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LOG CANONICAL THRESHOLDS ON GROUP

COMPACTIFICATIONS

THIBAUT DELCROIX

Abstract. We compute the log canonical thresholds of non-negatively curved
singular hermitian metrics on ample linearized line bundles on bi-equivariant
group compactifications of complex reductive groups. To this end, we associate
to any such metric a convex function whose asymptotic behavior determines
the log canonical threshold. As a consequence we obtain a formula for the
alpha invariant of these line bundles, in terms of the polytope associated to

the group compactification.

Introduction

The aim of this article is to begin the study of Kähler metrics on polarized
G × G-equivariant compactifications of a connected complex reductive group G.
This class of manifolds generalizes the well known class of polarized toric manifolds,
and we extend some techniques of toric geometry to this setting. In this article, we
study singular hermitian metrics on linearized ample line bundles, which are non-
negatively curved and invariant under the action of K ×K, where K is a maximal
compact subgroup of G. We associate to such a metric a convex function on some
real vector space, that we call the convex potential of the metric, and show how
the asymptotic behavior of this function is controlled by a polytope associated to
the line bundle. This generalizes the case of toric manifolds and relies on the KAK
decomposition of a reductive group.

The correspondence between metrics and their convex potentials is a bijection
and provides a description of the set of non-negatively curved, K × K-invariant,
singular hermitian metrics. Furthermore, to obtain this description we use a special
continuous reference metric that generalizes the Batyrev-Tschinkel metric on toric
line bundles, which had already been used as a model for the behavior of continuous
metrics in [CLT10].

We then proceed to compute the log canonical threshold of such metrics, in
terms of the asymptotic behavior of their convex potential. To achieve that goal,
we associate a convex body to the metric, that we call the Newton body of the
metric, which gives another way to encode the asymptotic behavior of the convex
potential, and is well suited to fan decompositions. We should stress at this point
that another important ingredient is the existence of a toric subvariety (and corre-
sponding fan) in any group compactification, that contains the information about
the compactification. We obtain the following theorem.

Theorem A. Let (X,L) be a polarized G × G-equivariant compactification of G.
Assume furthermore that X is Fano. Denote by P the polytope associated to L and
by Q the polytope associated to the anticanonical line bundle −KX. Let also H

denote the convex hull of the images, by the Weyl group W of G, of the sum of the
1
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positive roots of G. Let h be a K×K-invariant hermitian metric with non negative
curvature on L, then the log canonical threshold of h is given by:

lct(h) = sup{c > 0; 2H + 2cP ⊂ cN(h) + 2Q},

where N(h) is the Newton body of h.

Using this expression of the log canonical threshold, we are able to compute
Tian’s α invariant for any ample linearized line bundle on a Fano group compacti-
fication, with respect to the K ×K action.

Theorem B. Let (X,L) be a polarized compactification of G, and P := P (X,L).
Assume furthermore that X is Fano and let Q := P (X,−KX). Then

αK×K(L) = sup{c > 0; c(P + (−PW )) ⊂ Q⊖H},

where PW denotes the subset of W -invariant points of P and W is the Weyl group
of G.

This formula generalizes the formula for the α-invariant of polarized Fano toric
manifolds previously obtained in [Del15], and independently by other authors [Amb,
LSY15]. In the case of the anticanonical line bundle on a Fano toric manifold, the
formula was initially obtained by Song [Son05].

The original motivation of this work was to obtain such an expression, hoping
that Tian’s criterion for the existence of Kähler-Einstein metrics in terms of this
invariant would be satisfied by some group compactifications. Recall that Tian’s
criterion [Tia87] is that if the α invariant is strictly greater than n

n+1 where n is
the dimension of the manifold, then there exists a Kähler-Einstein metric.

For toric manifolds, additional symmetries had to be taken into account for the
criterion to be satisfied. For the important examples of wonderful compactifica-
tions of semisimple adjoint groups with no rank one factor, Brion computed their
automorphism group in [Bri07], so that our result allows to compute the alpha in-
variant with respect to a maximal compact subgroup of the automorphism group,
but Tian’s criterion is not satisfied. Even though we can in some cases consider ad-
ditional symmetries, we do not obtain new examples of Kähler-Einstein metrics by
this method. Our study of hermitian metrics will be used in [Dela] where we obtain
a necessary and sufficient condition for the existence of Kähler-Einstein metrics on
a group compactification in terms of the polytope. The present article and [Dela]
contain the main results of the author’s PhD thesis [Delb].

1. Group compactifications

1.1. Definition and examples. Let G be a connected complex reductive group.

Definition 1.1. Let X be a projective manifold. We say that X is a smooth G×G-
equivariant compactification of G (or in short a compactification of G) if X admits a
holomorphic G×G-action with an open and dense orbit equivariantly isomorphic to
G as a G×G-homogeneous space under the action defined by (g1, g2) · g = g1gg

−1
2 .

Let X be a compactification of G. We will always identify G with the open
and dense orbit in X . These manifolds belong to the class of spherical manifolds
[Per14, Tim11]. There is a finite number of G × G-orbits in X and the boundary
X \G is of codimension one.
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Example 1.2. If G = T ≃ (C∗)n is a torus, then the compactifications of T are
the projective toric manifolds. One goes from the T -action to the T × T action
through the morphism T × T → T, (t1, t2) 7→ t1t

−1
2 .

