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Abstract—Mobile users increasingly make use of location-
based online services enabled by localization systems (e.g., GPS).
Not only do they share their locations to obtain contextual
services in return (e.g., ‘nearest restaurant’), but they also share
information about the venues (e.g., the fype, such as a restaurant
or a cinema) they visit with their friends. This introduces an
additional dimension to the threat to location privacy: location
semantics that, combined with location information, can be used
to improve location inference by learning and exploiting patterns
at the semantic level (e.g., people go to cinemas after going to
restaurants). Conversely, the type of venue a user visits can be
inferred, hence this knowledge can be used to aggravate the threat
to her (semantic) location privacy. In this paper, we formalize
this problem and analyze the effect of venue-type information on
location privacy. We introduce two multidimensional inference
models that consider location semantics and semantic privacy-
protection mechanisms. We evaluate our models by using a
real data-set of semantic check-ins from Foursquare (obtained
through Twitter). Our experimental results show that users’
semantic location privacy is at serious risk and that semantic
information significantly improves inference of user locations,
hence multidimensionally degrading location privacy.

I. INTRODUCTION

Advanced localization-technologies and continuous Internet
connectivity on mobile devices enable people to adopt an
online life style; increasingly more people use mobile devices
to receive location-based services and to enjoy location-based
social platforms. Users of such systems provide location in-
formation (and possibly their identity) to the service providers
in return for useful information such as the location of the
nearest restaurant, cinema or nearby friends. Many of these
services and systems are presented as free, but in fact, they
obtain fine-grained user traces that can be used to infer more
personal information: the price a user pays for benefitting from
such services is her location data, which is detrimental to her
privacy. This problem has been extensively investigated by
the research community, the focus is mostly on geographical
location privacy and related protection mechanisms [1]. Re-
searchers have also studied how an adversary can locate/track
users’ whereabouts based on location samples that are, in some
cases, anonymized and/or obfuscated, and on mobility history
(e.g. 21, 3.

Many online service providers interact with their users on a
multidimensional scale. For example, they let users state what
type of location they are at, whom they are with and even
what they feel at that specific time. This kind of data disclosure
enables the service providers to enhance their knowledge about

their users. Hence, the approach to location privacy from
a purely geographical perspective is not sufficient anymore.
Additional dimensions of information about the locations of
users can be exploited by service providers, thus rendering
privacy-protection mechanisms ineffective. Figure 1 depicts
two examples where the semantic dimension (i.e., the type) of
location can be exploited to infer the actual location and the
semantics of the user’s location is not being protected at all. In
Figure 1a, we observe that a user who visits a cinema discloses
that she is in the depicted cloaking area and at a cinema. The
problem is that there is only one cinema in this cloaking area,
hence any observer of this disclosure can pinpoint the user
easily. In another example, in Figure Ic, a user is at a hospital
and wants to protect her location privacy. Unfortunately, her
cloaking area is mostly occupied by the hospital, hence even
though her exact location might not be pinpointed, the fact that
she is at a hospital can be inferred without much confusion.

In this paper, we consider the case where users disclose
not only their (obfuscated) geographic locations but also the
types of venue they are at (e.g., restaurant) in the form
of check-ins (e.g., social networks). Note that, unlike the
approaches proposed in [4], [5], [6], [7], the venues visited
by the users are assumed to be reported directly by the users
and not inferred from the users’ locations. We focus on the
semantic dimension of the location and study its effects on
location privacy, both on the geographical and semantic levels.
Even though previously, researchers proposed semantic-aware
protection mechanisms that aim to protect both geographical
and semantic location privacy (e.g., [8], [9]), their attempts
lacked the extensive evaluation of their methods against a
concrete adversary model. We fill this gap by proposing a
model of an adversary; it considers a semantic-driven user-
mobility behavior to multidimensionally attack location traces.
We evaluate both geographical and semantic location-privacy
with this adversary model and show that disclosing infor-
mation about the type of location, i.e., semantic location-
information, decreases geographical location-privacy as much
as 60%. We also present the threat on semantic location-
privacy that deteriorates as quickly as the adversary gains
background information on user-mobility profiles, that are eas-
ier to crawl by using publicly available data on various social
networks. To the best of our knowledge, this is the first work
that quantifies semantic location-privacy and demonstrates the
effects of location semantics on location privacy.

The remainder of the paper is organized as follows: We
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Fig. 1: Examples showing how location semantics can be exploited when attacking location privacy and how semantic location-
privacy is at risk. (a) A user reports that she is in the depicted cloaking area and also that she is at a cinema. Clearly, her
location can be pinpointed by anyone who has access to this report, because there is only one cinema in the user’s reported
cloaking area, and this cinema occupies a small area compared to the cloaking area. (b) demonstrates how the ineffectiveness
in (a) can be reduced by enlarging the cloaking area to include another cinema. An adversary can still trim the cloaking area,
but now there are two locations with the tag cinema. (c) A user at a hospital now reports a cloaking area without revealing her
semantic information. Clearly, this user does not want to disclose that she is at a hospital, but the hospital occupies a very big
part of the cloaking area making it easy for an adversary to infer that she is at a hospital. These kinds of ineffective protection
mechanisms put the semantic location-privacy of users at great risk. (d) demonstrates how semantic location privacy can be
protected better by generating large cloaking areas to avoid domination of only one type of location in the reported cloaking

areas.

introduce the reader to the context and define the system model
in Section II. In Section III, we present our adversary model,
inference approach and describe how we measure privacy. We
explain our experimental setup and the datasets in Section IV
and report the evaluation results. In Section V, we survey
related work. Finally, in Section VI, we conclude the paper
and discuss future work.

