Stergios Chatzikyriakidis
email: stergios.chatzikyriakidis@lirmm.fr

Mathieu Lafourcade
email: mathieu.lafourcade@lirmm.fr

Lionel Ramadier
email: lionel.ramadier@lirmm.fr

Manel Zarrouk
email: manel.zarrouk@lirmm.fr

Type Theories and Lexical Networks: Using Serious Games as the Basis for Multi-Sorted Typed Systems

In this paper, we show how a rich lexico-semantic network which has been built using serious games, JeuxDeMots, can help us in grounding our semantic ontologies as well as different sorts of information in doing formal semantics using modern type theories (type theories within the tradition of Martin Löf). We discuss the domain of base types, adjectival and verbal types, hyperonymy/hyponymy relations as well as more advanced issues like homophony and polysemy.

Introduction

Modern Type Theories, i.e. Type Theories within the tradition of Martin Löf [START_REF] Martin-Löf | An intuitionistic theory of types: predicative part[END_REF][START_REF] Martin-Löf | Intuitionistic Type Theory[END_REF], have become a major alternative to Montague Semantics (MS) in the last twenty years. A number of influential approaches using MTTs have been proposed by the years [START_REF] Ranta | Type-Theoretical Grammar[END_REF][START_REF] Luo | Contextual analysis of word meanings in type-theoretical semantics. Logical Aspects of Computational Linguistics (LACL[END_REF][START_REF] Retoré | The montagovian generative lexicon Tyn: a type theoretical framework for natural language semantics[END_REF][START_REF] Cooper | A probabilistic rich type theory for semantic interpretation[END_REF] and have shown that the rich typing system offered by these MTTs (type many-sortedness, dependent types, type universes) has considerable advantages over simple typed theories predominantly used in mainstream formal semantics. One further important aspect for considering the use of MTTs over traditional Montagovian frameworks concerns the proof-theoretic nature of the former but not of the latter. 1 This fact makes MTTs a suited formal semantics language to perform reasoning tasks, as these are exemplified for example in work on inference using proof-assistant technology [START_REF] Chatzikyriakidis | Natural language reasoning using proof-assistant technology: Rich typing and beyond[END_REF][START_REF] Chatzikyriakidis | Natural language inference in Coq[END_REF]. However, this expresiveness of typing comes with a cost. For example, how does one decide on the base types to be represented? On the one hand, we do have a way to get a more fine-grained type system unlike the monolithic domain of entities found in MS, but on the other hand, constructing such a type ontology is not at all straightforward and easy task. Different approaches and assumptions have been put forward. For example [START_REF] Luo | Contextual analysis of word meanings in type-theoretical semantics. Logical Aspects of Computational Linguistics (LACL[END_REF][START_REF] Luo | Common nouns as types[END_REF] proposed to treat CNs as types, in effect every CN is a different type. Approaches like [START_REF] Retoré | The montagovian generative lexicon Tyn: a type theoretical framework for natural language semantics[END_REF] on the other hand, take a more moderate view by building type ontologies according to classifier systems (in effect type ontology is built using intuitions from classifier systems).

On the other hand, work with lexical-semantic networks have provided us with structured lexicons that indicate lexical and semantic relations like for example WordNet [START_REF] Fellbaum | WordNet: An Electronic Lexical Database[END_REF]. A very promising line of research in lexico-semantic network construction concerns networks which are built collaboratively by using GWAPs, games with a purpose i.e. serious games. This is the case of JeuxDeMots Lexical Network (JDM, [START_REF] Lafourcade | Making people play for lexical acquisition with the jeuxdemots prototype[END_REF]), which is constructed through many GWAPs along with a contributive tool (Diko) which allows players/users to contribute directly and to browse the knowledge base.

In this paper, we propose to ground our semantic ontologies as well as any other information needed in order to perform reasoning tasks using MTT semantics in the JDM lexical network. In order to do this, we present some first thoughts on how such an endeavour can be made by looking at the way a translation procedure from JDM to MTTs can be performed. Issues to be discussed include the domain of base types, instances of these types, adjectival and verbal types, hyponymy/hypernomy relations as well as more advanced issues like homophony and polysemy.