Example 1.3. Assume that G is an adjoint semisimple group. Then De Concini
and Procesi [DCP83] showed the existence of a special compactification of G, called
the wonderful compactification of G. It is the only compactification of G satisfying
the following property : its boundary X \ G (where we identify the open and
dense orbit in X with G) is a union of simple normal crossing prime divisors Di,
i ∈ {1, . . . , r}, such that for any subset I ⊂ {1, . . . , r}, the intersection X ∩

⋂

i∈I Di

is the closure of a unique G×G-orbit, and all G ×G-orbits appear this way. The
integer r is equal to the rank of G, which is the dimension of a maximal torus in
G.

The wonderful compactification of PGL2(C) is especially simple : it is P3 con-
sidered as P(Mat2,2(C)) equipped with the action of PGL2(C)×PGL2(C) induced
by the multiplication of matrices on the left and on the right.

1.2. Polytopes associated to a polarized group compactification. Recall
that a G-linearized line bundle over a G-manifold X is a line bundle L on X

equipped with an action of G lifting the action on X , and such that the morphisms
between the fibers induced by this action are linear.

Let G be a connected complex reductive group. We call a polarized group com-
pactification a pair (X,L) where X is a compactification of G and L is a G × G-
linearized line bundle on X .

Choose T a maximal torus in G, and let S be a maximal compact torus in T .
We denote, as usual, by M the lattice of characters of T and by N the lattice of
one parameter subgroups of T , naturally dual to each other. Denote by s the Lie
algebra of S, by t the Lie algebra of T and by a the Lie algebra is ⊂ t. We identify
a with N ⊗ R, and a

∗ with M ⊗ R.
Let Φ ⊂ a

∗ denote the root system of (G, T ). Let W be its Weyl group. Choose
a system of positive roots Φ+. It defines a positive Weyl chamber a+ in a, resp. a∗+
in a

∗.

Theorem 1.4. [AB04, Section 2] Let (X,L) be a polarized group compactification
of G. Denote by Z the closure of T in X. Then Z is a toric manifold, equipped
with a W -action, and L|Z is a W -linearized ample toric line bundle on Z.

We denote by P (X,L), or P for simplicity, the polytope associated to the ample
toric line bundle L|Z by the theory of toric varieties [Ful93, Oda88]. The polytope
P is a lattice polytope in M ⊗ R, and it is W -invariant. Define P+(X,L) =
P (X,L) ∩ a

∗
+. It is a polytope in a

∗, and P (X,L) is the union of the images of
P+(X,L) by W .

The polytope P+(X,L) encodes the structure of G × G-representation of the
space of holomorphic sections of L, generalizing the same property for toric line
bundles.

Proposition 1.5. [AB04, Section 2.2] Let (X,L) be a polarized group compactifi-
cation, then

H0(X,L) ≃
⊕

{End(Vα);α ∈M ∩ P+(X,L)}

where Vα is an irreducible representation of G with highest weight α.
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Example 1.6. [BK05, Proposition 6.1.11] The wonderful compactification X of an
adjoint semisimple group is Fano. The corresponding polytope P (X,−KX) is the
convex hull of the images by the Weyl group W of the weight 2ρ+

∑r
i=1 αi, where

the αi are the simple roots of Φ+ and 2ρ is the sum of the positive roots.

2. Convex potential

In this section we introduce the convex potential of a K × K-invariant, non-
negatively curved singular hermitian metric on a polarized group compactification.
This correspondence gives a bijection between the set of these metrics and the
set of the W -invariant convex functions on a which satisfy asymptotic behavior
conditions.

2.1. Singular hermitian metrics and potentials. Let X be a compactification
of G, and L a linearized ample line bundle on X . Given a hermitian metric h on L
and a local trivialization s of L on an open subset U ⊂ X , the local potential of h
with respect to s is the function φ defined on U by

φ(x) = − ln(|s(x)|2h).

We consider here singular hermitian metrics and only require that the potential
with respect to any local trivialization is locally integrable. The value +∞ for the
potentials is allowed.

We say that a hermitian metric is locally bounded if its potentials with respect
to any trivialization on a sufficiently small open subset are bounded. A hermitian
metric is smooth (resp. continuous) if and only if its potentials with respect to any
local trivialization are. A continuous hermitian metric is locally bounded.

Given a reference metric h0, we define the global potential ψ of h with respect
to h0 by

ψ(x) = − ln

(

|y|2h
|y|2h0

)

,

for any element y of the fiber Lx. This is a function on X that can a priori take
the values ±∞. If s is a local trivialization on U , φ (resp. φ0) is the potential of h
(resp. h0) with respect to s, then ψ = φ− φ0 on U .

2.2. The convex potential. Let (X,L) be a polarized compactification of G.
We identify G with the open dense orbit in X , and first build a trivialization of L

on G. Choose 1e a non-zero element of the fiber Le above the neutral element e of
G. Define the section s of L on G by s(g) = (g, e)·1e. This section is a trivialization
over G, equivariant under the action of G × {e}, and any such trivialization is a
scalar multiple of s.

Denote by φ the local potential of h on G with respect to s.
We are interested in hermitian metrics that are invariant under the action of

K × K where K is a maximal compact subgroup of G. We choose K such that
K ∩ T = S. We will use the classical KAK decomposition of a complex reductive
group.