II. BACKGROUND AND SYSTEM MODEL

We consider mobile users equipped with smartphones
that have GPS modules and Internet connectivity. These users
move in a geographical area and make use of location-based
online services and social networks. We consider that users
sporadically report their (potentially obfuscated) locations and,
in some cases, semantic information (i.e., the type, in the form
of tags such as ‘restaurant’) of their locations. Note that we
do not consider the case where the adversary extracts semantic
information from the users’ location traces, as considered in
e.g., [4]. In this setting, we consider an honest-but-curious
service provider that is interested in inferring, based on its
observations, users’ actual geographical locations and the
semantic tags associated with them, if any. Table I lists the
notations used throughout the paper.

A. Users

Mobile users with GPS-equipped devices move in
a given geographical area that is partitioned into M
geographical regions R = {Ri,Ro,... Ry }. Geographical
areas are usually coarse-grained (typically cells associated
with cell towers or regular square tiles of a several
hundreds of meters). A subset of or all the areas in R

contain venues annotated with semantic tags from the set
{51,852,...,8k}, ie, a predefined list of keywords
(e.g., Foursquare defines such a list and all registered
venues are tagged with such a keyword). Whenever a
venue is visited by a user, it is mapped to the geographical
region from R it falls in. We denote by _L the semantics
of regions for the case when a user is in a geographical
region, but does not visit a particular venue with a semantic
tag, meaning that her location does not have semantic
information. Hence, we define the set S of semantic tags
as the union {S1,S9,...,Sk} U {L} to cover all semantic
cases. Moreover, we consider discrete-time and a limited-time
period {1,...,T}.

As users move, they sporadically use online services and
share their (potentially obfuscated) locations together with
the corresponding (potentially obfuscated) semantic tags. For-
mally, whenever a user v visits a geographical region r at a
time instant ¢ € {1,...,T}, she generates an event consisting
of her actual geographical region r € R and the corresponding
semantic tag s € S. This user event at time instant ¢ is denoted
by a,(t) = (r,s); in other words, the actual location of user
u at time instant ¢ is represented by the pair (r, s). We denote
by a, = {ay(1),...,a,(T)} the whole trace of user w.

B. Privacy Protection Mechanisms

For privacy reasons, users employ privacy-protection mech-
anisms (PPMs) before reporting their location and semantic
information to an online service provider?. Typically, a PPM,

I'P: Power set.
2We refer to the online service provider as the service provider or the
adversary for short in the remainder of the paper.



TABLE I: Table of Notations

R Set of geographical regions
S Set of semantic tags

User u’s actual event at time instant ¢, where
reRandseS

User u’s obfuscated event at time instant ¢,
where ' € P(R)"

Qy Actual trace of user u

Ou Obfuscated trace of user u

R, R} The actual and obfuscated location variables
for time ¢

S:, S The actual and obfuscated semantic variables
for time ¢

fulr,r') A geographical PPM modeled as a probabil-
ity distribution function employed by user u

gu(s,s) A semantic PPM modeled as a probability

distribution function employed by user w

that aims to protect the geographical location of a user,
replaces her actual location with another location (i.e., perturbs
the location) or with a list of locations (i.e., a cloaking area),
or hides the location information completely. In this work, we
consider such PPMs and the PPMs that protect the semantic
dimension of the location, specifically the semantic tag of a
user’s event. In particular, these PPMs generalize the semantic
tag (i.e., introduce additional or more generic tags) or hide it
completely. We assume that a set of PPMs obfuscates a user’s
actual event at time ¢ independently from her other events
at other time instants. Such a PPM model can also cover
the cases where the underlying localization technique used
by the adversary returns coarse-grained and possibly bogus
information about the users.

After applying PPMs on her actual geographical region r
and the corresponding actual semantic tag s, a user u reports
her obfuscated geographical region ' and the obfuscated se-
mantic tag s’ to the service provider. r’ (resp. s’) is typically a
subset of R (resp. S). We assume that the service provider only
observes the obfuscated trace o, = {o,(t) = (r',s')},Vt €
{1,2,...,T} of user u.

A PPM is successful to the extent that it confuses the
adversary and leads him to believe that the imprecise parts
of an obfuscated event are the user’s actual event. In this
sense, we model a PPM as a probability distribution function
that maps actual events to obfuscated ones. Specifically, we
denote by functions f(r,r’) and, respectively, g(s,s’) the
probabilities to generate the obfuscated location r’ and the
obfuscated semantic tag s’ (i.e., Pr(r’|r) and Pr(s’|s)) that
constitute the obfuscated event o(t) = (1/, s’) given the actual
event a,(t) = (r,s). Note that geographical and semantic
information are obfuscated independently from each other
at each time instant and independently from the other time
instants. Finally, we assume that users do not collaborate
to protect each others’ privacy and their identities are not
anonymized.

C. Adversary

The adversary is typically a service provider or an external
observer who has access to obfuscated traces of users. He has
two main purposes: (i) locate users at specific time instants,
and (i) identify the types of the locations users visited in terms
of the semantic tags associated with them. While carrying out
his attack, the adversary takes into account the relationship
between geographical and semantic dimensions of location,
which is explained in Section III.

The adversary runs his attack a posteriori, i.e., after having
observed the whole obfuscated trace o, of a user u. Even
though the obfuscation of an event is done independently from
the other events of the user, the adversary assumes that a
user’s actual events are correlated and therefore models user
mobility-behavior. He is assumed to have access to users’
(partial) past events that, he exploits to build a mobility profile
for each user u, consisting of both geographical and semantic
dimensions. Basically, a user’s mobility profile represents the
user’s transition probabilities regarding mobility, i.e., between
geographical regions and between semantic tags. Formally,
such a mobility profile is the set of the probability distribution
functions Pr(r|p), Pr(s|c) and Pr(r|s), where p and o
represent the user’s previous location and previous semantic
tag.

