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Abstract—Non-binary low-density parity-check codes have
superior communications performance compared to their binary
counterparts. However, to be an option for future standards,
efficient hardware architectures must be developed. State-of-the-
art decoding algorithms lead to architectures suffering from low
throughput and high latency. The check node function accounts
for the largest part of the decoders overall complexity. In this
paper a new hardware aware check node algorithm and its
architecture is proposed. It has state-of-the-art communications
performance while reducing the decoding complexity. The pre-
sented architecture has a 14 times higher area efficiency, increases
the energy efficiency by factor 2.5 and reduces the latency by
factor of 3.5 compared to a state-of-the-art architecture.

I. INTRODUCTION

Upcoming standards like 5G will increase the demands on
throughput and latency of communication systems. Especially
applications like the Tactile Internet [1] require a significantly
reduced latency. At the same time, error free transmission
has to be guaranteed, which requires forward error correction
schemes. Low-Density Parity-Check (LDPC) codes where first
proposed by R.G. Gallager in 1963 [2] and rediscovered by
D. Mackay and others in 1996 [3]. In the following almost
two decades a lot of research has been carried out in this field.
Today many commercial standards (WiMAX, WiFi, DVB-C2,
DVB-S2, DVB-T2) make use of LDPC codes. Very long binary
LDPC codes have been proven to perform close to the Shannon
limit. However when considering short blocks of only some
hundred bit length for low latency applications, they suffer
under degradation in communications performance of more
than 0.5 dB. The extension of binary LDPC codes to Galois
Fields (GF(q)s) with q > 2 is a promising approach to solve
this problem. Moreover the symbols of high-order modulation
schemes can be directly mapped to the decoders input symbols.
Thus an additional gain in communications performance is
observed for systems combining high-order modulation and
Non-Binary Low-Density Parity-Check (NB-LDPC) codes [4].
The performance gain of NB-LDPC codes comes at the cost
of significantly increased decoding complexity. The decoding
can be performed by message passing algorithms like Belief
Propagation (BP), however the complexity increases with the
size of the GF(q). A straightforward implementation of the
BP algorithm has a complexity of O(q2) [5]. In the last
years several approaches have been proposed to reduce the
decoding complexity without sacrificing the communications
performance. Algorithms working in the Fourier domain [6]
[7] have an excellent communications performance, but are
still too complex for efficient hardware architectures. Symbol

flipping algorithms [8] [9] in general have low complexity but
suffer from heavily degraded communications performance.
Approaches based on stochastic decoding [10] [11] have been
presented as an alternative decoding method but introduce very
high decoding latency. An extension of the well known binary
Min-Sum algorithm to the non-binary domain, called Extended
Min-Sum (EMS) algorithm [12] [13] [14] gives the best com-
promise between hardware complexity and communications
performance. Therefore in this paper we will focus on the
EMS algorithm which is the most promising starting point for
efficient architectures.

To achieve the required throughput of today’s applications,
executing the algorithms in software is not sufficient. Dedi-
cated hardware architectures become mandatory. The largest
complexity in the EMS algorithm is the computation of the
Check Node (CN). State-of-the-art architectures apply a so
called Forward-Backward (FWBW) scheme [15] to process the
CN. A serial calculation is carried out to reduce the hardware
cost and to allow for reuse of intermediate results during the
computation. However this scheme introduces high latency
and degrades the throughput. This effect increases significantly
when the size of the GF(q) or the CN degree grows.

The Syndrome-Based (SYN) CN algorithm, previously pre-
sented in [16] is the first approach allowing for efficient parallel
computation of the CN function for higher-order Galois fields
(q ≥ 16). In this paper we present modifications of the original
algorithm leading to the first hardware implementation of the
SYN CN algorithm. For a GF(64) we observed an increase in
area efficiency of factor 14 and a latency reduction of factor
5 compared to state-of-the-art CN architectures.

The paper is structured as follows. In Section II we review
the decoding of NB-LDPC codes making use of the EMS
algorithm. The SYN CN algorithm is presented in Section III
and further optimizations for the hardware implementation are
discussed in Section IV. The novel architecture is described
in Section V. Finally Section VI presents a comparison with
other CN architectures in means of area and energy efficiency,
latency and communications performance. Section VII con-
cludes the paper.