Proposition 2.1. [Kna02, Theorem 7.39] Any element g ∈ G can be written in
the form g = k1 exp(x)k2 where k1, k2 ∈ K and x ∈ a

+. Furthermore, x is uniquely
determined by g. In other words, the set A+ := {exp(x);x ∈ a

+} is a fundamental
domain for the K ×K-action on G.
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We first remark that if h is K ×K-invariant, then its potential with respect to
the section constructed above is still K ×K-invariant.

Proposition 2.2. Assume that h is K × K-invariant, then φ is also K × K-
invariant.

Proof. Let k1, k2 ∈ K and g ∈ G. We can first write

s(k1gk2) = (k1gk2, e) · 1e

= (k1, k
−1
2 )(g, e)(k2, k2) · 1e.

The subgroup diag(G) = {(g, g)|g ∈ G} fixes the neutral element e ∈ G, and thus
acts on the fiber Le through a character χ of G, so that (g, g) · 1e = χ(g)1e.

We can thus compute

φ(k1gk2) = − ln(|s(k1gk2)|
2
h)

= − ln(|(k1, k
−1
2 )(g, e)(k2, k2) · 1e|

2
h)

by K ×K-invariance of h, this is

= − ln(|(g, e)(k2, k2) · 1e|
2
h)

and, by linearity,

= − ln(|χ(k2)||(g, e) · 1e|
2
h)

Since K is compact, |χ(k2)| = 1, so we obtain

φ(k1gk2) = − ln(|(g, e) · 1e|
2
h)

= φ(g).

�

Assume that h is in addition non-negatively curved. Then φ is a K×K-invariant
plurisubharmonic function on G. Let u be the function on a defined by

u(x) = φ(exp(x)).

Then Azad and Loeb proved in [AL92] that the function u is convex and W -
invariant.

In particular, since we assumed that the local potentials of singular hermitian
metrics are locally integrable, the K×K-invariance of h ensures that the functions
u, respectively φ take finite values on a, resp. G. Indeed, a convex function that
takes an infinite value at a point must take an infinite value on a whole octant
starting from that point, and then the corresponding K ×K-invariant function on
G is not locally integrable.

Definition 2.3. We will call u the convex potential of h.

2.3. Asymptotic behavior of the convex potential.
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2.3.1. A special metric. Let us begin by introducing a continuous, K×K-invariant,
reference hermitian metric on L. We start from the Batyrev-Tschinkel metric de-
fined on toric manifolds, and generalize it to build a reference continuous metric
for any polarized group compactification (X,L), with convex potential the support
function of the polytope 2P (X,L).

Given a toric manifold Z, equipped with a linearized line bundle D, there is a
natural continuous hermitian metric hD, invariant under the action of the compact
torus, on D, called the Batyrev-Tschinkel metric (see [Mai00, Section 3.3]). If
furthermore the line bundle D is ample, then this metric is non-negatively curved,
and its convex potential is the support function v of the polytope 2P (Z,D).

Suppose now that (X,L) is a polarized group compactification, and Z is the toric
submanifold. Denote L|Z by D. Then P (Z,D) = P (X,L) is W -invariant, which
implies that the Batyrev-Tschinkel metric hD is W -invariant.

We want to extend hD to a continuous K×K-invariant metric hL on X . Define
hL at ξ ∈ Lg by |ξ|hL

= |(k1, k2) · ξ|hD
, for (k1, k2) ∈ K ×K such that k1gk

−1
2 ∈ T .

We need to check that this is well defined. Since hD is W -invariant we only need
to check that, for t ∈ T , if (k1, k2) ∈ StabK×K(t) then |ξ|hD

= |(k1, k2) · ξ|hD
.

But StabK×K(t) acts linearly on the line Lt, through a character χ. By compacity,
|χ(k1, k2)| = 1, so |(k1, k2) · ξ|hD

= |χ(k1, k2)ξ|hD
= |ξ|hD

.

2.3.2. Asymptotic behavior.

Theorem 2.4. The singular hermitian K ×K-invariant metrics h with non neg-
ative current curvature are in bijection with the convex W -invariant functions
u : a −→ R satisfying the condition that there exists a constant C1 ∈ R such
that

u(x) ≤ v(x) + C1

on a, where v is the support function of the polytope 2P (X,L). This bijection is
obtained by associating to h its convex potential u. Furthermore, h is locally bounded
if and only if there exists in addition a constant C2 ∈ R such that

v(x) + C2 ≤ ϕ(x) ≤ v(x) + C1.

Proof. Let h be a singular hermitian K × K-invariant metric with non negative
current curvature on L. Let u be its convex potential. Recall that hL denotes the
reference continuous metric constructed above, and let ωL be the curvature current
of hL. Denote by ψ the potential of h with respect to hL. It is an ωL-psh function
on X . In particular, ψ is bounded from above on X .

Denote by w the function on a associated to the K ×K-invariant function ψ|G.
Then we see that the function u− v is equal to w and thus bounded from above.

If furthermore h is locally bounded then since hL is also locally bounded, the
function w is bounded on X . So w = u− v is bounded on a.

Conversely, let u be a convex W -invariant function such that u(x) ≤ v(x) + C.
We choose any reference metric h0 on L that is smooth, positively curved and
K ×K-invariant. Then by the first direction there exist constants C1 and C2 such
that if u0 is the potential of h0 we have

v(x) + C2 ≤ u0(x) ≤ v(x) + C1.

