set S of semantic
tags as the union {S1, S2, . . . , SK}∪{⊥} to cover all semantic
cases. Moreover, we consider discrete time instants over a
limited-time period {1, . . . , T}.

As users move, they sporadically use online services and
share their (potentially obfuscated) locations together with
the corresponding (potentially obfuscated) semantic tags. For-
mally, whenever a user u visits a geographical region r at a
time instant t ∈ {1, . . . , T}, she generates an event consisting
of her actual geographical region r ∈ R and a corresponding
semantic tag s ∈ S . This user event at time t is denoted by
au(t) = (r, s); in other words, the actual location of user u
at time instant t is represented by the pair (r, s). We denote
by au = {au(1) . . . au(T )} the whole trace of user u.

TABLE I: Table of Notations.

R Set of geographical regions
S Set of semantic tags
au(t) = (r, s) User u’s actual location at time instant t,

where r ∈ R and s ∈ S
ou(t) = (r′, s′) User u’s obfuscated location at time instant

t, where r′ ∈ P(R)2

au Actual trace of user u
ou Obfuscated trace of user u
Rt,R

′
t The actual and obfuscated geographical lo-

cation variables for time t

St,S
′
t The actual and obfuscated semantic location

variables for time t

hu(r, r
′, s, s′) A PPM modeled as a probability distribution

function (PDF) employed by user u (decom-
posed into fu(r, r

′) and gu(s, s
′))

qg, qs The PDF output by the inference attack
distG(·, ·), Geographical and semantic distance metrics
distS(·, ·) used for quantifying privacy
GPu(t), SPu(t) User u’s geographical and semantic location

privacy at time t

1https://developer.foursquare.com/categorytree. Last visited: sep. 2015

B. Privacy Protection Mechanisms

For privacy reasons, users employ privacy-protection mech-
anisms (PPMs) before reporting their location and semantic
information to an online service provider3. Typically, a PPM,
that aims to protect the geographical location of a user,
replaces her actual location with another location (i.e., perturbs
the location) or with a list of locations (i.e., a cloaking area),
or hides the location information completely. In this work, we
consider such PPMs and the PPMs that protect the semantic
dimension of the location, specifically the semantic tag of a
user’s event. In particular, these PPMs generalize the semantic
tag (i.e., report a parent tag of the venue’s actual tag, w.r.t. a
tag hierarchy, e.g., replace ‘Buger joint’ with ‘Restaurant’4 or
‘Food’) or hide it completely. We assume that a set of PPMs
obfuscates a user’s actual event at time t independently from
her other events at other time instants. Such a PPM model
can also cover the cases where the underlying localization
technique used by the adversary returns coarse-grained and
possibly bogus information about the users.

After applying PPMs on her actual geographical region r
and the corresponding actual semantic tag s, a user u reports
her obfuscated geographical region r′ and the obfuscated se-
mantic tag s′ to the service provider. r′ (resp. s′) is typically a
subset ofR (resp. S). We assume that the service provider only
observes the obfuscated trace ou = {ou(t) = (r′, s′)},∀t ∈
{1 . . . T} of user u.

We model a PPM as a probability distribution function that
maps actual events to obfuscated ones (note that in the case
of generalization, the PPM is deterministic). Specifically, we
denote by functions h(r, r′, s, s′) the probabilities to generate
the obfuscated location/semantic tag r′, s′(i.e., Pr(r′, s′|r, s))
that constitute the obfuscated event ou(t) = (r′, s′) given the
actual event au(t) = (r, s). Note that the location of a user
at a given time instant is obfuscated independently from the
other time instants.

Finally, we do not consider collaboration between users to
protect each others’ privacy and we assume that users’ events
are not anonymized.

C. Adversary

The adversary is typically a service provider or an external
observer who has access to obfuscated traces of users. He has
two main purposes: (1) locate users at specific time instants,
and (2) identify the types of the locations a user visits at
specific time instants, in terms of the semantic tags associ-
ated with them. While carrying out his attack, the adversary
takes into account the relationship between geographical and
semantic dimensions of location, as explained in Section III.

The adversary runs his attack a posteriori, i.e., after having
observed the whole obfuscated trace ou of a user u. Even
though the obfuscation of an event is done independently

2P: Power set.
3In the remainder of the paper, we refer to the online service provider as

the service provider or the adversary for short.
4Note that this is strictly equivalent to reporting the sets of all tags that are

sub-categories of tag ‘Restaurant’



from the other events of the user, the adversary assumes that
a user’s actual events are correlated and therefore models
the users’ mobility/behavior. He is assumed to have access
to users’ (partial) past events that he exploits to build a
mobility profile for each user u, on both the geographical
and semantic dimensions. Essentially, a user’s mobility profile
represents the user’s transition probabilities over successive
time instants, i.e., between geographical regions and between
semantic tags. Formally, such a mobility profile (under a first-
order Markovian assumption) is the set of the probability
distribution functions Pr(r|ρ), Pr(s|σ) and Pr(r|s), where ρ
and σ represent the user’s previous location and semantic tag
(as explained in Section III).

The adversary also knows which PPMs a user u employs
and with what parameter(s), i.e., the function hu. Together
with the PPMs and the mobility profile he generates, the
adversary performs his attack on a user trace given her
obfuscated trace ou.