The adversary also knows which PPMs a user u employs
and with what parameter(s), i.e., the functions f, and g,.
Together with the PPMs and the mobility profile he generates,
the adversary performs his attack on a user trace given her
obfuscated trace o,,.

III. INFERENCE AND PRIVACY

We explain our model of inference and background knowl-
edge of the adversary in the subsequent subsection. In sum-
mary, we build two user behavior models by using Bayesian
networks under the assumption that people follow a Markovian
mobility process. These models take into account both the
geographical and semantic dimensions of the location and also
the relationship between them. Based on these two models, we
evaluate geographical and semantic location privacy.

A. Inference and Background Knowledge

We model the adversary’s inference considering a specific
way of user behavior based on a simple idea: users move
based on what they plan to do next given their current context,
i.e., in this case, their locations and semantic information. We
determine the following two scenarios (illustrated in Figure 2):

1) The adversary knows the users’ geographical transition
histories, i.e., the geographical background, and assumes
that the users move to new locations primarily based on
their current locations. Their semantic tags are merely
dependent on their locations. For instance, a user might
go to a location in downtown after visiting another
location in nearby downtown. The semantics of these
locations then, for instance, might happen to be a cinema
and a restaurant.



2) The adversary knows both the users’ geographical tran-
sition histories and semantic transition histories, together
referred to as geographical & semantic background.
Unlike the first scenario, in this case the user first
determines what type of place she will go to (i.e., the
next semantic tag) given the semantic tag of her current
location, and then chooses the region she will go to
based on the determined next semantic tag and her
current location. For instance, if a user is at a restaurant
in downtown and wants to go to a cinema, she chooses
to go to a cinema that is close to her current location
(that she often visits).

We elaborate more on these scenarios and their respective
Bayesian networks in the following sections.

H
i i H
i i H
i i |
|
Geo. Background
g

Time

Geo. & Sem. Background

Fig. 2: The Bayesian networks representing our adversary’s
user modelling. The one on the left prioritizes the geographical
transitions with only geographical background known to the
adversary. The right one prioritizes the semantic transitions
over geographical transitions with both geographical and se-
mantic background. Protection mechanisms work separately
on regions and semantic tags and they are independent from
each other.

1) Geographical-Only Background: As stated previously,
the adversary knows the users’ geographical transition histo-
ries in this scenario and wants to carry out his attack based
only on this type of available information. He can correlate
the sequential events of a user by using only geographical
background information, hence we build a Bayesian network
in which only the region (i.e., the geographical location)
nodes are connected to each other among user events. But,
as the adversary still wants to infer the semantic tags in the
user events, semantic nodes are also created and they are
dependent on the region nodes. This ensures that the adversary
benefits from any semantic information disclosed by the users
in his inference, even though he does not have any semantic
background information. In summary, with this model, a users
is assumed to determine her next location (and indirectly the
next semantic tag) based on her current location.

This model is illustrated in Figure 2 on the left, where
each line of nodes represent a user event in time, both actual
(R4, S;) and obfuscated (R},S}), where R¢, S;, R} and
S; are the network node names and random variables for a
user’s actual and obfuscated events at time . The conditional

probability distributions for the obfuscated events’, i.e., for R}
and S}), are the privacy-protection mechanism distributions
fu and g, explained in Section II-B. If a static privacy-
protection mechanism (PPM) is used by the users, then these
functions map the actual regions and the actual semantic
tags to obfuscated regions and obfuscated semantic tags with
probability 1 (i.e., for a given region, resp. a semantic tag, the
PPM always generates the same obfuscation outcome). More
confusing PPMs can be employed and used in this network,
e.g., hiding the actual information completely with a hiding
probability.

The remaining conditional probabilities are the user’s actual
semantic tag given her actual location Pr(S|R) and the user’s
next location given her current location Pr(R;i1|R:). We
calculate Pr(S|R) based on the semantic tags’ associations
to regions as the adversary is assumed to have no seman-
tic background information. Basically, Pr(S|R) represents a
uniform distribution over all semantic tags associated with a
region r, e.g., if a region has 4 semantic tags (including the
1 tag) associated with it, then the probability for each of
these tags to be the actual tag given this location is 0.25.
Lastly, we compute Pr(R;;1|R;) by counting the number
of transitions among all regions in a user trace and then
using the Markovian knowledge construction approach used
in [3]. For the root node in the network, which is R for
the geographical background scenario, we use the steady-state
probability distribution computed from Pr(R;;1|R¢).

2) Geographical and Semantic Background: In this sce-
nario, we consider an adversary that models user mobility-
behavior in an activity-driven fashion: A user first determines
the type (i.e., the semantic tag) of her next geographical region
given the type of her current geographical region; then, she
determines the next geographical region given her current
geographical region and the next semantic tag. For example,
a user decides to go to a restaurant, then she chooses which
restaurant she wants to go. Afterwards, she wants to go to
a cinema. Considering her previous location, she picks the
cinema that is most convenient for her. This model is depicted
in Fig. 2 on the right-hand side.

As in the scenario with only the geographical background
knowledge, the conditional probability distributions for the
obfuscated events (i.e., R; and S}) are the same. Whereas,
the transitions between user events now require a semantic-
transition distribution (Pr(S;;;|S;)) and a geographical-
transition distribution, which is also conditioned on the seman-
tics of the next user-event (Pr(R.;41|R+¢, S¢4+1)), meaning that
R, 1 depends on the user’s current semantic tag S;; 1 and her
previous geographical region R;.