Let ω0 be the curvature form of h0.
Consider the function w := u − u0. It will be enough to show that the function

ψ on G corresponding to w extends to an ω0-psh function on X .
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First remark that ψ = φ − φ0, and by the other direction of the result of Azad
and Loeb [AL92], φ is psh on G. The assumption on u implies that w, and thus ψ,
are bounded from above. Indeed, we have

w = u− u0 ≤ v + C − u0 ≤ C − C2.

A classical result on psh functions is that a psh function extends over an analytic
subset if and only if it is locally bounded from above. Here, applying that with
ψ allows to extend ψ to an ω0-psh function on X . The corresponding singular
hermitian metric h has non-negative curvature, is K×K-invariant, and has convex
potential u.

For locally bounded metrics, one just needs to use the refinement that if a psh
function is locally bounded then it extends to a bounded psh function. �

3. Newton bodies

In this section we introduce a convex body associated to any non-negatively
curved singular K × K-invariant hermitian metric h on an ample linearized line
bundle L on a group compactification X . We first define a convex set associated
to any function, which is a natural set to consider in the case of convex functions.
Applying this construction to the convex potential of a hermitian metric yields a
convex body that is contained in 2P (X,L), that will be used to compute the log
canonical threshold of h.

3.1. Newton set of a function.

Definition 3.1. Let f be a function a → R, and σ a closed convex cone in a. We
call Newton set of f the following set in a

∗.

Nσ(f) := {m ∈ a
∗; ∃C, ∀x ∈ σ, f(x)−m(x) ≥ C}.

In the following, we will simply call cone a closed convex cone. For any function
f and any cone σ, the Newton set Nσ(f) is clearly convex.

Recall the definition of the dual cone σ∨ of σ:

σ∨ = {m ∈ a
∗;m(x) ≥ 0 ∀x ∈ σ}.

The Newton set Nσ(f) is by definition stable under addition of an element of the
opposite of the dual cone σ∨ ⊂ a

∗. We write this also Nσ(f) = Nσ(f) + (−σ∨)
where the plus sign means the Minkowki sum of sets.

Example 3.2. Let f be the affine function f(x) = m(x) + c where m ∈ a
∗ and c

is a constant. Then Nσ(f) = m+ (−σ∨).

Let us record the following elementary properties of Newton sets.

Proposition 3.3. Let f and g be two functions on a and c ∈ R. Then

• Nσ(cf) = cNσ(f)
• Nσ(f + c) = Nσ(f)
• if f ≤ g then Nσ(f) ≤ Nσ(g).
• In particular, if for some constants c1 and c2,

g + c1 ≤ f ≤ g + c2

on σ, then Nσ(f) = Nσ(g).
• Let σ1 and σ2 be two convex cones such that σ = σ1 ∪ σ2, then

Nσ(f) = Nσ1
(f) ∩Nσ2

(f).
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The last property is very helpful when we want to use a fan decomposition.

Example 3.4. Let v : a → R be a piecewise linear function along a finite fan
decomposition σ0 = ∪Ni=1σi where N ∈ N and the σi are convex cones. For 1 ≤ i ≤
N , denote by vi the element of a∗ such that v(x) = vi(x) on σi. Then

Nσ(v) =

N
⋂

i=1

(vi + (−σ∨
i )).

If furthermore v is convex, then Nσ(v) = Conv{vi}+ (−σ∨).

3.2. Newton set of convex functions. For this subsection only, we will allow
convex functions to take the value +∞. If f is such a function we define its domain
by

dom(f) := {x ∈ a; f(x) <∞}.

We impose however that all functions considered have a non empty domain. In the
rest of the section, we always assume dom(f) = a.

The first remark is that the Newton set of a function f on the whole of a is
the domain of its Legendre-Fenchel transform (or convex conjugate) f∗ defined, for
m ∈ a

∗, by

f∗(m) := sup{m(x)− f(x);x ∈ a}.

Let σ be a convex cone, and define the convex function δσ as the indicator
function of σ, i.e. δσ(x) = 0 if x ∈ σ and δσ(x) = ∞ otherwise. Then it is not
hard to check that Nσ(f) = Na(f + δσ). In other words Nσ(f) is the domain of the
convex conjugate of f + δσ.

We will recall a classical result on convex functions, which allows to express the
Newton set of a sum as the Minkowski sum of the Newton sets of the summands.
First recall the definition of infimal convolution:

Definition 3.5. Let f and g be two convex function. The infimal convolution of
f and g is the function f�g defined, for x ∈ a, by

f�g(x) = inf{f(x− y) + g(y); y ∈ a}.

Theorem 3.6. [Roc97, Theorem 16.4] Let f and g be two convex functions on a,
such that the relative interiors of the domains of f and g have a point in common.
Then

(f + g)∗(m) = f∗
�g∗.

Proposition 3.7. Let σ be a convex cone, and f a convex function with dom(f) =
a, then

Nσ(f) = Na(f) + (−σ∨).

Proof. We have seen that Nσ(f) is the domain of the convex conjugate of f + δσ,
but by Theorem 3.6, this is also the domain of the function f∗

�δ∗σ. We can apply
this theorem because the intersection of the domains of f and δσ is σ.