III. INFERENCE AND PRIVACY

We explain our model of inference and background knowl-
edge of the adversary in the subsequent subsection. In sum-
mary, we build two user behavior models by using Bayesian
networks [?], [?] under the assumption that people follow a
bi-modal Markovian mobility process5 (along the geographical
and semantic dimensions) which we describe below. These
models take into account both the geographical and semantic
dimensions of the location and also the relationship between
them. Based on these two models, we evaluate geographical
and semantic location privacy.

A. Inference and Background Knowledge

We assume that the adversary uses the following simple
behavioral user model in the inference process6: Users move
based on what they plan to do next given their current context,
i.e., in this case, their locations and semantic information. We
determine the following two scenarios (illustrated in Figure 3):

1) The adversary knows the users’ geographical transition
profile, i.e., the geographical background, and assumes
that the users move to new locations primarily based
on their current locations. The type of place they visit
(i.e., semantic tags) depend only on their current lo-
cations. For instance, a user might go to a location
in downtown after visiting another location in nearby
downtown. The semantics of these locations then, for
instance, might happen to be a cinema and a restaurant.

2) The adversary knows both the users’ geographical and
semantic transition profiles, together referred to as ge-
ographical & semantic background. Unlike the first
scenario, in this case the user first determines what

5This means that a user’s events at a given time instant only depend only
on that user’s event at the immediate past time instant.

6Note that the user traces we use in our experiments are real and are
not generated from this model. Therefore, the fact that the considered user
models rely on a set of simplifying assumptions limits the performance of the
inference; as such, the experimental results presented in this paper constitute
a lower bound of the privacy implications of semantic information.

type of place she will go to (i.e., her next activity,
characterized by the semantic tag of the venue she visits
next) given the semantic tag of her current location, and
then chooses the region she will go to based on the
determined next semantic tag and her current location.
For instance, if a user is at a restaurant in downtown and
wants to go to a cinema, she chooses to go to a cinema
that is close to her current location (that she often visits).

For the sake of simplicity for our experimentation, from
this point on, we assume that geographical and semantic
information are obfuscated independently from each other,
using two functions fu and gu respectively (note that it is
straightforward to include such joint PPMs in our formalism).
Joint PPMs could be used to avoid the situations where a user
reports a set of geographical locations and a semantic tag such
that only some of the reported locations contain a venue with
this tag.

We elaborate more on our scenarios and their respective
Bayesian networks in the following sections.

Time
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Fig. 3: The Bayesian networks representing the user models
employed by the adversary. Nodes denote random variables
and edges denote probabilistic dependencies between them
(e.g., the arrow from R1 to R′

1 corresponds to the obfuscation
function fu). The model on the left-hand side prioritizes
geographical transitions with only geographical background
known to the adversary. The model on the right-hand side
prioritizes semantic transitions over geographical transitions
with both geographical and semantic background. Protection
mechanisms work separately on regions and semantic tags and
they are independent from each other.

1) Geographical-Only Background: As stated previously,
the adversary has access to the users’ geographical transition
profile (built from past traces) in this scenario and wants to
carry out his attack using only this type of available informa-
tion. He can correlate the sequential events of a user by using
only geographical background information, hence we build a
Bayesian network in which only the region (i.e., the geograph-
ical location) nodes are connected to each other among user
events. But, as the adversary still wants to infer the semantic
tags in the user events, semantic nodes are also created and
they are dependent on the region nodes. This ensures that the
adversary benefits from any semantic information disclosed by



the users in his inference, even though he does not have any
semantic background information.

This model is illustrated in Figure 3 (left), where each line
of nodes represent a user event in time, both actual (Rt,St)
and obfuscated (R′

t,S
′
t), where Rt, St, R′

t and S′
t represent

the random variables for a user’s actual and obfuscated events
at time t. The conditional probability distributions for the
obfuscated events’, i.e., for R′

t and S′
t), are the privacy-

protection mechanism distributions fu and gu, explained in
Section II-B. If a static privacy-protection mechanism (PPM)
is used by the users, then these functions map the actual
regions and the actual semantic tags to obfuscated regions
and obfuscated semantic tags with probability 1 (i.e., for a
given region, resp. a semantic tag, the PPM always generates
the same obfuscation outcome). More powerful PPMs can be
employed and used in this network, e.g., hiding the actual
information completely with a given hiding probability.

The remaining conditional probabilities are those of the
user’s actual semantic tag given her actual location Pr(S|R)
and the user’s next location given her current location
Pr(Rt+1|Rt). We calculate Pr(S|R) based on the semantic
tags’ associations to regions as the adversary is assumed
to have no semantic background information. Essentially,
Pr(S|R) represents a uniform distribution over all semantic
tags associated with a region r, e.g., if a region has 4
semantic tags associated with it, then the probability for each
of these tags to be the actual tag given this location is 0.25.
Lastly, we compute Pr(Rt+1|Rt) by counting the number
of transitions among all regions in a user trace and then
using the Markovian knowledge construction approach used
in [3]. For the root node in the network, which is R1 for
the geographical background scenario, we use the steady-state
probability distribution computed from Pr(Rt+1|Rt).