II. EMS DECODING

This section reviews the EMS algorithm to give an
overview of the complete decoding process.

Let us consider an (N,K) NB-LDPC code over GF(q)
where N is the codeword length and K the number of



information symbols. The code is defined by a sparse parity
check matrix H with N columns, M = N − K rows and
elements hm,n. The transmitted codeword consists of the
codeword symbols c = (c1, c2, . . . , cN ), ci ∈ GF(q). The
decoder receives the noisy representation of the codeword
symbols, y = (y1, y2, . . . , yN ).The decoding process can be
partitioned in four main parts, the initialisation, the Variable
Node (VN) update, the CN update and the permutations in
the Permutation Nodes (PNs). It is important to mention that
in contrast to a binary LDPC decoder instead of a single
Logarithmic Likelihood Ratio (LLR) a set of q LLRs is
exchanged between the nodes on each edge. This fact accounts
for the significant increase in complexity compared to binary
LDPC decoding.

The first step in the EMS algorithm is the calculation
of the symbol LLRs for the received codeword. For each
received symbol yi, a set of q LLR values is calculated. Under
the assumption that all GF(q) symbols are equiprobable, the
initialization LLRs for VN v are calculated as follows:

∀x ∈ GF(q)
{
Lv[x] = ln

(
P (yv|cv = x̃v)

P (yv|cv = x)

)}
with x̃v = max

∀x∈GF(q)
{P (yv|cv = x)} .

(1)

Given this definition it follows that Lv[x̃v] = 0 and
Lv[x] ≥ 0 with an increasing LLR representing a decreasing
symbol reliability. For simplified reading, in the following we
use an array to represent the message sets. Messages from
VN to PN are denoted as Uvp, messages from PN to CN as
Upc. Respectively messages from CN to PN are called Vcp and
messages from PN to VN as Vpv .

In the first iteration the VNs simply forward the channel
values (Eq. (1)) to the according CNs. The VN outputs are
calculated as Uvp[x] = Lv[x]. In all other iterations the VN
operation is to combine the channel values Lv with the dv
incoming message sets Vpv , where dv is the VN degree. The
updated extrinsic messages Uvp of VN v are calculated as
follows:

Uvp[x] = Lv[x] +

dv∑
t=1,t6=p

Vtv[x],∀x ∈ GF(q), p = 1 . . . dv .

(2)
The VN function is to sum up all values for a certain Galois
field element x received from the connected CNs and the
according channel information Lv[x]. This however has to be
performed for all q elements of the GF(q). To achieve the same
message structure as before (LLR = 0 for the most reliable
symbol, increasing LLR values for less reliable symbols), a
normalisation of the Uvp messages with respect to the most
reliable symbol has to be applied at the output of the VN.

The next step in the decoding is the permutation according
to the parity check matrix H . The permutation of the VN v
outputs Uvp is defined as:

Upc[x] = Uvp[h
−1
c,v · x],∀x ∈ GF(q), p = 1 . . . dv , (3)

where hc,v is the Galois field element at row c and column v
of H , Upc represents the input for CN c.

In the CN update dc edges from Upc are processed. The
outputs of CN c are calculated as follows:

Vcp[x] = min
∀ permutations of xt

dc∑
t=1;t 6=p

Utc[xt]

with
dc∑

t=1;t6=p

xt = x,

∀x ∈ GF(q), p = 1 . . . dc .

(4)

For every Galois field element x all possible input permuta-
tions fulfilling the parity check constraint are evaluated. The
parity check constraint is given by the sum of the according
Galois field elements. From all valid combinations the one with
the highest reliability (smallest LLR) is chosen. Again, this
task has to be performed for all q elements of the Galois field.
The CN computation is the most complex part of the decoding
and has a complexity ofO(q2) when calculated straightforward
with the FWBW scheme [15].

Before one iteration is completed the outputs of CN c must
be reverse permuted.