The domain of an infimal convolution is the Minkowski sum of the domains of the
two functions involved, so we just need to compute the domain of δ∗σ. By definition
we check that this is −σ∨, and obtain the statement. �

Proposition 3.8. Let f and g be two convex functions, both with domain a, and
σ a convex cone. Then Nσ(f + g) = Nσ(f) +Nσ(g).
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Proof. We have, by the previous proposition,

Nσ(f + g) = Na(f + g) + (−σ∨),

and by the same proof,

Na(f + g) = Na(f) +Na(g),

so

Nσ(f + g) = Na(f) +Na(g) + (−σ∨)

= Nσ(f) +Nσ(g).

�

3.3. Newton body of a metric. Let X be a compactification of G, polarized by
L. Let h be a K × K-invariant hermitian metric with non negative curvature on
L, and u its convex potential with respect to a fixed left-equivariant trivialization
of L on G, which is a function on a.

Definition 3.9. We will call Newton body of h the set N(h) := Na(u).

Let P be the polytope corresponding to the polarization L.

Example 3.10. Let hL be the metric constructed in Section 2.3.1. Its convex
potential v is the support function of 2P , so N(hL) = 2P , as in Example 3.4.
Remark that the convex potential of hL is piecewise linear with respect to the
opposite of the fan of the toric subvariety.

Proposition 3.11. The Newton body of h is stable under the action of the Weyl
group W .

Proof. Let u be the convex potential of h, and let m ∈ a
∗. Suppose that

u(x)−m(x) ≥ C

for some constant C and for all x ∈ a. Let w ∈ W . By W -invariance of u, the
inequality is equivalent to

C ≤ u(w · x)−m(x)

≤ u(w · x)− w−1 ·m(w · x).

Since w induces a bijection of a, we get that for all w ∈ W , m ∈ N(h) if and
only if w ·m ∈ N(h), which means that N(h) is W -invariant. �

We can finally translate the information about the asymptotic behavior of metrics
in terms of their Newton bodies.

Proposition 3.12. Let h be a K×K-invariant hermitian metric with non negative
curvature on L. Then N(h) ⊂ 2P . If in addition h is locally bounded, then N(h) =
2P .

Proof. Recall from Section 2.3.1 that the convex potential u of a K ×K-invariant
hermitian metric h with non negative curvature on L satisfies

u ≤ v + C2

on a for some constant C2, and that if h is locally bounded then we have in addition

v + C1 ≤ u

for some constant C1.
Now the result easily follows from Proposition 3.3 and Example 3.10. �
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4. Log canonical thresholds

In this section, we reduce the computation of the log canonical threshold of a K×
K-invariant non-negatively curved metric to an integrability problem involving its
convex potential, by using the KAK integration formula. We prove an integrability
criterion for exponentials of concave functions, with respect to the measure J(x)dx
appearing in the KAK integration formula, and then use it to obtain an expression
of the log canonical threshold in terms of the Newton body of the metric.

4.1. Log canonical thresholds on compact manifolds. In this subsection we
consider first X a compact complex manifold that is not necessarily a group com-
pactification, and L a line bundle on X .

Definition 4.1. Let x be a point in X , and h a hermitian metric on L. The
complex singularity exponent (or local log canonical threshold) of h at x, which we
denote by lct(h, x) is the supremum of all c > 0 such that e−cϕ is integrable with
respect to Lebesgue measure in a neighborhood of x, where ϕ is the potential of h
with respect to a trivialization s of L in a neighborhood of x.

Remark 4.2. If h is a locally bounded metric then on a sufficiently small neigh-
borhood of any point, the potential ϕ is a bounded function, so it is integrable. It
means that for any such metric, lct(h, x) = ∞ at any point x.

Definition 4.3. Let h be a hermitian metric on L, then the log canonical threshold
of h is defined as

lct(h) = infx∈X(lct(h, x)).

Proposition 4.4. Let h be a singular hermitian metric on L, h0 a locally bounded
hermitian metric on L, and ψ the potential of h with respect to h0. Let also dV be
any smooth volume form on X. Then we have

lct(h) = sup

{

c > 0;

∫

X

e−cψdV <∞

}

.

Proof. Let x be any point in X , and s a trivialization of L on a neighborhood U of
x. Up to shrinking U , we can assume that the local potential ϕ0 of h0 with respect
to s is bounded.

Let ϕ be the local potential of h with respect to s and ψ the potential of h
with respect to h0. Then by definition of ψ, we have ψ = ϕ − ϕ0 on U , and
since ϕ0 is bounded, the integrability of e−cϕ with respect to Lebesgue measure
on a neighborhood of x is equivalent to the integrability of e−cψ on the same
neighborhood.

Furthermore, in the neighborhood of any point x in X , the integrability with
respect to Lebesgue measure is equivalent to integrability with respect to a smooth
volume form.

The function ψ is defined everywhere on X , e−cψ is positive, and X is compact,
so e−cψ is integrable with respect to dV in the neighborhood of any point in X if
and only if

∫

X
e−cψdV <∞.

Take 0 < c < lct(h), then c < lct(h, x) for all x ∈ X , so
∫

X
e−cψdV < ∞. This

means that

lct(h) ≤ sup

{

c > 0;

∫

X

e−cψdV <∞

}

.
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Conversely, if c > lct(h) then there exists x ∈ X such that c > lct(h, x) but then
∫

X
e−cψdV = ∞, so c ≥ sup

{

c > 0;
∫

X
e−cψdV <∞

}

. Taking the infimum gives
the other inequality:

lct(h) ≥ sup

{

c > 0;

∫

X

e−cψdV <∞

}

.