2) Geographical and Semantic Background: In this sce-
nario, we consider an adversary that models user mobility-
behavior in an activity-driven fashion: A user first determines
the type (i.e., the semantic tag) of her next geographical region
given the type of her current geographical region; then, she
determines the next geographical region given her current
geographical region and the next semantic tag. For example,
a user decides to go to a restaurant, then she chooses which
restaurant she wants to go to. Afterwards, she decides to go
to a cinema, as she usually does after going to a restaurant.
Considering her previous location, she picks the cinema that
is most convenient for her. This model is depicted in Fig. 3
on the right-hand side.

The conditional probability distributions for the obfuscated
events (i.e., R′

t and S′
t) are the same as in the scenario

with only the geographical background knowledge. The tran-
sitions between user events, however, now require a semantic-
transition distribution (Pr(St+1|St)) and a geographical-
transition distribution, which is also conditioned on the seman-
tics of the next user-event (Pr(Rt+1|Rt,St+1)), meaning that
Rt+1 depends on the user’s current semantic tag St+1 and her
previous geographical region Rt.

The semantic transition distribution Pr(St+1|St) is con-

structed in the same way the geographical transition distri-
bution Pr(Rt+1|Rt) is constructed. However, as we con-
sider geographical and semantic background information sep-
arately, the adversary is assumed not to know the distri-
bution Pr(Rt+1|Rt,St+1). In short, the adversary is as-
sumed to have knowledge on Pr(St+1|St), Pr(Rt+1|Rt) and
Pr(Rt|St) to some extent regarding user history. Therefore,
he needs to use Pr(Rt|St) and Pr(Rt+1|Rt) to derive
Pr(Rt+1|Rt,St+1). We achieve this simply by normalizing
the marginal probability distribution Pr{Rt+1|Rt} for a given
semantic tag s (i.e., over regions that have s) and by combining
it with the conditional distribution Pr(Rt|St = s). For the
rest of the geographical regions, i.e., those that do not have
the semantic tag s, the probability is zero. This translates into
the following formula:

Pr(Rt+1 = r|Rt = ρ,St+1 = s) = (1)
0 if s /∈ r

α
Pr(Rt+1 = r|Rt = ρ)∑

Rm,s∈Rm

Pr(Rt+1 = Rm|Rt = ρ)

+ (1− α) ·Pr(Rt+1 = r|St+1 = s)

otherwise
,

where α is a factor to set the weight of geographical transitions
against the probability that Rt+1 is r given St+1 = s (which
is derived from the number of visits to a region r given the
semantic tag s in the user history). In other words, α is
used to control how much importance is distributed among
different types of user history, i.e., geographical transitions
and steady user events. In our experiments, we set α to 0.5,
which we believe is a balanced treatment of user history.
Note that considering geographical and semantic background
information separately enables the adversary to exploit the
semantic mobility of a user’s behavior data in one city to infer
user events in another city, where he might lack the knowledge.

Note that the aforementioned models might not reflect the
users’ actual behaviors. However, such models (in particu-
lar the Markovian mobility assumption) are widely used in
practice (and considered in the literature) as they enable the
adversary to develop efficient algorithmic and computational
methods to infer the users’ locations. The accuracy of the
inference attack carried out by the adversary partially depends
on how well the user model fits the users’ actual behaviors.

B. Privacy Measurement

Due to different privacy concerns in both geographical and
semantic dimensions of location, we measure the privacy
level in both dimensions separately. Privacy levels in both
dimensions are measured as a function of the expected error of
the adversary. The inference based on our Bayesian networks
yields probability distributions over regions and semantics that
fit this measurement approach. In other words, the output of
the inference algorithm is a probability distribution function
(PDF) for each node in a given Bayesian network, i.e., the
PDF qg over all regions at every time instant for user location
and the PDF qs over all semantic tags at every time instant



for user semantic tag. The geographical and semantic privacy
levels of a user u at time instant t, denoted by GPu(t) and
SPu(t), are computed as follows:

GPu(t) =

M∑
m=1

qg(Rm, t) · distG(Rm, r), (2)

SPu(t) =

K∑
k=1

qs(Sk, t) · distS(Sk, s), (3)

where distG(·, ·) and distS(·, ·) are geographical and semantic
distance functions, and (r, s) is the actual event of user u at
time instant t.

We use the Euclidean distance (in the projected coordinate
system, i.e., Universal Transverse Mercator or UTM)7 to com-
pute the geographical distances between two regions by using
the projected coordinates of their respective center points. We
use the distance metric from graph-theory (e.g., the length
of the shortest path between two nodes) on the category tree
to compute the semantic distance between two tags, meaning
that if two semantic tags are equal, then the distance is 0, if
they have the same parent tag (e.g., ‘American restaurant’ and
‘Burger joint’ are both children categories of the ‘Restaurant’
category), the distance is 2, etc. We normalize the semantic
distance between two tags by the sum of the tags’ depths
(i.e., the distance to the root) in the category tree.

IV. EVALUATION

We experimentally evaluate privacy on a real dataset of user
traces composed of location check-ins that contain not only
geographical location data but also semantic information in
most cases (see Section IV-A). In our experiments, we study
the effects of location semantics on the geographical location
privacy by comparing the privacy of users under a semantic-
oblivious and a semantic-aware inference attack, in various
configurations and with different PPM settings.