Vpv[x] = Vcp[hc,v · x],∀x ∈ GF(q), p = 1 . . . dc . (5)

This closes the loop and another iteration starts. The processing
of a block is stopped as soon as a valid codeword is detected.
To make this decision the estimated symbols x̂ need to be
computed for each VN v:

x̂v = min
x∈GF(q)

(
Lv[x] +

dv∑
p=1

Vpv[x]

)
. (6)

In state-of-the-art EMS decoding one important simplifica-
tion is applied. It has been shown in [12], that the sets of q
messages exchanged between VNs and CNs can be truncated
to carry only the nm most reliable values per edge without
sacrificing the communications performance. This approach
significantly reduces the implementation complexity and is
used for the algorithms presented in the following sections.

III. SYNDROME-BASED CN PROCESSING

For the sake of clarity we review the basic SYN CN
algorithm, earlier presented in [16], before architecture specific
modifications are introduced in Section IV.

The state-of-the-art way of CN processing with the FWBW
scheme [17] [18] has several drawbacks. Architectures making
use of the FWBW scheme suffer from low throughput and high
latency. Todays approaches to solve these issues are limited
to small GF(q)s with q ≤ 16 which have only small gain in
Frame Error Rate (FER) compared to their binary counterparts
[14]. Only with Galois fields of high-order significantly higher
communications gains can be achieved. Therefore in [16] we
proposed a new algorithm, the so called SYN CN processing
which can also be applied to Galois field sizes of practical
interest (q ≥ 64).

The basic structure of the SYN CN processing is depicted
in Fig. 1. In the first step of the algorithm the syndromes
are calculated. In contrast to the classical use of the term
syndrome, we define a syndrome as the sum of one GF(q),
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Fig. 1: Syndrome-based CN processing

LLR tuple from each input set. Each input U carries nm

messages, which allows for the calculation of a set of different
syndromes called S. Individual syndromes are distinguished by
the input elements which are chosen for the sum. Let Kic be
the set of nm most reliable field elements from the ith edge of
CN c. The syndrome reliability R(x1 . . . xdc) and according
Galois field element G(x1 . . . xdc) for CN c are calculated as
follows:

R(x1 . . . xdc) =

dc∑
t=1

Utc[xt], xt ∈ Ktc (7)

G(x1 . . . xdc) =

dc∑
t=1

xt, xt ∈ Ktc (8)

One syndrome SYN is then defined as follows:

SYN(x1 . . . xdc
) =

{
R(x1 . . . xdc

), G(x1 . . . xdc
)
}

(9)

The syndrome set S contains all valid syndromes:

S =
{

SYN(x1 . . . xdc
) : ∀x1 . . . xdc

∈ Ktc

}
(10)

Calculating the syndromes in S as the sum of elements over
all input edges (Eq. (7) and Eq. (8)), disregards one of the
basic concepts of BP algorithms: In- and output of the same
edge must not be correlated. Thus an additional step in the
SYN CN processing is the decorrelation of in- and output:

Ri(x1 . . . xdc
) = R(x1 . . . xdc

)− Uic[xi], xi ∈ Kic (11)

Gi(x1 . . . xdc
) = G(x1 . . . xdc

)− xi, xi ∈ Kic (12)

The result is a dedicated syndrome set Si for every output i,
which has no correlation with input i.

SYNi(x1 . . . xdc) =
{
Ri(x1 . . . xdc), G

i(x1 . . . xdc)
}

(13)

Si =
{

SYNi(x1 . . . xdc) : ∀x1 . . . xdc ∈ Ktc

}
(14)

Once the Si sets are computed, they are sorted by their syn-
drome reliability, represented by the LLRs. This gives direct
access to the nm most reliable syndromes which constitute the
CN output sets Vcp.

The algorithm we proposed is an alternative to the conven-
tional FWBW processing. It is the first approach for high-order

LLR GF LLR GF LLR GF LLR GF

Index

...

0
1
2

re
li
a
b
il
it
y

U1 U2 U3 U4

Fig. 2: Exemplary syndromes with two (filled circles) and three
deviations (open circles) and maximum distances d2 and d3.

Galois field decoding, allowing for massive parallel implemen-
tations and thus high throughput and low latency. However,
without special treatment the calculation of the syndrome set
S and the sorting of Si introduce a high complexity. It has
to be reduced to make the algorithm attractive for hardware
implementations.