The semantic transition distribution Pr(S;41[S:) is con-
structed in the same way the geographical transition distri-
bution Pr(R;;1|R¢) is constructed. However, as we con-
sider that geographical and semantic background informa-
tion separately, the adversary is assumed not to know the
distribution Pr(R;41|R¢,S¢4+1). In short, the adversary is
assumed to have knowledge on Pr(S;11|S;), Pr(R;+1|R¢)
and Pr(R;|S;) to some extent regarding user history. There-



fore, he needs to use Pr(R;|S;) and Pr(R:,1|R:) to derive
Pr(R:;1|R+, St+1). We achieve this simply by normalizing
the marginal probability distribution Pr{R;;|R;} for a given
semantic tag s (i.e., over regions that have s) and by combining
it with the conditional distribution Pr(R.|S; = s). For the
rest of the geographical regions, i.e., those that do not have
the semantic tag s, the probability is simply 0. This translates
to the following formula:

PI‘(Rt+1 = T‘Rt =p, St+1 = S) = 1
0 ifs¢r
PI‘(Ri+1 = T|Rz = p)

> Pr(Reyi = Rm|Re=p)
R ,SERm
+ (1 — a) . PI‘(RH_l S T|St+1 = 5)

a-
otherwise

, where « is the factor to set the weight of geographical tran-
sitions against the probability that Ry is 7 given S;y1 = s
(which is derived from the number of visits to a region r given
the semantic tag s in the user history). In other words, o is
used to control how much importance is distributed among
different types of user history, i.e., geographical transitions
and steady user events. In our experiments, we set « to 0.5,
which we believe is a balanced treatment of user history. Note
that this separate treatment of the geographical and semantic
background information enables the adversary to exploit the
semantic mobility of a user’s behavior data in one city to infer
user events in another city, where he might lack the knowledge.

Note that the aforementioned models might not reflect the
users’ actual behaviors. However, such models (in particu-
lar the Markovian mobility assumption) are widely used in
practice (and considered in the literature) as they enable the
adversary to develop efficient algorithmic and computational
methods to infer the users’ locations. The accuracy of the
inference attack carried out by the adversary partially depends
on how well the user model fits the users’ actual behaviors.

B. Privacy Measurement

Due to different privacy concerns in both geographical and
semantic dimensions of location, we measure the privacy
level in both dimensions separately. Privacy levels in both
dimensions are measured as a function of the expected error of
the adversary. The inference based on our Bayesian networks
yields probability distributions over regions and semantics that
fit this measurement approach. In other words, the output of
the inference is a PDF for each node in a given Bayesian
network, i.e., the PDF hy over all regions at every time instant
for user location and the PDF h, over all semantic tags at
every time instant for user semantic tag. The geographical and
semantic privacy levels of a user v at time instant ¢, denoted
by GP,(t) and SP,(t), are computed as follows:

g

GP.,(t) hg(Rom,t) - dist? (R, 1), )

1

m

hs(Sk, t) - dist® (S, s), 3)

I
M=

SP.(t)

ES
Il

1

where distG(-, -) and dist® (+,-) are geographical and semantic
distance functions, and (r, s) is the actual event of user u at
time instant ¢.

We use the Haversine formula® to compute the geographical
distances between regions by using the coordinates of their
center points; we use the binary distance for the semantic
distances, meaning that if two semantic tags are the same,
then then distance is 0, otherwise 1.

IV. EVALUATION

We evaluate both geographical and semantic location-
privacy in a joint way. More specifically, we consider user
events that have both geographical and semantic location
information. We analyze privacy by running experiments on
a real dataset that not only has geographical location data
but also semantic information in most cases (see Section
IV-A). In our experiments, we study the effects of semantics
on the geographical location-privacy compared to semantic-
oblivious studies. More specifically, we would like to find
out if semantics help an adversary infer more accurately the
actual geographical locations of users, hence whether they can
potentially be used to design more powerful PPMs compared
to the existing work. We also analyze the effect of geographical
information on semantic location-privacy from similar aspects.

A. Dataset

In order to experimentally evaluate users’ semantic location-
privacy and the effect of semantic information on users’
location-privacy, we rely on a dataset of real user check-ins,
which include geographic and semantic information about the
venues visited by the users of a large location-based social
network (we crawled it). In addition, we rely on a predic-
tive utility model based on user feedback collected through
a personalized online survey targeted at Foursquare users
(N = 77) recruited via Amazon Mechanical Turk (obtained
from [10]). In this section, we give details about our data
sources, including the data collection, filtering and processing
methodology and general descriptive statistics about the data.

1) Location Traces with Semantics: As a starting point,
we use a tweet dataset we collected between January 2015
and July 2015. The dataset contains public geo-tagged tweets
(i.e., Twitter lets users to attach their GPS coordinates to
their tweets) from all over the world with a focus on six
cities (New York, San Francisco, Boston, Chicago, London
and Istanbul). We collected these tweets by identifying users
through Twitter’s public tweet stream (i.e., ~1% of the Twitter
public timeline) and by fetching timelines of these users. The
dataset contains a total of ~72 million geo-tagged tweets
generated by 1,493,287 unique users. A summary of the
statistics of the dataset is provided Table II.

The coordinates embedded in the geo-tagged tweets, how-
ever, do not contain semantic information (which we need

3This formula is used to compute the distance between two points on a
given sphere, in our case the Earth.

4We present preliminary results with this initial set of users. We are running
experiments with more users.