A. Dataset

In order to experimentally evaluate users’ semantic location
privacy and the effect of semantic information on users’
location privacy, we rely on a dataset of real user check-ins,
which include geographical and semantic information about
the venues visited by the users of a large location-based
social network. In addition, we rely on a predictive utility
model based on user feedback collected through a personalized
online survey targeted at Foursquare users (N = 77) recruited
via the Amazon Mechanical Turk platform. This dataset was
collected by the authors of [8] and made available online
at https://homepages.laas.fr/khugueni/drupal/datasets. In this
section, we give details about our data sources, including
the data collection, filtering and processing methodology and
general descriptive statistics about the data.

7Note that we did not take elevation into account in the computation of the
geographical distance.

1) Location Traces with Semantics: Because we could not
find large datasets of user check-ins with semantic information,
we built our own dataset by running a data collection campaign
through crawling. As a starting point, we use a tweet dataset
we collected between January 2015 and July 2015 through
Twitter’s public stream. The dataset contains public geo-tagged
tweets (i.e., Twitter lets users to attach their GPS coordinates
to their tweets); we focused on six large cities: Boston (MA,
USA), Chicago (IL, USA), Istanbul (Turkey), London (UK),
New York (NY, USA) and San Francisco (CA, USA). We
collected these tweets by identifying users through Twitter’s
public stream (i.e., ∼1% of the Twitter public timeline) and by
fetching timelines of these users. A summary of the statistics
of the dataset is provided in Table II: We collected location
check-in traces of a total of 583 users.

TABLE II: Filtered Dataset Statistics

City Users Tweets Check-ins
Boston 50 3,815 3,211
Chicago 107 11,917 10,389
Istanbul 85 9,690 8,451
London 161 12,312 10,308
New York 112 8,967 6,797
San Francisco 68 5,705 4,974

The coordinates embedded in the geo-tagged tweets, how-
ever, do not contain semantic information (which we need
for our evaluation). To obtain such information, we rely on
Foursquare. Foursquare offers its users the option of linking
their Foursquare accounts with their Twitter accounts in such
a way that, whenever a user checks-in, Foursquare generates
an automatic text message with a short URL to the Foursquare
check-in and tweets it, along with the GPS coordinates, on the
user’s Twitter timeline. We select such Foursquare-generated
tweets from our Twitter dataset and, for each, we parse the
URL to the Foursquare check-in from the tweet text. Using
these URLs, we fetch (through the Foursquare API) the corre-
sponding check-in and the venue. For each venue referenced in
a check-in of our dataset, we collect rich statistical information
such as total number of visits, total unique visitors, rating,
etc. Most importantly, we collect the coordinates8 and the
semantic tag(s) (a primary tag and possibly a secondary tag),
selected from a pre-defined set of 763 tags (i.e., referred to
as Foursquare categories) organized as a tree, assigned to the
venue. Because it uses semantic tags (organized as a tree) and
because its main feature is to let users check-in at venues,

8Note that GPS coordinates in the tweets might slightly differ from regis-
tered venue coordinates at Foursquare. In such cases, we use the coordinates
of the venues from Foursquare.

TABLE III: Experimental Setup

Number of iterations 10
Size of each area 1.6× 1.6 km2

(8× 8 regions)
Average Proportion of Foursquare tweets per
user (i.e., tweets w/ semantic information)

83%



Foursquare constitutes a perfect datasource for our evaluation.
We show the venue density and the Foursquare tweet density
in the considered geographical areas in Figure 7, which shows
a Foursquare venue heat map and a Foursquare check-in heat
map for each city.

Venue

Arts & Entertainment

Aquarium Art Gallery Casino Concert Hall Movie Theater Museum Performing Arts Venue Music Venue Theme Park Water Park Zoo

Art Museum History Museum Planetarium Science Museum Opera House Theater Jazz Club Rock Club Theme Park Ride / Attraction

Fig. 4: Partial view of the Foursquare category hierarchy that
we use as our semantic tag tree in our evaluation. The ‘Venue’
tag is the root of the category tree.
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Fig. 5: Number of Foursquare check-ins/tweets and the total
number of tweets per user (in decreasing order) in the filtered
dataset used in our experiments (log-scale on the y-axis).

In our evaluation, we focus (due to computational limi-
tations) on the tweets and check-ins in small geographical
areas of size approximately 1.6 × 1.6 km2 around the cities
of Boston, Chicago, Istanbul, London, New York and San
Francisco. We determine the most dense such areas and extract
users with at least 40 tweets in each region. We further filter
out users whose Foursquare tweets (i.e., check-ins) account
for less than 60% of all their tweets (i.e., most of the tweets
used in the experiments contain venue information). The final
dataset contains a total of 583 users (58% male, 41% female,
1% unknown); see Table II for detailed statistics and Figure 5
for users’ count of Foursquare and total tweets. We included
all the tweets of a user in the knowledge construction of the
adversary and for each user we use a randomly selected sub-
trace of length 5 in each experiment. There are 10,970 venues
in our filtered dataset and the tag distribution over these venues
is shown in Figure 6.

Dissemination of the dataset: Although the terms and
conditions of Twitter9 and Foursquare10 prevent us from

9https://dev.twitter.com/overview/terms/agreement-and-policy
10https://developer.foursquare.com/overview/venues
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Fig. 6: Number of venues per semantic tag in the filtered
dataset for the top 40 common tags (log-scale on the x-axis).

making the dataset directly available for automatic download
as we need to make sure that the requesting party agrees to
comply with the aforementioned terms, we will be happy to
provide our dataset to other researchers upon request.