2 From JDM to MTTs

Base Types and Instances of Base Types

MTTs, as already said are many-sorted systems in that they involve a multitude of types rather than just one monolithic type e domain of entities. In the accounts proposed by [START_REF] Luo | Contextual analysis of word meanings in type-theoretical semantics. Logical Aspects of Computational Linguistics (LACL[END_REF][START_REF] Luo | Common nouns as types[END_REF], every CN is associated with a base type. Note the first major difference with MS: CNs are not predicates but rather Types. 2 For base types, an easy way to unify the two approaches is to assume that CNs are basically base types. In JDM, POS tagging will provide this sort of information. We further have to exclude instances of terms (for example John as an instance of M an) in order to distinguish between instances of terms and terms themselves (CN s). 3This can be by excluding named entities:

(1) ∀A.P OS(N, A) ∧ ¬SEM LABEL(N E, A) ⇒ A:cn.

Hyponym and hypernym relations are then defined as subtypes:

(2) ∀A, B.Hyp(A, B) ⇒ A < B:cn.

(3) ∀A, B.HyR(A, B) ⇒ B < A:cn.

Synonyms can be defined using equality:

4 (4) ∀A, B.Syn(A, B) ⇒ A = B:cn.
Synonymicity is not only relevant for CNs but for other linguistic categories. We can do that as well by changing to:

(5) ∀A, B.Syn(A, B) ⇒ A = B:C(C:LT ype)
LT ype is a universe of linguistic types, it includes the types instantiated in linguistic semantics (CN, adjectival and verbal types, types for quantifiers etc. See [START_REF] Chatzikyriakidis | An account of natural language coordination in type theory with coercive subtyping[END_REF] for a discussion).

For instances of terms, like for example proper names, we define the following:

(6) ∀A, B.Ins(A, B) ⇒ A:B This means that if A is an instance of B then A is of type B.
For example, if Einstein is an instance of P erson, then Einstein:P erson with P erson:cn.

Predicates and world knowledge information

The next question is, how can one extract information on the type of predicates, like for example verbs. JDM provides loads of information with every word, for example characteristics, synonyms, antonyms, collocations. For verbs, agent, patient and in general thematic relations are defined. These can guide us in assigning types for predicates. In JDM, one can look for semantic relations like action > agent, action > patient and various other such relations. For example man appears as the agent of a number of verbs that express actions like question. There is a further relation, the inverse agent relation, agent -1 . This relation returns a list of terms (and instances of terms) that can function as the agent for the action denoted by the verb. For example, question will involve among others teacher, mother, child, daugther, person, human. How can we make sense in order to provide typings in MTTs? Well, there is a straightforward to do this. What we need is to find the most general term, i.e. the term that all the other terms are hyponyms of. Instances of terms are not needed in this process. Similar processes can be defined for the patient arguments as well as for adjectives. Adjectives like grande can be defined as regards typing by looking at the terms that can have this characteristic. Again, JDM, gives us a list of terms and instances of terms for this reason. For adjectives, we might (depending) on the adjective, give either a typing in the same style as we have proposed above or a polymorphic type extending over a universe which includes the most general type found along with its subtypes:

Polysemy

The next issue we want to look at is polysemy, most specifically what to do with respect to the translation process in case of polysemous terms. First of all, we have to note here that JDM does not distinguish between homophony and polysemy in the sense they are usualy understood in the literature on formal semantics (e.g. bank as homophonous and book as polysemous). For JDM, there is only one term to refer to both homophony and polysemy, and this is polysemy. This is what we are going to use here as well, a single notion for all cases where different meanings associated with a given word are found. For JDM, there is this first level where a word with more than one meaning (irrespective of whether the meanings are related or not) are dubbed as polysemous, and then additional levels of refinement where relations between the different meanings can arise (or not). In MTTs, as in formal semantics in general, there are different treatments with respect to cases of homophony and cases of polysemy. For example, in [START_REF] Luo | Contextual analysis of word meanings in type-theoretical semantics. Logical Aspects of Computational Linguistics (LACL[END_REF], homophony is treated via using local coercions (local subtyping relations) while logical polysemy (cases like book) via introducing dot-types, types that encode two senses that do not share any components (see [START_REF] Luo | Type-theoretical semantics with coercive subtyping[END_REF] for the formal details). It is a difficult task to be able to translate from a polysemous term identified in JDM or are equal to C, the predicate C → P rop is returned. In case there is no supertype in the refinements, then there are two options: a) introduce a supertype or b) split the refinements into different classes. For example in case we have refinements human, man, pilot, vehicle, car, bike, we can split this into class A = pilot, man < human and class B = bike, car < vehicle and propose an overloaded polysemous type for the verb in question, with two different typings, [[Human]] → P rop and [[V ehicle]] → P rop.