IV. COMPLEXITY REDUCTION OF THE
SYNDROME-BASED CN PROCESSING

In this section we are presenting an approach to reduce the
complexity of the afore introduced SYN CN algorithm. The
target is to allow the algorithm to be implemented efficiently in
hardware. Therefore we discuss algorithmic modifications for
simplifications of the syndrome set generation and the sorting
while maintaining the communications performance.

A. Reducing the syndrome set cardinality:

The first point to optimize is the calculation of the syn-
drome set S. For the output computation only the most
reliable values of S are used which makes the computation
of all other syndromes superfluous. Thus a smart reduction of
the cardinality of S, |S| can significantly reduce the overall
complexity of the algorithm without sacrificing the communi-
cations performance.

The first step for a reduction of |S| is the separation of
syndromes with high reliability from ones with low reliability.
In the following, a concept similar to the configuration sets
introduced in [19] [20] is applied to the computation of S.
Therefore we define dc+1 deviation sets Di with i ∈ 0 . . . dc.
This procedure is just a separation of the syndrome set in sub-
sets:

S =

dc⋃
i=0

Di . (15)

Each set contains only syndromes deviating in exactly i
elements from the most reliable element as shown in Fig. 2.
The subset D0 contains only one syndrome, which is the sum
of the most reliable elements from all inputs. These sub-sets
structure the data in a way that allows for easier access to
syndromes with high reliability. Figure 3 shows the average
LLR values of the syndromes in the sorted deviation sets Di.
One can observe, that the distribution of reliable LLRs depends



0 20 40
0

2

4

6

8

10

12

14

0 20 40
40

60

80

100

120

140

160

180

200

220

240
Eb/N0=10dBEb/N0=0dB

Syndrome index Syndrome index

1 deviation

2 deviations

3 deviations

4 deviations

A
v
er

a
g
e 

L
L
R

A
v
er

a
g
e 

L
L
R

Fig. 3: Averaged LLR values of Di for a GF(64), dc = 4 code.
Di for i > 1 are truncated and show only the 48 most reliable
syndromes.

on the Signal-to-Noise Ratio (SNR). However, syndromes with
more than two deviations e.g. Di for i > 2 have such a low
reliability that they rarely contribute to the generation of the
outputs. Thus we can limit the calculation of sub-sets Di to
the ones with a low amount of deviations.

Another parameter for reduction of |S| is the maximum
allowed distance di of elements contributing to deviation Di.
The distance describes the position of the element in the input
set relative to the most reliable element. The most reliable
element has the index zero. Less reliable elements have higher
indices which describe their rank in the sorted list of LLRs.
For the calculation of Di only elements with indices less or
equal to di are considered. The maximum allowed distance
for a certain deviation can be set dynamically based on the
LLR value of the elements or it is fixed, as a predefined
parameter. For each deviation a different maximum distance
can be set, see Fig. 2, e.g. the higher the number of allowed
deviations, the lower the maximum distance of the deviations,
d1 ≥ d2 ≥ · · · ≥ ddc . Using this scheme implicitly keeps the
best syndromes in each Di and removes the less reliable ones.
The cardinality of the subsets Di can be calculated as follows:

|Di| =


(

dc
i

)
· (di)i if di ≥ 1; i > 0

1 if i = 0

0 else

(16)

Combining both proposed techniques strictly reduces the
cardinality of S and thus the computational complexity. The

LLR GF SRC

==

Index

...

0

1

2

nm-1

-

GFADDRi

valid

Fig. 4: Decorrelator for edge i.
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Fig. 5: Syndrome-based CN processing after algorithmic trans-
formation

most reliable syndromes are calculated and only unreliable
ones are removed. The parametrization for the number of
deviations and their maximum distances is a critical step in the
algorithm. Using for example only D0, D1 and D2 with fixed
distances d0 = 0, d1 = nm − 1, d2 = 2, dc = 4 and nm = 13,
shrinks |S| from 28561 to 73. For a code in GF(64) this is a
very good trade-off between complexity and communications
performance, see Section VI.