The dataset contains all the considered check-ins, each of
which is characterized by a timestamp, a user id, a geographi-
cal location (as reported in the tweet), a geographical location
(as reported in the Foursquare venue information), and the
Foursquare venue type in the form of a tag, and will be made
available in the csv file format. It will also contain a snapshot
of Foursquare category tree at the time of data collection.

2) Predictive Utility Model: Semantic obfuscation, usually
achieved through generalization as discussed in the previous
sections, is likely to have a negative effect on the utility of the
service as perceived by the users. As the notion of (perceived)
utility is quite subjective, user feedback is needed to model
and quantify the utility implications of the use of obfuscation
techniques. In order to build such a model, we rely on a
dataset collected and made available by the authors of [8]. The
fact that the survey focuses on Foursquare check-ins makes it
perfectly adequate for our dataset and hence for our evaluation.
In this work, the authors performed a personalized survey
with 77 active Foursquare users recruited through Amazon
Mechanical Turk. In the survey, each participant was shown
45 of her own past Foursquare check-ins; for each of these
check-ins, the participant was presented with four different
obfuscated versions of the check-in and she was requested
to rate, on a scale from 1 to 5 (where 1 is “not at all” and



TABLE IV: Example of obfuscated check-ins with different combinations of geographical and semantic obfuscation
(source: [8]).

Obfuscation levels Example
Original check-in The Westin Hotel, 320 N Dearborn St. (Chicago 60654, IL, United States)
Low semantic, Low geographical (Ls-Lg) At a hotel, on Dearborn St. (Chicago 60654, IL, United States)
High semantic, Low geographical (Hs-Lg) At a travel & transport place, on Dearborn St. (Chicago 60654, IL, United States)
Low semantic, High geographical (Ls-Hg) At a hotel, in Chicago (IL, United States)
High semantic, High geographical (Hs-Hg) At a travel & transport place, in Chicago (IL, United States)

5 is “perfectly”), to what extent the purpose of her check-in
would still be met if the precise venue location was replaced
with the obfuscated version of it. The four obfuscated versions
of the check-in were generated by applying the possible
combinations of low/high semantic obfuscation (Ls or Hs) and
low/high geographical obfuscation (Lg or Hg) as illustrated in
Table IV (extracted from the original article). One finding from
the article is that semantic obfuscation has a higher negative
effect on utility than geographical obfuscation does.

Using this data, to predict the utility of an obfuscated
version of a check-in (on a discrete scale from 1 to 5),
the authors propose a utility model that relies on a number
of features extracted from the users’ check-in, including the
check-in location, date, time, text, and the venue type. The
predictive model proposed in the original paper achieves high
accuracy with a median error of around 0.5. In order to
quantify utility, we build a simplified version of the predictive
utility model proposed in [8] (based on the same data). Our
model is based on only two different features: the venue type
and the obfuscation level. The median error of our simplified
model is 1.1, which is sufficient for our purpose (i.e., exploring
the privacy-utility trade-off).

B. Experimental Setup

Methodology:: We partitioned the six considered areas
(one for each city considered in the dataset) into 64 square
regions, each identified by an ID, using an 8 × 8 regular
grid. We then mapped the locations in the users’ traces to the
corresponding region IDs, and we kept the semantic tag. We
implemented our Bayesian network-based models in Python
by using the Bayesian Belief Networks library provided by
eBay [9]. We applied certain protection approaches (listed be-
low) on the users’ traces, obtaining protected/observed traces
that our Bayesian networks use as observations, and applied
the junction-tree inference algorithm [10] which achieves
optimal inference. The output of the inference algorithm is a
probability distribution function for each unknown (inferred)
variable, which we use in our privacy metrics (see Equa-
tions (2) and (3)).

Background Knowledge:: In our experiments, the adver-
sary always has geographical background knowledge on the
users’ history (i.e., transitions). Based on this we have two
different scenarios (explained in detail in Section III-A):

1) Geographical Background: In this scenario, the ad-
versary is assumed to have knowledge on geographical
transition patterns of users and no semantic background

information. We run experiments for this scenario by us-
ing our first Bayesian network model that prioritizes the
geographical transitions for user behavior introduced in
Section III-A. The transition probabilities are estimated
from the number of geographical transitions in the whole
traces of users.

2) Geographical and Semantic Background: The adver-
sary is assumed to have more knowledge about users’
histories: transitions in both geographical and semantic
dimensions. He also knows the distribution of geograph-
ical region visits, given the semantic information on user
traces, i.e., how many times a region r was visited, given
that the user event’s semantic tag was s. This type of
background information enables us to use our second
Bayesian network model that prioritizes the semantic
transitions for event sequences, meaning that the users
move by first choosing the semantic tag of the location
they want to go to and then determine a geographical
region associated with this semantic tag based on their
previous location.

Protection Mechanisms:: We implement geographical
and semantic location privacy protection approaches sepa-
rately, meaning that geographical protection does not take
into account the semantic information of the user’s actual
location, and vice versa. As mentioned above, joint protection
mechanisms could be used for improved performance; we
leave the design of such mechanisms to future work.

We implement a geographical location-privacy protection
mechanism as an obfuscation mechanism that either generates
an obfuscation area of a certain size or hides the geographical
location completely with a predetermined probability (called
the hiding probability λ). This mechanism replaces any given
region (i.e., the actual location of a user) with a larger, square
area in our map. For instance, a 2 × 2 obfuscation: (i) with
probability 1− λ, generates an obfuscation area consisting of
4 adjacent regions, one being the actual location of the user,
or (ii) with probability λ, hides the location.