This proves the proposition. �

4.2. Log canonical thresholds on group compactifications. Let X be a Fano
compactification of G. Let L be an ample linearized line bundle onX . Using Propo-
sition 4.4, we reduce the computation of log canonical thresholds to integrability
conditions on the potentials of metrics, with respect to a smooth volume form.
Since volume forms do not put weight on the (codimension one) boundary X \G,
we will restrict to integrability conditions on G. We want to use, in addition, the
KAK integration formula, that we recall here :

Proposition 4.5. [Kna02, Proposition 5.28] Let dg denote a Haar measure on
G, and dx the Lebesgue measure on a, normalized by the lattice of one parameter
subgroups N . Then there exists a constant C > 0 such that for any K×K-invariant,
dg-integrable function on G,

∫

G

f(g)dg = C

∫

a
+

J(x)f(exp(x))dx,

where
J(x) =

∏

α∈Φ+

sinh(α(x))2.

Let us now derive an integrability criterion with respect to J .

4.3. Integrability criterion.

4.3.1. Integrability criterion on a cone. We use the following proposition, obtained
by Guenancia in [Gue12]. It is an analytic proof and generalization of the computa-
tion by Howald of the log canonical thresholds of monomial ideals. The statement
given here is slightly different from the statement in [Gue12], but is in fact equiva-
lent (see [Del15] for details).

Proposition 4.6. [Gue12, Proposition 1.9] Let f be a convex function on a. As-
sume that σ is a smooth polyhedral cone in a = N ⊗ R. Then e−f is integrable on
a translate (equivalently on all translates) of σ if and only if 0 is in the interior of
the Newton body of f : 0 ∈ Int(Nσ(f)).

4.3.2. Integrability with respect to J. The half sum of the positive roots of Φ is
denoted by ρ. We want to prove the following integrability criterion, with respect
to the measure J(x)dx.

Proposition 4.7. Assume that a
+ =

⋃

i σi where each σi is a smooth polyhedral
cone of full dimension r. Let l be a function on a, convex on each cone σi. Then

∫

a
+

e−l(x)J(x)dx < +∞

if and only if 4ρ ∈ Int(N
a
+(l)).

Lemma 4.8. Let σ be a smooth full dimensional polyhedral cone in a
+, l be a

convex function on a, then the following are equivalent:
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•
∫

σ
e−l(x)J(x)dx <∞;

•
∫

σ
e−l(x)+4ρ(x)dx <∞;

• 4ρ ∈ Int(Nσ(l)).

Proof. Writing

sinh(α(x)) =
eα(x) − e−α(x)

2
=

1

2
eα(x)(1− e−2α(x)),

we get that

J(x) =
1

22Card(Φ+)
e2

∑
α∈Φ+ α(x)

∏

α∈Φ+

(1− e−2α(x))2.

For any x ∈ a
+ and α ∈ Φ+, α(x) > 0, so 0 ≤ e−2α(x) < 1. This implies

0 <
∏

α∈Φ+(1 − e−2α(x))2 ≤ 1, so

0 < J(x) ≤
1

22Card(Φ+)
e4ρ(x).

This first inequality allows to say that if
∫

σ
e−l(x)+4ρ(x)dx <∞ then

∫

σ

e−l(x)J(x)dx <∞.

Let us now prove the converse. Choose γ a point in the interior of σ. As-
sume that e−l+4ρ is not integrable on σ. Then by the usual integrability criterion
(Proposition 4.6) e−l+4ρ is also non integrable on γ + σ.

But now, for x ∈ γ + a
+ and α ∈ Φ+, we have α(x) ≥ c = minβ∈Φ+β(γ) > 0, so

0 ≤ e−2α(x) ≤ e−2c < 1, and this implies

(

1− e−2c

2

)2Card(Φ+)

e4ρ(x) ≤ J(x) ≤
1

22Card(Φ+)
e4ρ(x).

This gives that
∫

σ

e−l(x)J(x)dx ≥

∫

γ+σ

e−l(x)J(x)dx

≥

∫

γ+σ

e−l+4ρdx

≥ ∞.

We have then shown the equivalence of the two first points in the lemma. By
Proposition 4.6 the second point is also equivalent to

0 ∈ Int(Nσ(l − 4ρ)) = −4ρ+ Int(Nσ(l)).

Letting 4ρ go to the left, we conclude the proof. �

Now we can prove the proposition, just by gluing the parts.

Proof. Just remark that since the function e−l(x)J(x) is positive and the cones are
full dimensional,

∫

a
+ e

−l(x)J(x)dx < +∞ if and only if
∫

σi

e−l(x)J(x)dx < +∞ for

all i.
For each of these integrals we can use the lemma, so the necessary and sufficient

condition becomes 4ρ ∈ Int(Nσi
(l)) for all i, or equivalently 4ρ ∈ Int(

⋂

iNσi
(l)).

To conclude, observe that N
a
+(l) =

⋂

iNσi
(l) by Proposition 3.3. �
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4.4. Log canonical thresholds in terms of Newton bodies. Let X be a Fano
compactification of G. Let L be a linearized ample line bundle on X , whose as-
sociated polytope is P . Denote by Q the polytope associated to the anticanonical
bundle −KX . Let also H denote the convex hull of all images of 2ρ by the Weyl
group W .

We want to prove the following.