B. Simplifying sorting:

One big drawback of the original SYN CN algorithm
presented in Section III is that every syndrome set Si must be
sorted separately to output the nm most reliable syndromes.
This is the case because of the decorrelation step applied
before. To avoid the sorting of the decorrelated syndrome sets
Si, a simple but effective approach can be chosen. Instead
of decorrelating every value, only syndromes using the most
reliable element from the currently handled edge (LLR = 0)
are considered. All other syndrome are not used for the current
edge output. By this approach the order of the syndromes is
not changed and it is sufficient to sort S instead of the dc
Si sets. In addition, the LLR values are not modified in the
decorrelation step which saves a real valued subtraction for
every output message. Finally only the most reliable input
element and not the complete input sets must be stored for the
decorrelation. The proposed algorithmic modifications result
in a slightly different data flow, see Fig. 5.
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Figure 4 shows the schematic operations of one decorrela-
tor. Each syndrome is denoted with the additional information
about which of the input edges contributed to the syndrome
with a deviation. SRC in Fig. 4 stores the edges where
deviations occurred and ADDRi represents the current edge.
A simple comparison evaluates if a deviation from the current
edge was involved in the syndrome calculation and thus if
the syndrome is valid for the current edge or not. Only if
no deviation occurred on the current edge, the decorrelated
message is marked as valid and used for the output Vi.

Even though the sorting has been reduced to the syndrome
set S, there is more potential for simplification. Sorting S can
be divided into sorting the deviation sets Di and merging them.
Especially for D1 the sorting can be further simplified. This
is achieved due to the previous knowledge we have of the
input data. We implicitly know that the sets Upc are sorted
according to their LLRs. The sorting of D1 thus is limited to
merging dc sorted sets. For the higher-order deviations Di for
i ≥ 2, the sorting can also be simplified because of the sorted
input sets. Sorted sub-sets are generated with little effort which
only have to be merged to achieve the final set. An example
of the sub-set generation for D2 with d2 = 2 is given in Fig. 6
which can be extended easily to other deviations and distances.
Once the sub-sets are sorted, the outputs can be generated by
merging them iteratively. However, considering the NB-LDPC
decoder as a whole, it can be observed, that an exact sorting of
the CN outputs is not required. When the VN has calculated
the a posteriori probability (APP) messages as the sum of the
channel values and messages from the CNs (Eq. (2)), they
have to be resorted anyway. Thus an approximately sorted
CN output is sufficient and does not impair the decoder’s
communications performance. In the following we present a
scheme which uses the robustness against approximately sorted
CN outputs to further reduce the algorithms complexity.

To allow for this approximate sorting, so called probes are
chosen and sorted according to their LLR. Figure 7 shows the
distribution of probes within the input set U1 used for D1. In
this paper we assume that the probes are equally distributed
in the input sets which works well for the investigated con-
figuration. The considered probe positions are 3, 6, 9 and 12.
However, for other parameters of dc and nm other distributions
are beneficial. Each probe is connected to a set of neighbouring
syndromes, seee Fig. 7. The probes LLR value is considered
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Fig. 7: Probes distribution for approximate sorting. The probes
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Fig. 8: Approximately sorted output LLRs for different SNR
points.

to be representative for the whole group of syndromes. In the
following, instead of iteratively merging the sub-sets syndrome
by syndrome, the probes and their neighbouring syndromes
are merged on set basis. This means that three neighbouring
syndromes are chosen at a time, based on the reliability of
the according probe. Only the LLR value of the probe has an
impact on the sorting, the LLRs of the neighbouring syndromes
are not considered. This scheme leads to some uncertainty in
the merged set but is close enough to the exact solution not to
degrade the decoders communications performance. Figure 8
shows the LLR values of the approximately sorted syndromes
used for the CN output calculation. The approximation works
well for low LLRs (high reliability) and only for the less
reliable outputs there is a difference compared to the optimal
sorting results.

Summarized, three notable benefits arise from the algorith-
mic transformations introduced in this section:

• Significant reduction of |S|.

• Approximated sorting of S instead of exact sorting of
Si.