We consider the following four scenarios regarding the
semantic protection and, to compare their effects, employ each
of them in separate experiments:

1) No protection. In this case, we directly disclose the
actual semantic tag all the time. From a privacy per-
spective, this constitutes a worst-case scenario.

2) Parent-tag obfuscation. This is a generalization based
on the semantic tag tree derived from Foursquare’s cat-
egory hierarchy. In this case, given the actual semantic
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Fig. 7: Foursquare venue and check-in heat maps (i.e., count distribution) in six cities from the raw dataset.

tag of the user, we determine its parent tag in the tree
and disclose this tag as the semantic information of the
user’s current location.

3) Parent-tag obfuscation with hiding. In this case, we
disclose the parent tag of the user’s location with proba-
bility 1−λ or hide the semantic information completely
with hiding probability λ.

4) Complete hiding of semantic tags [baseline]. In this
case, we never disclose semantic tags. This corresponds
to a pure geographical approach (as taken in previous
works); as such it constitutes our baseline.

In our experiments, we employ the geographical protection
mechanism in combination with each of the aforementioned
semantic protection mechanisms with varying hiding proba-
bilities.

C. Experimental Results

In this section, we analyze the experimental results with
different protection mechanisms in various settings.

1) Effect of Semantic Information on Location Privacy:
We first analyze the effect of adding semantic information
to a user’s check-in on her geographical location privacy. We
consider four protection scenarios with low to high granularity
of semantic information combined with fixed geographical ob-
fuscation over gradual hiding probability λ. Specifically, given
a geographical obfuscation parameter (e.g., 2×2 obfuscation),
for each λ we evaluate four different semantic protection
approaches (explained in Section IV-B) that are employed
together with the obfuscation mechanism.

We present the results in Figure 8, where the x-axis
represents the hiding probability λ (used for geographical
obfuscation and parent-tag semantic generalization) and the y-
axis represents the geographical location privacy in kilometers.
We plot the geographical location privacy aggregated over all
users, all events and all iterations of simulations for each
protection mechanism and hiding probability (λ) pair using
box plots. These box plots show the 1st, 2nd, 3rd quartiles of
the data and the 98% confidence intervals.

We consider four scenarios (geographical obfuscation and
semantic generalization) and plot the corresponding results,
e.g., “Geo. (obf 2 × 2, λ) | Sem. (parent, λ)” means that
(1) geographical locations are hidden with probability λ and
obfuscated by reporting 2×2 cloaking areas otherwise, and
(2) semantic tags are hidden with probability λ and generalized
by reporting the parent tag otherwise; the darker a box-plot
is, the higher the amount of disclosed information is. In our
experiments, we employed both 2× 2 and 4× 4 cloaking.

We observe that as we disclose more semantic information,
along with the obfuscated geographical location (from left to
right for each λ value), the median location privacy consis-
tently decreases in all cases. Also, unsurprisingly, the privacy
level increases as we increase the granularity of the location
(i.e., from 2×2 obfuscation in Figure 8a to 4×4 obfuscation in
Figure 8b). Note that for λ = 1.0, the parent-tag generalization
with hiding probability λ is exactly the same as hiding the
semantic information completely and, similarly, it is exactly
the same as the direct parent-tag generalization (i.e., always
disclosing the parent tag instead of the actual tag) for λ = 0.0.
These can be observed in Figure 8.

We also analyze the effect of employing semantic back-
ground information (i.e., the histories of users’ transitions
between semantic tags) in the inference process, in addition to
the geographical background information that is already em-
ployed in all our experiments. We compare the two scenarios
where 4× 4 geographical obfuscation with hiding probability
λ is used (i.e., Figures 8b and 8c, with and without semantic
background information respectively). We observe that, for
instance in the case of λ = 0.4, the median geographical
privacy decreases when the adversary employs the semantic
background information of users. This pattern is visible for
most of the cases from without semantic background to with
semantic background. It can also be observed that the semantic
background information is very influential on geographical
location privacy in the cases of direct parent-tag generalization
and semantic disclosure (i.e., the two darkest boxes). We notice
that, in some cases (typically for the light case where the
semantic information is hidden all the time), the adversary is
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Fig. 8: Geographical location privacy levels over different protection and learning scenarios.
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Fig. 9: Average geographical location privacy over all users in
each considered city.

more confused (and hence less successful) when he employs
semantic background knowledge. The main reason for this
outcome is that the adversary’s knowledge on the semantic
transitions of the user is less effective in his attack when the
attacked traces’ length is short. In general, we observe that
employing semantic background knowledge in the inference
helps the adversary increase his accuracy on average 5 to 90
meters when the users disclose some semantic information in
their traces. This is clear in Figure 10, that shows the difference
between Figures 8b and 8c (i.e., the information gain of the
adversary between the two scenarios). The reason why the
adversary gains more information in the case of parent-tag
obfuscation compared to no semantic protection is that when
users disclose their semantic tags, their privacy level is already
lower; hence the potential information gain of the adversary
in with semantic background scenario is naturally lower.