Theorem 4.9. Let h be a K × K-invariant hermitian metric with non negative
curvature on L, then

lct(h) = sup{c > 0; 2H + 2cP ⊂ cN(h) + 2Q}.

We first introduce some notations.
Let us fix s0 a left G-equivariant trivialization of L on G and s1 a left G equi-

variant trivialization of −KX on G.
Let u be the convex potential of h with respect to the section s0. Let also u0

be the support function of P and h0 be the corresponding metric. It has locally
bounded potentials. Denote by ψ the potential of h with respect to h0.

Since X is Fano, we can choose h1 a smooth metric on −KX with positive curva-
ture, and let u1 be its convex potential with respect to s1. This choice determines
a smooth volume form on X , which writes, on G,

dV = e−u1dg

where dg is the Haar measure s−1
1 ∧ s−1

1 .

Remark 4.10. In particular, the integral of this volume form is finite, so applying
the KAK integration formula this means that

∫

a
+

e−u1Jdx <∞.

By Proposition 4.7, this implies that

4ρ ∈ Int(N(h1)) = Int(2Q).

Another way to say that is H ⊂ Int(Q).

Proof. Using Proposition 4.4, then restricting to the dense orbit, we get:

lct(h) = sup

{

c > 0;

∫

X

e−cψdV <∞

}

= sup

{

c > 0;

∫

G

e−cψdV <∞

}

.

Since ψ(exp(x)) = u(x) − u0(x), we can now use the KAK integration formula to
write:

lct(h) = sup

{

c > 0;

∫

a
+

e−c(u−u0)e−u1Jdx <∞

}

.

Then Proposition 4.7 gives:

lct(h) = sup {c > 0; 4ρ ∈ Int(N
a
+(cu− cu0 + u1))}

= sup{c > 0; 4ρ ∈ N
a
+(cu − cu0 + u1)}.

Let σi be the cones of full dimension in the fan subdivision of a+ corresponding
to X (induced by the fan subdivision of a associated to the toric subvariety Z).
Then u0 is linear on each −σi. We write ui0 the corresponding element of a∗.
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We have

lct(h) = sup{c > 0; ∀i, 4ρ ∈ N−σi
(cu− cu0 + u1)}

= sup{c > 0; ∀i, 4ρ+ cui0 ∈ N−σi
(cu + u1)}.

Recall from Example 3.4 that P = Na(u0) ⊂ ui0 + σ∨
i , so that

lct(h) = sup{c > 0; ∀i, 4ρ+ cP ∈ N−σi
(cu+ u1)}

= sup{c > 0; 4ρ+ cP ∈ N
a
+(cu+ u1)}

= sup{c > 0; 2H + 2cP ⊂ Na(cu+ u1)}

by W -invariance.
To conclude it remains to remark that both u and u1 are convex, so by Propo-

sition 3.8,

Na(cu+ u1) = cNa(u) +Na(u1) = cN(h) + 2Q.

�

5. Alpha invariants

We obtain in this section an expression for the α-invariant of a polarized group
compactification in terms of its polytope. We first give the result for general reduc-
tive group compactifications, then see how it simplifies when the group is semisim-
ple. We then discuss some some examples and how some additional symmetries
can be taken into account for reductive group compactifications.

5.1. General formula.

Definition 5.1. Let X be a compact complex manifold, K a compact subgroup
of the automorphisms group of X , and L a K-linearized line bundle on X . The
alpha invariant of L relative to the group K, denoted by αK(L) is the infimum of
the log canonical thesholds of all K-invariant singular hermitian metrics on L with
non negative curvature.

Let P and Q be two convex bodies in a
∗. Recall the definition of the Minkowski

difference:

Q⊖ P = {x|x+ P ⊂ Q}.

Another expression of the Minkowski difference is the following, which shows that
it is convex if Q is convex:

Q⊖ P =
⋂

p∈P

(−p+Q).

If P1, P2 and Q are three convex bodies, then P1+Q ⊂ P2 if and only if P1 ⊂ P2⊖Q.
We can now state our main result.

Theorem 5.2. Let (X,L) be a polarized compactification of G, and P := P (X,L).
Assume furthermore that X is Fano and let Q := P (X,−KX). Then

αK×K(L) = sup{c > 0; c(P + (−PW )) ⊂ Q⊖H},

where PW denotes the subset of W -invariant points of P .
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Proof. Let h be any K×K-invariant metric on L with non negative curvature. The
Newton body of h is convex and W -stable. In particular it contains a W -invariant
point p, for example the barycenter of the orbit of any point in N(h).

Denote by hp the K × K-invariant metric on L with non negative curvature
whose convex potential is the function x 7→ p(x). Then {p} = N(hp) ⊂ N(h), so by
the expression of the log canonical thresholds from Theorem 4.9, lct(h) ≥ lct(hp).

Since all such hp for p ∈ 2PW define a singular hermitian metric with non-
negative curvature, this remark allows to write the alpha invariant as

αK×K(L) = infp∈2PW lct(hp).

Now from the expression of the log canonical threshold we get

lct(hp) = sup{c > 0; 2H + 2cP ⊂ cN(hp) + 2Q}

= sup{c > 0;−cp+ 2cP ⊂ 2Q⊖ 2H}.

Then the expression of the alpha invariant further simplifies as

αK×K(L) = infp∈2PW sup{c > 0;−cp+ 2cP ⊂ 2Q⊖ 2H}

= sup{c > 0; ∀p ∈ 2PW ,−cp+ 2cP ⊂ 2Q⊖ 2H}

= sup{c > 0; 2cP + (−2cPW ) ⊂ 2Q⊖ 2H}.