TABLE II: Dataset Statistics

raw dataset filtered dataset

# unique users 1,493,287 107
# geo-tagged tweets ~72 mil. 1214
# FS check-ins ~14.3 mil. 1124
# Distinct FS tags 649 158

TABLE III: Experimental Setup

Number of iterations 20
Area size 1.6 x 1.6 km?
(8 x 8 regions)

Average Proportion of FS Tweets per user 92%

(i.e., tweets w/ semantic information)

for our evaluation). To obtain such information, we rely
on Foursquare. Foursquare is a large location-based social
network that enables its users to check-in at nearby venues
(selected from the Foursquare database of registered and
confirmed venues). It offers its users the option of linking
their Foursquare accounts with their Twitter accounts in such
a way that, whenever a user checks-in, Foursquare generates
a related text with a short URL to the Foursquare check-in
and tweets it, along with the GPS coordinates, on the user’s
Twitter timeline. We select such Foursquare-generated tweets
from our Twitter dataset and, for each, we parse the URL to the
Foursquare check-in from the tweet text. Using these URLs,
we fetch (through the Foursquare API) the corresponding
check-in and the venue. For each venue referenced in a
check-in of our dataset, we collect rich statistical information
such as total number of visits, total unique visitors, rating,
etc. Most importantly, we collect the coordinates® and the
semantic tag(s) (a primary tag and possibly a secondary tag),
selected from a pre-defined set of 763 tags (i.e., referred to
as Foursquare categories) organized as a tree, assigned to the
venue. We identify 649 distinct tags assigned to the venues in
our dataset. Finally, we demonstrate the correlation between
the venue density and the FS tweet density in geographical
places in Figure 4, which shows a venue heat map and a
Foursquare check-in heat map in San Francisco Bay Area.
In our evaluation, we use a subset of the dataset (due to
computational limitations): We focus on the check-ins made
in a geographical region in the San Francisco Bay area (i.e,
(37.77504, -122.406775) to (37.7894, -122.42496), of size
approximately 1.6 x 1.6 km?) and extract users with at least
70 tweets in this region. We further filter out users whose
FS tweets (i.e., check-ins) account for less than 70% of all
their tweets (i.e., most of the tweets user in the experiments
contain venue information). The final dataset results in 10
users®; see Figure 5 for users’ count of FS and other tweets.
The maximum number of tweets per user observed in the
filtered dataset is 176. We included all the tweets of a user

SNote that GPS coordinates in the tweets might differ from registered
venue coordinates at Foursquare due to inaccuracy of GPS modules on mobile
devices. In such cases, we use the coordinates of the venues.

SWe are currently working on collecting a dataset with more users.

Arts & Entertainment

Fig. 3: Part of the Foursquare category hierarchy that we use
as our semantic tag tree. ‘Place’ tag is the root.
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Fig. 4: Venue and check-in heat maps (i.e., count distribution)
in greater San Francisco Bay Area.

in the knowledge construction of the adversary and for each
user we use a randomly selected subtrace of length 5 in each
experiment. There are 1341 venues in our filtered dataset and
the tag distribution over these venues has a heavy tail as shown

in Figure 6.
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Fig. 5: Number of FS check-ins/tweets and other tweets per
user in the filtered dataset used in our experiments.
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2) Predictive Utility Model: Semantic obfuscation, usually
achieved through generalization as discussed in the previous
sections, is likely to have a negative effect on the utility
of the service as perceived by the users. As the notion of
(perceived) utility is quite subjective, user feedback is needed
to model and quantify the utility implications of the use of
obfuscation techniques. In order to build such a model, we
rely on a data-set collected by the authors of [10]. In this
work, the authors performed a personalized survey with 77
active Foursquare users recruited through Amazon Mechanical
Turk. In the survey, each participant was shown 45 of her
own past Foursquare check-ins; for each of these check-ins,



TABLE IV: Example of obfuscated check-ins with different combinations of geographical and semantic obfuscation

(source: [10]).

Obfuscation levels Example

Original check-in

The Westin Hotel, 320 N Dearborn St. (Chicago 60654, IL, United States)

Low semantic, Low geographical (Ls-Lg)

At a hotel, on Dearborn St. (Chicago 60654, IL, United States)

High semantic, Low geographical (Hs-Lg)

At a travel & transport place, on Dearborn St. (Chicago 60654, IL, United States)

Low semantic, High geographical (Ls-Hg)

At a hotel, in Chicago (IL, United States)

High semantic, High geographical (Hs-Hg)

At a travel & transport place, in Chicago (IL, United States)

Restaurant

Office

Bar

Hotel

Clothing Store

Coffee Shop

Café

Performing Arts Venue
Residential Building

Q Gym/Fitness Center
[ Art Gallery
Medical Center
Government Building
Pizza Place

Music Venue

Salon / Barbershop
Sandwich Place
Cosmetics Shop

College & University
Dessert Shop

T T T T
0 50 100 150 200
Count

Fig. 6: Number of venues per semantic tag in the filtered
dataset for the top 20 tags.

the participant was presented with four different obfuscated
versions of the check-in and she was requested to rate, on a
scale from 1 to 5 (where 1 is “not at all” and 5 is “perfectly”),
to what extent the purpose of her check-in would still be met
if the precise venue location was replaced with the obfuscated
version of it. The four obfuscated versions of the check-in were
generated by applying the possible combinations of low/high
semantic obfuscation (Ls or Hs) and low/high geographical
obfuscation (Lg or Hg) as illustrated in Table IV (extracted
from the original article). One finding from the article is that
semantic obfuscation has a higher negative effect on utility
than geographical obfuscation does.