Figure 9 depicts the average geographical location privacy
in each of the six considered cities (with and without semantic
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Fig. 10: Difference of geographical location-privacy levels
between the cases with semantic background and without
semantic background with 4 × 4 geographical obfuscation
and varying λ. As soon as users disclose some semantic
information, the performance of the inference increase when
using semantic background information about users. Interest-
ingly, when users completely hide the semantic tags of their
locations, the adversary is less successful when he uses the
semantic background information.

background, aggregated over all values of λ and over the
two sizes of the cloaking area). It can be observed that it
is quite comparable among cities: Despite the difference in
terms of culture and urban planning, we did not observe
major differences across cities in terms of user privacy in the
presence of semantic information. It can also be observed that
semantic background information improves the performance
of the inference, thus decreasing users’ geographical location
privacy.

2) Privacy vs. Utility Trade-Off: We now explore the trade-
off between privacy and utility by evaluating both location
privacy and utility for different levels of obfuscation. To
comply with the experimental setup of [8], we consider four



protection mechanisms by combining a low or high level of
semantic obfuscation with a low or high level of geographical
obfuscation as described in Table V and illustrated in Fig-
ure 11. We set the hiding probability λ to 0.2.

TABLE V: Description of the different obfuscation levels.

Obfuscation Description
Ls-Lg Semantic tag, 2× 2 geographical region
Hs-Lg Parent semantic tag, 2× 2 geographical region
Ls-Hg Semantic tag, 4× 4 geographical region
Hs-Hg Parent semantic tag, 4× 4 geographical region

We plot the results in Figure 12. The points represent
the average privacy and utility. It can be observed that the
four points corresponding to the different obfuscation levels
form a diamond shape: Ls-Lg provides the highest level of
utility and the lowest level of privacy; Hs-Hg provides the
highest level of privacy but the lowest level of utility; Ls-
Hg provides a better level of (location) privacy than Hs-Lg
and a lower level of utility. This last observation is quite
intuitive as geographical obfuscation is expected to protect
location privacy better than semantic obfuscation and semantic
obfuscation has been proved to be more detrimental to utility
than geographical obfuscation has been [8]. This means that,
as far as geographical location privacy is concerned, users
should always prefer Ls-Hg over Hs-Lg. As for semantic
location privacy (which we analyze in detail in the next sub-
section), it can be observed that geographical obfuscation is
quite beneficial as the use of high geographical obfuscation
substantially increases the users’ semantic location privacy at
a cost of a small decrease in utility. In the case where low
semantic obfuscation is used, the semantic location privacy
is zero as the users reveal the actual semantic tags of their
locations.

×

travel & transport place −→ hotel

Fig. 11: Illustration of the obfuscation levels used in the ex-
periments. Light blue frames denote low levels of obfuscations
whereas dark blue frames denote high levels of obfuscation.

3) Semantic Location Privacy: Finally, we evaluate the
semantic location privacy and present the loss of privacy in
the semantic dimension of location. As in the figures depicting
geographical location privacy, we plot the aggregated privacy-
level over all users, all simulation iterations and all user events
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Fig. 12: Privacy vs. Utility in four different scenarios (Ls-Lg,
Hs-Lg, Ls-Hg, Hs-Hg, for λ = 0.2).

using box plots. The semantic location privacy is calculated
as the expected error of the adversary.
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Fig. 13: Semantic location privacy levels over different pro-
tection scenarios with geographical and semantic background
knowledge of the adversary.

In Figure 13, we present the semantic location-privacy
results for 4× 4 obfuscation with hiding probability λ in both
‘Geographical background’ and ‘Geographical & Semantic
Background’ scenarios. In both cases (shown separately in



figures 13a and 13b), as we protect the semantic information
in the users’ traces less and less (from the lightest boxes to
the darkest ones), the semantic location privacy consistently
decreases. We also observe that protecting the geographical
location privacy more, i.e., increasing the hiding probability λ,
also helps increase the semantic location privacy in most of the
cases. Whereas, semantic location privacy is naturally always
0 in the case of disclosing semantic information all the time.
Moreover, unsurprisingly, when the adversary has semantic
background information in addition to the geographical one,
he learns more about the users’ location semantics in his infer-
ence, i.e., the semantic location privacy decreases. However,
compared to the geographical dimension, this decrease in the
semantic location privacy is more substantial as can be seen
in Figures 13a and 13b: Even if the semantic tags of the user
events are hidden all the time, the privacy loss is between 30-
50%. The loss reaches up to 80% in other protection scenarios.

Lastly, we present the geographical and semantic location
privacy jointly in Figures 14a and 14b, without and with
semantic background information, respectively. These plots
represent the density of the privacy data over the geographical
vs. semantic location privacy plane. The darker the plot gets,
the more data points there are in the corresponding geographi-
cal and semantic intersections. We exclude the scenario where
the semantic tag of the events is always disclosed, because
semantic location privacy is always 0 in this scenario, hence
it does not contribute to these plots. These figures present
the change in the relationship between the geographical and
semantic location privacy. The obvious change occurs in the
semantic dimension, though the change in the geographical
location privacy is non-negligible as well.
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(b) Geo. & Sem. Background

Fig. 14: Geographical location privacy vs. semantic location
privacy. Note that we excluded the case of ‘Sem. (actual, 0)’
as it provides no semantic privacy.