Dividing by two yields

= sup{c > 0; c(P + (−PW )) ⊂ Q⊖H}

which is the expression in the statement of the Theorem. �

Remark 5.3. In the toric case, we recover our previous computation [Del15]:

α(S1)n(L) = sup{c > 0; c(P + (−P )) ⊂ Q}.

5.2. Semisimple case. The alpha invariant of an ample line bundle on a Fano
compactification of a semisimple group can be easily expressed in terms of the
polytope associated to L as an inradius between two convex bodies.

Definition 5.4. The inradius of Q with respect to P is the number:

inr(P,Q) := sup{c ≥ 0|∃x, x+ cP ⊂ Q}.

Corollary 5.5. Assume that G is a semisimple group. Then

αK×K(L) = inr(P,Q ⊖H).

Proof. If G is semisimple, we have PW = {0}. In fact, the metric h0 whose convex
potential is the zero function satisfies

αK×K(L) = lct(h0)

= sup{c > 0; cP ⊂ Q⊖H}.

And this is equal to the inradius inr(P,Q ⊖H).
Indeed, one inequality is trivial: inr(P,Q⊖H) ≥ αK×K(L). Conversely, assume

c ≤ inr(P,Q ⊖H), i.e. there exists an x ∈ a
∗ such that

x+ cP ⊂ Q⊖H.

Then since P and Q⊖H are stable under W -action, we also have

∀w ∈ W, w · x+ cP ⊂ Q⊖H.
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Convexity and the fact that the barycenter of the W -orbit of x is 0 imply that cP ⊂
Q⊖H , so c ≤ αK×K(L). We have thus proved the other inequality inr(P,Q⊖H) ≤
αK×K(L). �

Remark 5.6. In the case of reductive groups, the alpha invariant is not an inradius,
but we can bound it from above by an inradius:

αK×K(L) ≤ inr(P + (−P )W , Q⊖H).

5.3. Additional symmetries. If the polytopes P andQ admit additional common
symmetries, then the value of the alpha invariant can be improved. Indeed, the
symmetries of Q translate to a finite subgroup O of the automorphisms group of
the variety X , and if P is stable under these symmetries, then it is linearized by O.
We can thus consider the alpha invariant with respect to the bigger group generated
by K ×K and O, that we denote KO.

We then have, adapting the proof of Theorem 5.2,

αKO
(L) = sup{c > 0; c(P + (−P 〈W,O〉)) ⊂ Q⊖H}.

In particular, if the only fixed point under 〈W,O〉 is the origin, then just as in the
semisimple case, we get

αKO
(L) = inr(P,Q ⊖H).

5.4. Examples. Let us compute the α invariant of the anticanonical line bundle
for some wonderful compactifications of semisimple groups. First remark that in
this case we have P = Q and can rewrite the expression of the invariant as :

αK×K(X,−KX) = sup{c > 0;H ⊂ (1− c)Q},

or, by W -invariance,

αK×K(X,−KX) = sup{c > 0; 2ρ ∈ (1 − c)Q+}.

Remark 5.7. It is interesting to notice that this quantity appeared in the de-
termination of some volume asymptotics by Chambert-Loir and Tschinkel. If σ
denotes the quantity the authors compute in the examples of compactifications of
semisimple groups [CLT10, Section 5.3], we have σ = 1 − αK×K(X,−KX) if the
polytope considered is the anticanonical polytope of a Fano compactification. This
is because their computation in this special case is equivalent to a computation
of the log canonical threshold of a metric on the anticanonical line bundle with
constant convex potential.

For wonderful compactifications of semisimple adjoint groups, the polytope of
the anticanonical line bundle Q is determined by the root system. Indeed, recall
that it is the convex hull of the images by W of the weight 2ρ+

∑r
i=1 αi where the

αi are the simple roots of Φ+.
In particular, when G = (PSL2(C))n, for any n ≥ 1, the simple roots are the

same as the positive roots, so Q = 2H .

Corollary 5.8. Let X be the wonderful compactification of (PSL2(C))
n, then

αK×K(−KX) =
1

2
.
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Proof. Applying Corollary 5.5 gives

αK×K(−KX) = inr(2H,H) =
1

2
.

�

More generally for type An, choosing an appropriate ordering of the simple roots
α1, . . . , αn, we can write the positive roots as

αi + αi+1 + · · ·+ αj

for each pair (i, j) with 1 ≤ i ≤ j ≤ n. We see then that the coefficient of αk in
the sum of positive roots

∑n
l=1 αl is equal to the cardinal of the set {(i, j); 1 ≤ i ≤

k ≤ j ≤ n}. This is k(n− k + 1). Adding the sum of simple roots, we see that the
kth-coordinate of the vertex defining the polytope of the wonderful compactification
of PSLn+1(C) in the basis of simple roots is 1 + k(n− k + 1).

Then from our result, the alpha invariant is easily seen to be the maximum of
all c > 0 such that for each k, c(1 + k(n − k + 1)) ≤ 1. We deduce the following
value for the alpha invariant.

Corollary 5.9. Let X be the wonderful compactification of PSLn+1(C), then

αK×K(−KX) =
1

1 + ⌈n2 ⌉(⌊
n
2 ⌋+ 1)

.
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