Using this data, to predict the utility of an obfuscated
version of a check-in (on a discrete scale from 1 to 5),
the authors propose a utility model that relies on a number
of features extracted from the users’ check-in, including the
check-in location, date, time, text, and the venue type. The
predictive model proposed in the original paper achieves high
accuracy with a median error of around 0.5. In order to
quantify utility, we build a simplified version of the predictive
utility model proposed in [10] (based on the same data). Our
model is based on only two different features: the venue type
and the obfuscation level. The median error of our simplified
model is 1.1, which is sufficient for our purpose (i.e., exploring
the privacy-utility trade-off).

B. Experimental Setup

Methodology: We partitioned the considered area into 64
square regions using an 8 x 8 regular grid. Within this area, we
identified 1341 Foursquare venues over 158 unique semantic
tags. We then mapped the users’ traces to this setting. We

implemented our Bayesian network-based models on Python
by using the Bayesian Belief Networks library provided by
eBay [11]. We applied certain protection approaches on the
users’ mapped traces, set these protected/observed traces
in our Bayesian networks as observations, and applied the
junction-tree inference algorithm [12].

Privacy Measurement: We evaluate the privacy as the
error of the adversary. The larger the error is, the better
the privacy is. For this, we compute the expected error on
the inferred locations. We use the Haversine distance when
measuring the geographical location-privacy. For this, we use
the geographical coordinates of the center points of the square
regions in our setting. For semantic location-privacy, we use
binary distance, i.e., the distance between two distinct tags is
always considered 1 and O for the same tags.

Background Knowledge: In our experiments, the adversary
always has geographical background knowledge on the users’
history (i.e., transitions). Based on this we have two different
scenarios (explained in detail in Section III-A):

1) Geographical Background: In this scenario, the ad-
versary is assumed to have knowledge on geographical
transition patterns of users and no semantic background
information. We run experiments for this scenario by
using our first Bayesian network model that prioritizes
the geographical transitions for user behavior introduced
in III-A. The transitions are built using the number of
geographical transitions in the whole traces of users.

2) Geographical and Semantic Background: The adver-
sary is assumed to know more about users’ histories:
transitions in both geographical and semantic dimen-
sions. He also knows the distribution of geographical
region visits, given the semantic information on user
traces, i.e., how many times a region r was visited, given
that the user event’s semantic tag was s. This type of
background information enables us to use our second
Bayesian network model that prioritizes the semantic
transitions for event sequences, meaning that the users
move by first choosing the semantic tag of the location
they want to go to and then determine a geographical
region associated with this semantic tag based on their
previous location.

Protection Mechanisms: We implement geographical and
semantic location-privacy protection approaches separately,
meaning that geographical protection does not take into ac-
count the semantic information of the user’s actual location,
and vice versa.



We implement a geographical location-privacy protection
mechanism as an obfuscation mechanism that either generates
an obfuscation area of a certain size or hides the geographical
location completely with a predetermined probability (called
hiding probability ). This mechanism replaces any given
region (i.e., the actual location of a user) with a larger, square
area in our map. For instance, a 2 x 2 obfuscation: (i) with
probability 1 — )\, generates an obfuscation area consisting of
4 adjacent regions, one being the actual location of the user,
or (if) with probability A, hides the location.

We consider the following four scenarios regarding the
semantic protection and, to compare their effects, employ each
of them in separate experiments:

1) No protection. In this case, we directly disclose the
actual semantic tag all the time.

2) Parent-tag obfuscation. This is a generalization based
on the semantic tag tree derived from FS categories.
Given the actual semantic tag of the user, we determine
its parent tag in the tree and disclose this tag as the
semantic information of the user’s current location.
For example, when the actual user event has the tag
‘Theater’, then according to the FS categories (which is
partially reflected in Fig. 3), the parent tag ‘Performing
Arts Venue’ is disclosed replacing ‘Theater’.

3) Parent-tag obfuscation with hiding probability A. In this
case, we disclose the parent tag of the user’s location
with probability 1 — A or hide the semantic information
completely with hiding probability .

4) Hide the semantic tag completely. In this case, the ad-
versary never observes any kind of semantic information
from the users.

In our experiments, we employ the geographical protection
mechanism in combination with each of the semantic protec-
tion/disclosure scenarios with varying hiding probabilities.

C. Experimental Results

In this section, we analyze the experimental results with
different protection mechanisms in various settings. Due to the
small number of users, the results presented in this section
cannot be generalized and should be interpreted cautiously;
experiments with more users are in progress.

1) Effect of Semantic Information on Location Privacy:
We first investigate the effect of adding semantic information
to a user’s check-in on her geographical location privacy. We
consider four protection scenarios with low to high granularity
of semantic information combined with fixed geographical ob-
fuscation over gradual hiding probability A. Specifically, given
a geographical obfuscation parameter (e.g., 2 x 2 obfuscation)
and for each A, we evaluate four different semantic protection
approaches (explained in Section IV-B) that are employed
together with the obfuscation mechanism.

We present the results in Figure 7, where the x-axis
represents the hiding probability A (used for geographical
obfuscation and parent-tag semantic generalization) and the y-
axis represents the geographical location privacy in kilometers.
We plot the geographical location privacy aggregated over all

users, all events and all iterations of simulations for each
protection mechanism and hiding probability (\) pair using
box plots. These box plots show the 1Ist, 2nd, 3rd quartiles of
the related data and the 98% confidence intervals. We plot the
semantic protection approaches employed together with the
geographical obfuscation from the lightest box to the darkest
in the following order:

« Hiding semantic information (lowest granularity)

(Geo. (obf 2 x 2, \) | Sem. (L, N),
o Parent-tag generalization with hiding probability A
(Geo. (obf 2 x 2, A) | Sem. (parent, \)
o Direct parent-tag generalization
(Geo. (obf 2 x 2, \) | Sem. (parent, 0)
o Actual semantic tag (highest granularity)
(Geo. (obf 2 x 2, A) | Sem. (actual, \)
where ‘Geo. (obf 2 x 2, \)’ corresponds to 2 x 2 geographical
obfuscation with hiding probability A\. We employed 2 x 2
and 4 x 4 obfuscation parameters in our experiments and we
present the results hereafter.