V. DISCUSSION

In this paper, we presented a semantic-aware location infer-
ence scheme, which we tested against several simple privacy-
protection mechanisms (PPM), to prove that the threat on
location privacy is more acute when the semantic dimension of
location is taken into account. However, this is just a first step
towards developing smarter PPMs, which take into account

the semantic dimension of location privacy (together with
the geographical dimension). The results we demonstrated in
this work serve an important purpose: Understanding how to
develop joint PPMs that protect geographical and semantic
location privacy together and by taking into account user
history and profiles. Our work enables evaluation of such
PPMs by paving the way for testing and adapting them w.r.t.
the success of the adversary in an adaptive manner as well as
optimizing jointly privacy and utility. As part of future work,
we plan to use this framework to develop smarter PPMs. For
instance, we intend to consider PPMs such as “If the cloaking
area contains only one Burger joint opened at the considered
time instant, either increase the size of the cloaking area or
use the parent semantic tag, depending on which option brings
the lowest utility loss”.

A first limitation of this work is the fact that the adversary
we considered uses a basic user behavioral model. As such, the
results we present constitute a lower bound on the privacy loss:
The adversary can actually strengthen his attack by increasing
the complexity of the model he uses. For instance, he could
exploit the temporal properties of locations and semantics:
Users tend to have periodic routines (e.g., daily/weekly), such
as staying home at night, going to work or school during
the day and having lunch around noon, and venues have
characteristic opening hours. By taking into account the time
dimension, we could show that the threat is actually greater
than what we demonstrate. Furthermore, the information we
considered is in fact a subset of what a typical adversary (i.e., a
service provider) can collect.

A second limitation of this work is the size and the nature
of the dataset: We considered “only” 583 users (whom we
have only little demographic information about) in six cities,
who linked their Foursquare and Twitter accounts and made
the tweets generated by Foursquare public. Such a sampling
method could introduce a bias in the experimental results.
Moreover, the time granularity of our dataset is somewhat
coarse. As part of future work, we will work on increasing the
size and quality of our user dataset and better characterizing
the users it contains in order to make our experimental results
more generalizable. It would also be interesting to use traces
from location-based social networks (and the associated tag
hierarchy) other than Foursquare.

VI. RELATED WORK

A large amount of work has been devoted to quantify-
ing location privacy, in particular when extra information
(i.e., different from location information e.g., co-locations and
location semantics) is available to the adversary. [2] is one
of the first papers to identify and study inference attacks on
location traces. Another notable example, on which our work
is partially built, is presented in [11], [3]. In these papers,
the authors propose a formal framework to quantify users’
location privacy when some (obfuscated) location information
is available to the adversary. Their proposed framework relies
on hidden Markov models for the location inference process
and uses the expected error of the adversary as a metric for



location privacy. The work presented in this paper enriches
this framework by incorporating the rich semantic information
increasingly disclosed by users on social networks. Similarly,
but orthogonal, to our work, in [12], the authors study the
effect of co-location information (e.g., Alice and Bob are at the
same (unknown) location at 2pm) on users’ location privacy.
As for obfuscation mechanisms, a detailed survey can be found
in [1].

On the front of location semantics, several works study the
semantic dimension of location information (some of them
in the context of privacy). Several works, including [4], [5],
[6] and [7], address the problem of identifying the points-
of-interest (POIs) users visit, based on location traces. Some
works extend existing location privacy metrics and definitions
to take semantics into account. For instance, in [6], the authors
propose a location-cloaking technique that ensures that the
reported areas have a high semantic diversity in terms of
the number of distinct venue types in the area. In [13],
the authors propose the PROBE framework for implementing
efficient, semantic-aware and personalized location cloaking.
The concept of semantic diversity was originally formalized
as l-diversity in [14] followed by related models including p-
sensitivity [15], location diversity [16] and t-closeness [17].
Similarly, in [18], the authors extend the concept of geo-
distinguishability, which applies differential privacy to loca-
tion privacy [19], to take into account the semantic diversity of
the reported locations. In [20], the authors propose the notion
of C-safety, which not only takes into account semantics but
also the sensitivity (in terms of privacy) of the different venue
types. Using a taxonomy of venue types, the authors propose
an efficient semantic-aware obfuscation mechanism. Finally,
in [8], the authors study the implications of geographical and
semantic obfuscation (through generalization) of users’ check-
ins on their perceived utility; in the evaluation of our work,
we make use of the predictive model proposed in this paper.

Our work distinguishes itself from existing works as it
incorporates semantic information in the inference process
to better recover the users’ locations, thus demonstrating the
sensitive nature and the associated privacy risks of semantic
information.

VII. CONCLUSION

In this paper, we have investigated the effects of location se-
mantics on geographical location privacy of mobile users. We
have considered two essential scenarios, specifically the case
when an adversary, without knowing the semantic mobility
patterns of the users, exploits the publicly available semantic
information on locations, and secondly the case when the
adversary knows the semantic mobility patterns of the users, in
addition to knowing the location semantics. We have modeled
the adversary that is aware of location semantics by using
Bayesian networks and demonstrated that disclosing any level
of semantic information on the visited locations improves his
success.

In summary, both the geographical and semantic location
privacy are at greater risk than revealed before, due to the

multidimensional nature of location data. When designing
privacy-protection mechanisms, our aim must be to protect
location privacy on a multidimensional scale, i.e., considering
the types of locations. Furthermore, because we believe that
people have similar behavior patterns, we intend to analyze
the effect of collective mobility patterns on location privacy.
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