• No LLR subtractions and no storage for Ui in the
decorrelation step.
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V. ARCHITECTURE

In this section we present a hardware implementation of the
algorithm proposed before. The architecture is independent of
the actual used NB-LDPC code, only the parameters dc = 4,
q = 64 and nm = 13 are given. As we are working with
truncated sets, we have to redefine Ui(j), j ∈ 0...nm − 1 as
the jth GF(q), LLR tuple from edge i. We use the LLR(. . . )
and GF(. . . ) notation to distinguish between the GF(q) and
LLR part of one of these tuples respectively.

Figure 9 shows an overview of the CN hardware. To
achieve low latency and high throughput, the input parallelism
of the CN was chosen to be six GF(q), LLR tuples and an
additional GF(q) input for the most reliable element. All input
messages can thus be read within two clock cycles. The evalu-
ation of the probes can be processed in parallel with the actual
calculation of the syndrome set. The selection of the sub-sets is
performed in dedicated units, the syndrome selectors, based on
the result of the probe evaluators. Once S is calculated and the
probes are evaluated, the most reliable sub-sets are used for the
decorrelation. The parallelism with which the syndromes are
process has significant impact on the overall throughput. It has
been chosen to be three times three syndromes. In each clock
cycle two sets of neighbouring syndromes from D1 and one set
from D2, overall nine syndromes are processed. Thus, after a
maximum of four clock cycles all output edges are filled with
nm valid messages. The output parallelism of the CN is chosen
symmetrically to the inputs to be six GF(q), LLR tuples and
one GF(q) message for D0. The design is constructed from
four main building blocks which will be explained in detail in
the following sections.

A. Probe Evaluator

The probe evaluator for D1 processes two probes per edge
in each clock cycle. For dc = 4 overall eight LLRs have to
be sorted, which is performed by a latency optimized sorting
network. As each two messages are implicitly sorted already
because they belong to the same edge, some simplifications
on the network can be applied. The final sorting network is
depicted in Fig. 10. The result of the sorting is not a sorted
list of LLRs but rather the positions of the inputs where they
come from. They are stored in a register and the same task is

Sorting network

4x2 S
R

E
G

S
R

E
G

Min2

wen

wen

max

init

0
1

2

2

2

8

ctrl

Fig. 10: Probe evaluator for D1.
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Fig. 11: Syndrome calculator for D0 and D1.

performed a second time for the second half of the input LLRs
in the next clock cycle. Starting from the second clock cycle,
every following clock cycle the positions of the two smallest
probes are output. To perform this task, an additional sorter,
selecting the two smallest probes from the registers is utilized.
Once a probe is used for an output generation, it is removed by
shifting the register content accordingly. The probe evaluator
for D2 is a simplified version of the one for D1 as it considers
only four inputs. Moreover it needs to generate only one output
per clock cycle. The output of the probe evaluators is used as
control signal for the syndrome selector components.

B. Syndrome Calculator

The syndrome calculation is carried out fully parallel.
Due to the restrictions on the deviation distances (d0 = 0,
d1 = nm−1, d2 = 2), the required hardware is strictly limited.
A sophisticated scheme for the calculation allows for further
reduced hardware cost, see Fig. 11. Instead of calculating
each syndrome as a sum of dc inputs, intermediate results
are used to minimize the number of explicit calculations. The
calculation of D0 involves dc − 1 GF(q) additions, for D1

overall dc · nm GF(q) additions are required. Thus for D0

and D1 only GF(q) calculations are required. For D2 the
processing scheme of D1 can easily be extended and requires
only one real valued addition per syndrome in addition to the
GF(q) operations. Compared with state-of-the-art processing,
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there is a significant saving in computational complexity. The
output of the syndrome calculator is a number of sorted sub-
sets used as input for the syndrome selectors.

C. Syndrome Selector

The syndrome selector receives the addresses of the most
reliable syndrome sets from the probe evaluator and the
syndromes Di sorted in sub-sets from the syndrome generator.
The complete hardware consists of a multiplexer tree choosing
a set of the three most reliable syndromes from the sub-
sets. To achieve six messages from D1, the multiplexer tree
is duplicated in this unit, see Fig. 12. For D2 a single tree
choosing between the six sub-sets of D2 suffices.