We observe that as we disclose more semantic information,
along with the obfuscated geographical location (from left to
right for each A\ value), the median location privacy consis-
tently decreases in all cases. Also, unsurprisingly, the privacy
level increases as we increase the granularity of the location
(i.e., from 2 x 2 obfuscation in Figure 7a to 4 x 4 obfuscation in
Figure 7b). Note that for A = 1.0, the parent-tag generalization
with hiding probability A is exactly the same as hiding the
semantic information completely and, similarly, it is exactly
the same as the direct parent-tag generalization (i.e., always
disclosing the parent tag instead of the actual tag) for A = 0.0.
These can be observed in Figure 7.
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Fig. 8: Average geographical location privacy per user. The
users are in descending order by their median privacy level.

We also analyze the effect of employing the semantic histo-
ries of users in inference, in addition to the geographical his-
tories already employed in all our experiments (i.e., semantic
history in the form of semantic transitions such as people going
to a cinema after going to a restaurant). We compare the two
scenarios in case of the 4 x 4 geographical obfuscation with
hiding probability A (i.e., figures 7b and 7c, with and without
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Fig. 7: Geographical location privacy levels over different protection and learning scenarios.

semantic background information respectively). We observe
that, for instance in case of A = 0.4, the median geographical
privacy decreases when the adversary employs the semantic
background information of users. This pattern is visible for
most of the cases from without semantic background to with
semantic background. It is also visible that the semantic
background information is very influential on geographical
location privacy in the cases of direct parent-tag generalization
and semantic disclosure (i.e., the two darkest boxes). We notice
that in some cases (typically for the light case where the
semantic information is hidden all the time) the adversary is
more confused (and hence less successful) when he employs
semantic background knowledge. The main reason for this
outcome is that the adversary’s knowledge on the semantic
transitions of the user is less effective in his attack when the
attacked traces’ length is short. In general, we observe that
employing semantic background knowledge in the inference
helps the adversary increase his accuracy from 10 to 60 meters.
Figure 8 shows the effect of employing semantic background
information, which is the general decreasing tendency in
geographical location-privacy, in average for each user in an
aggregated form (over all simulations, all A values and all user
events).

2) Privacy vs. Utility Trade-Off: We now explore the trade-
off between privacy and utility by evaluating both (location)
privacy and utility for different levels of obfuscation. We
consider four protection mechanisms by combining a low
or high level of semantic obfuscation with a low or high
level of geographical obfuscation as described in Table V and
illustrated in Figure 9. We set the hiding probability A to 0.2.

TABLE V: Description of the different obfuscation levels.

Obfuscation | Description

Ls-Lg Semantic tag, 2 X 2 geographical region
Hs-Lg Parent semantic tag, 2 X 2 geographical region
Ls-Hg Semantic tag, 4 x 4 geographical region
Hs-Hg Parent semantic, 4 X 4 geographical region

We plot the results in Figure 10. The points represent
the average privacy and utility. It can be observed that the

four points corresponding to the different obfuscation levels
form a diamond shape: Ls-Lg provides the highest level of
utility and the lowest level of privacy; Hs-Hg provides the
highest level of privacy but the lowest level of utility; Ls-
Hg provides a better level of (location) privacy than Hs-Lg
and a lower level of utility. This last observation is quite
intuitive as geographical obfuscation is expected to protect
location privacy better than semantic obfuscation and semantic
obfuscation has been proved to be more detrimental to utility
than geographical obfuscation has been [10]. This means that
users should always prefer Ls-Hg over Hs-Lg.

travel & transport placc‘ — ‘hotcl‘

X<t

Fig. 9: Illustration of the obfuscation levels used in the exper-
iments. Light blue frames denote low levels of obfuscations
whereas dark blue frames denote high levels of obfuscation.

3) Semantic Location-Privacy: Finally, we evaluate the
semantic location-privacy and present the loss of privacy in
the semantic dimension of location. As with the geographical
location-privacy figures, we plot the aggregated privacy-level
over all users, all simulation iterations and all user events using
box plots. The semantic location-privacy is calculated as the
expected error of the adversary and, in this case, the error is
binary: the distance (i.e., dissimilarity) between two semantic
tags is considered 1 if they are different and O if they are the
same. Hence, the semantic privacy-level for any given user
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Fig. 10: Privacy vs. Utility

event is always in the interval [0, 1], 1 being the maximum
level of privacy.

In Figure 11, we present the semantic location-privacy
results for 4 x 4 obfuscation with hiding probability A in both
‘Geographical background’ and ‘Geographical & Semantic
Background’ scenarios. In both cases (shown separately in
figures 11a and 11b), as we protect the semantic information
of the users’ traces less and less (from the lightest boxes to
the darkest ones), the semantic location-privacy consistently
decreases. We also observe that protecting the geographical
location-privacy more, i.e., increasing the hiding probability A,
also helps increase the semantic location-privacy in most of the
cases. Whereas, semantic location-privacy is naturally always
0 in the case of disclosing semantic information all the time.
Moreover, unsurprisingly, when the adversary has semantic
background information in addition to the geographical one,
he learns more about the users’ location semantics in his infer-
ence, i.e.,, the semantic location-privacy decreases. However,
compared to the geographical dimension, this decrease in the
semantic location-privacy is more significant as can be seen
in Figures 11a and 11b: even if the semantic tags of the user
events are hidden all the time, the privacy loss is between
30-50%. The loss reaches up to as much as 80% in other
protection scenarios.