to the correct mapping in MTTs. However, there are some preliminary thoughts on how this can be achieved. First of all, let us look at some cases of polysemy identified in JDM that would not be considered such cases in mainstream formal semantics. For example the term individual is marked as polysemous in JDM. The reason for this is that JDM goes into more detail than what most formal semantics theories do. JDM distinguishes different meanings of individual with respect to its domain of appearance, i.e. the different notion of individual in statistics, biology or administration. This level of fine-grainedness is not found in formal semantics. However, there is no reason why we should not go into this level of detail in MTTs. This can be captured in a translation procedure by presenting the different types according to the different domains. In order to encode domains, we use type theoretic contexts [START_REF] Ranta | Type-Theoretical Grammar[END_REF][START_REF] Chatzikyriakidis | Using signatures in type theory to represent situations. Logic and Engineering of Natural Language Semantics[END_REF]. The following translation can be defined for these cases:

(10) ∀A, B 1 , ..., B n .P OS(N, A) ∧ ¬(Instance(P N, A)) ∧ Domain(B 1 , ..., B n) ∧ A(in B 1 , ..., B n) ⇒ A:cn in Γ B 1, A:cn in Γ B... , A:cn in Γ B n
What about other cases of polysemy like for example book or bank ? One way to look at the translation process in these cases is the following: In case a term is dubbed polysemous in JDM, we look at the semantic refinements and introduce all these refinements as subtypes of the initial term: More information on ways to approach the translation procedure with respect to polysemy will be given in the full paper. There, other cases will be discussed: a) cases where the two meanings are associated with different types (e.g. a case where one meaning is verbal and the other adjectival), b) Cases where a combination of approaches might be needed (e.g. a polysemous noun that further has adjectival or verbal meanings). Further issues of how to use world-knowledge information drawn from JDM and in which way will also be discussed. Last but not least, we are going to discuss how can such an idea be implemented in a system that will take as input information from JDM and will output MTT representations (to be used for example in the proof-assistant Coq).

5

 5

(7)

 7 ∀A, B.Agent(A, B).∃C.(Hyp(A, C) ∨ (A = C)) ⇒ C → P rop

(8)

 8 ∀A, B.Agent(A, B).∃C.Hyp(A, C) ⇒ C → P rop (9) ∀A, B.Char(A, B).∃C.Hyp(A, C) ⇒ ΠC:cn C .C → P rop Due to the abundance of information that JDM has to offer, one can further encode different sorts of information in the form of axioms or definitions. For example the has part relation, in effect a mereological relation, can be translated as a part of relation with part of : [[Object]] → [[Object]] → P rop.

(11)

 11 ∀A, B 1 , ..., B n .P OS(N, A) ∧ ¬(P OS(P N, A)) ∧ Ref (A, (B 1 , ..., B n)) ⇒ A < B 1 , ..., B n :cn Now in order to decide whether we are going to use local coercions or dottypes we proceed as follows: the types that participate in dot-types are limited and enumerable: some of these include [[P hy]], [[Inf o]], [[Event]], [[Inst]] among others. We can thus create such a set of refinements that can be senses of a dottype. Call this set dot refinements, DR. Now, in case the refinements happen to be members of this set then we can form a dot-type out of the individual refinements: (12) ∀A, B 1 ...B n .P OS(N, A) ∧ Ref (A(B 1 , ..., B n))A, B ∈ DR ⇒ A:CN < B 1 • B... • B n

At least in the way it is employed in the Montagovian setting, simple type theory can be viewed as model theoretic. There is however, interesting work on the proof theory of simple type theory. The higher order theorem prover LEO-II[START_REF] Benzmüller | The LEO-II project[END_REF] is an example of such work. We are grateful to an anonymous reviewer for pointing this out to us.

See[START_REF] Luo | Common nouns as types[END_REF] for a number of arguments as regards the advantages of this move.

This does not mean that we are not interested in instances. To the contrary. What we are saying here is that this rule distinguishes between CNs and instances of these CNs (the difference between a type like M an and an instance of this type, e.g. John). There will be a separate rule to derive instances which we do not show here. The type cnis technically a universe, a collection of the names of types into a single type. See[START_REF] Luo | Contextual analysis of word meanings in type-theoretical semantics. Logical Aspects of Computational Linguistics (LACL[END_REF][START_REF] Chatzikyriakidis | Adjectives in a modern type-theoretical setting[END_REF] for more information on the use of the type theoretic notion of universe as this is employed in MTT semantics.

Of course, this will treat A and B as perfect synonyms which as we know do not really exist in natural languages. We do not discuss this issue here.

The formula reads as follows: forall A and B, where A is an agent of B (so B is a predicate), if there exists a C such than all A are either hyponyms of C