D. Decorrelator

Decorrelation has to be performed individually for each
edge of the CN. The output parallelism of the decorrelator is
six messages per clock cycle. Two times three syndromes from
D1 and another three from D2 are processed per clock cycle.
By construction the messages of a set always have deviations
on the same edges. Thus it is sufficient to check for one of
the messages in a set if it is valid or not, which is indicated
with a valid flag. If only a part of the received sets is valid,
they are rearranged by multiplexers in such a way, that only
valid messages are used for the output. In the best case all
syndromes received in one clock cycles are valid. As the output
parallelism is only six, the surplus syndromes are stored in an
additional register and reused in the next clock cycle. Before
the messages are sent to the VN, the actual decorrelation is
applied which is a subtraction of the most reliable GF(q) value
of the current edge.

Probe Evaluator

Syndrome Calculator

Syndrome Selector 1

Syndrome Selector 2

Decorrelators

Fig. 13: SYN CN chip layout.

VI. RESULTS

The architectures presented in this section are based on a
code which has a code word length N of 16 GF(64) symbols
(96 bits), a Code Rate (CR) of 0.5, dv = 2 and dc = 4.
Code generation has been performed based on the approach
presented in [21]. The SYN CN makes use of truncated vectors
of size nm = 13. The architecture is implemented on a 65nm
low power bulk CMOS library from ST Microelectronics.
We considered the following PVT parameters: Worst Case
(WC, 1.1V, 125◦C), Nominal Case (NOM, 1.2V, 25◦C) and
Best Case (BC, 1.3V, -40◦C). Synthesis was performed with
Synopsys Design Compiler in topographical mode, Placement
& Routing (P&R) with Synopsys IC Compiler. Synthesis as
well as P&R were performed with the Worst Case PVT settings
of the 65nm library.

The final design reaches a Worst Case frequency of
400 MHz. After P&R approximately 0.07 mm2 are required
for the core. An area utilization (cell/core area ratio) of 84 %
is achieved. We also evaluated the power consumption of the
physical design using Synopsys PrimeTime-PX. The average
power consumption at a clock frequency of 400 MHz is 30 mW
for the Nominal Case. The physical layout of the CN can be
seen in Fig. 13. Compared to a state-of-the-art CN based on
the FWBW architecture presented in [18] and implemented in
the same technology, the SYN CN achieves a 14 times higher
area efficiency and 2.5 times higher energy efficiency. At the
same time the latency (processing time for one CN update)
is reduced from 21 clock cycles to only 6 clock cycles. A
comparison of achieved communications performance shows
the difference with respect to the state-of-the-art hardware
aware FWBW decoding, see Fig. 14. The syndrome based
CN computation has a superior performance compared to the
FWBW implementation.

Our next target is the design of a high throughput decoder
based on the presented CN. Future challenges are the extension
of the presented design to higher edge degrees and even higher-
order Galois fields (q ≥ 256).



TABLE I: State-of-the-art NB-LDPC CN comparison, with
parameters dc = 4, q = 64 and nm = 13.

Decoder SYN CN FWBW CN

CMOS Technology 65nm SVT 65nm SVT
Supply Voltage [V] 1.2 1.2
Frequency [MHz] 400 250
Quantization 8 bit 8 bit
Post P&R Area [mm2] 0.067 0.112
Area Utilization 84% 70%
Throughput [Mel/s]a 5200 620
Energy Eff. [pJ/el] 5.7 13.8
Area Eff. [Gel/s/mm2] 77.5 5.5
Decoding Latency [CC]b 6 21
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bCC = Clock Cycles
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Fig. 14: Communications performance of the SYN CN com-
pared to the state-of-the-art FWBW scheme.

VII. CONCLUSION

We have presented a new algorithm and architecture for
the CN processing of NB-LDPC decoders. The SYN CN
algorithm is the first hardware aware CN processing, allowing
for low latency and high throughput decoder architectures
using high-order Galois fields. A hardware implementation
is presented which underlines the potential of the proposed
algorithm. A 14 times higher area efficiency and 2.5 times
higher energy efficiency is achieved compared to a state-of-
the-art CN architecture while the latency is reduced by factor
3.5. This is a big step into the direction of efficient NB-LDPC
decoders with sufficient throughput for future applications.
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