Lastly, we present the geographical and semantic location-
privacy jointly in Figures 12a and 12b, without and with
semantic background information, respectively. These plots
represent the density of the privacy data over the geographical
vs. semantic location privacy plane. The darker the plot gets,
the more data points there are in the corresponding geographi-
cal and semantic intersections. We exclude the scenario where
the semantic tag of the events is always disclosed, because
semantic location-privacy is always 0 in this scenario, hence
it does not contribute to these plots. These figures present
the change in the relationship between the geographical and
semantic location-privacy. The obvious change occurs in the
semantic dimension, though the change in the geographical
location-privacy is non-negligible as well.
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Fig. 11: Semantic location privacy levels over different pro-
tection scenarios with geographical and semantic background
knowledge of the adversary.

V. RELATED WORK

A large amount of work has been devoted to quantify-
ing location privacy, in particular when extra information
(i.e., different from location information e.g., co-locations and
location semantics) is available to the adversary. [2] is one
of the first papers to identify and study inference attacks on
location traces. Another notable example, on which our work
is partially built, is presented in [13], [3]. In these papers,
the authors propose a formal framework to quantify users’
location-privacy when some (obfuscated) location information
is available to the adversary. Their proposed framework relies
on hidden Markov models for the location inference process
and uses the expected error of the adversary as a metric for
location privacy. The work presented in this paper enriches
this framework by incorporating the rich semantic information
increasingly disclosed by users on social networks. Similarly,
but orthogonal, to our work, in [14], the authors study the
effect of co-location information (e.g., Alice and Bob are at the
same (unknown) location at 2pm) on users’ location privacy.
As for obfuscation mechanisms, a detailed survey can be found
in [1].

On the front of location semantics, several works study the
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Fig. 12: Geographical location privacy vs. semantic location
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since it does not contribute to this plot (i.e., it always results
in no semantic location privacy).

semantic dimension of location information (some of them
in the context of privacy). Several works, including [4], [5],
[6] and [7], address the problem of identifying the points-
of-interest (POIs) users visit, based on location traces. Some
works extend existing location privacy metrics and definitions
to take semantics into account. For instance, in [6], the authors
propose a location-cloaking technique that ensures that the
reported areas have a high semantic diversity in terms of
the number of distinct venue types in the area. In [8], the
authors propose the PROBE framework for implementing
efficient, semantic-aware and personalized location cloaking.
The concept of semantic diversity was originally formalized
as [-diversity in [9] followed by related models including p-
sensitivity [15], location diversity [16] and ¢-closeness [17].
Similarly, in [18], the authors extend the concept of geo-
distinguishability, which applies differential privacy to loca-
tion privacy [19], to take into account the semantic diversity of
the reported locations. In [20], the authors propose the notion
of C-safety, which not only takes into account semantics but
also the sensitivity (in terms of privacy) of the different venue
types. Using a taxonomy of venue types, the authors propose
an efficient semantic-aware obfuscation mechanism. Finally, in
[10], the authors study the implications of geographical and
semantic obfuscation (through generalization) of users’ check-
ins on their perceived utility; in the evaluation of our work,
we make use of the predictive model proposed in this paper.

Our work distinguishes itself from existing works as it
incorporates semantic information in the inference process
to better recover the users’ locations, thus demonstrating the
sensitive nature and the associated privacy risks of semantic
information.

VI. CONCLUSION & FUTURE WORK

In this paper, we have investigated the effects of location
semantics on geographical location-privacy of mobile users.
We have considered two essential scenarios, specifically the
case when an adversary, without knowing the semantic mo-
bility patterns of the users, exploits the publicly available

semantic information on locations, and secondly the case when
the adversary knows the semantic mobility patterns of the
users, in addition to knowing the location semantics. We have
modeled the adversary that is aware of location semantics
by using Bayesian networks and demonstrated that disclosing
any level of semantic information on the visited locations im-
proves his success. We have also studied and evaluated users’
semantic location-privacy in the same context and shown
that the semantic location privacy is diminished whenever
the adversary has knowledge on users’ semantic mobility
patterns. Considering the increased amount of connectivity and
huge data dissemination by individuals nowadays, this kind of
knowledge is easy to obtain for any kind of digital adversary
(especially as a service provider).

In summary, both the geographical and semantic location-
privacy are at greater risk than revealed before, due to the
multidimensional nature of location. When designing privacy-
protection mechanisms, our aim must be to protect location
privacy on a multidimensional scale, i.e., considering the types
of locations. Furthermore, the user mobility patterns also have
an impact on both geographical and semantic location-privacy.
Static protection mechanisms that do not take into account user
history can fail to protect location privacy. For future work,
we are planning to develop privacy-protection mechanisms
that protect geographical and semantic location-privacy in a
joint way and adapt their protection by using user history
(an adaptive approach has been shown to protect geographical
location-privacy better in a previous work by Agir et al.[21]).
Furthermore, we believe that people have similar behavior
patterns. For example, students regularly go to school in
the morning and early afternoon, many people go to work
in the morning and return home in the early evening, have
lunch at around 12 o’clock, etc. Therefore, we would like to
analyze the effect of the collective semantic mobility patterns
on location privacy and reveal if just knowing the mobility
patterns extracted from the community could help an adversary
gain considerable improvements in his inference.
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