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Abstract. Markov decision processes (MDP) have become one of the
standard models for decision-theoretic planning problems under uncer-
tainty. In its standard form, rewards are assumed to be numerical ad-
ditive scalars. In this paper, we propose a generalization of this model
allowing rewards to be functional. The value of a history is recursively
computed by composing the reward functions. We show that several vari-
ants of MDPs presented in the literature can be instantiated in this set-
ting. We then identify sufficient conditions on these reward functions
for dynamic programming to be valid. In order to show the potential of
our framework, we conclude the paper by presenting several illustrative
examples.

1 Introduction

In sequential decision-making under uncertainty, Markov Decision Processes
(MDPs) have received much attention as a natural framework both for model-
ing and solving complex structured decision problems [1–5]. In standard MDPs,
scalar rewards – assumed to be additive – are granted along the process, and a
policy is evaluated according to the probabilistic expectation of the cumulated
rewards. Yet, it often happens that some of those assumptions have to be re-
laxed, as in the following cases already highlighted in the literature: rewards are
not static, in the sense that they do not only depend on the current state and the
action carried out: this is the case for instance in MDPs where rewards represent
durations, and these durations vary over time (think about public transporta-
tion: the travel time depends on which bus you catch); rewards are not known
with certainty: the determination of precise rewards remains a bottleneck in
the specification of an MDP, and it is often advantageous to use imprecise or
stochastic rewards; the evaluation of a policy is not performed via probabilistic
expectation: this is the case for instance in high-stake planning situations, where
one wishes to take the level of risk into consideration by using expected utility
instead of probabilistic expectation. Each of these observations have encouraged
researchers to provide different extensions of MDPs, together with dedicated so-
lution procedures: Time-dependent MDPs [3], MDPs with imprecise rewards [5],
MDPs with one-switch utility functions [4].
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In this article, we propose a general framework called MDP with functional
rewards (abbreviated by FRMDP in the sequel) to handle most features of such
variants, and we show how to recast them in our setting. Our approach is based
on the use of functional rewards instead of scalar ones. This can be seen as
a generalization of the work of Serafini [6], who searched for preferred paths in
graphs with functional costs, and of the work of Liu and Koenig [4] who proposed
functional value iteration in MDPs with scalar rewards. In FRMDPs, the value
of a policy in a state can be defined in two ways: a recursive definition based on a
functional version of the Bellman equations [7, 8] and an explicit definition based
on the expectation of cumulated rewards. We first exhibit general conditions for
which the backward induction procedure returns an optimal policy according to
the recursive definition. We however emphasize that in some cases the optimal
policy according to this recursive definition can differ from that according to
the explicit definition. We then exhibit the condition under which both notions
of optimality coincide. For the sake of simplicity, we only consider the finite
horizon case in this paper, although the results could be extended in infinite
horizon MDPs with goal states for instance.

2 Preliminaries and Motivating Example

A Markov Decision Process (MDP) can be defined as a collection of objects {S,
A, pass′ , r

a
s , gs, h} where S is a finite set of states, A is a finite set of actions, pass′

is the probability of reaching state s′ after taking action a in state s, ras is the
immediate reward gained after taking action a in state s, gs is the final reward
received when the process stops at state s and h ∈ IN is a finite horizon.

A history starting from state sh ∈ S corresponds to a sequence: (sh, ah,
sh−1, ah−1, . . . , a1, s0) where ∀i = 1, . . . , h, (ai, si−1) ∈ A × S. A decision rule
δ : S → A is a mapping from states to actions. By abuse of notation, tran-

sition probability p
δ(s)
ss′ is denoted by pδss′ and reward r

δ(s)
s by rδs . The set of

all decision rules is denoted by ∆. A policy π is a sequence of decision rules:
π = (δh, δh−1, . . . , δ1) where ∀t = 1, . . . , h, δt ∈ ∆ is the decision rule applied at
the tth-to-last step.

The value function vπ(s) of a policy π = (δh, δh, . . . , δ1) in a state s, defined
as the expected cumulated reward obtained by executing policy π from state s,
can be computed iteratively by using the Bellman equations:

vπ0 (s) = 0 (1)

vπt (s) = rδts +
∑
s′∈S

pδtss′v
π
t−1(s′) ∀t ≤ h

A policy π is preferred to a policy π′ if and only if ∀s ∈ S, vπ(s) ≥ vπ
′
(s).

An optimal policy is a policy that is preferred to any other policy. The value
function v∗t of an optimal policy satisfies the Bellman optimality equations:

v∗0(s) = 0 (2)

v∗t (s) = max
a∈A

ras +
∑
s′∈S

pass′v
∗
t−1(s′) ∀t ≤ h
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1: ∀s ∈ S, v∗0(s)← 0; t← 0
2: repeat
3: t← t+ 1
4: for all s ∈ S do
5: for all a ∈ A do
6: qt(s, a)← ras +

∑
s′∈S p

a
ss′v

∗
t−1(s′)

7: end for
8: v∗t (s)← maxa∈A qt(s, a)
9: end for

10: until t = h

Fig. 1. Backward Induction

This problem can be solved using the backward induction algorithm (Fig. 1).

A Coffee Robot Example. As a motivating example for our new framework,
we present an adaptation of a shortest path problem in a deterministic graph,
proposed by Serafini [6], to the coffee robot environment [9]. Consider a mo-
bile robot whose task is to bring a coffee to a sleepy researcher. For simplicity,
assume that the laboratory map can be seen as a 3x3 grid. Each cell of this
grid corresponds to an area of the laboratory. The coffee machine is located at
cell (1, 1) and the researcher waits for her coffee at cell (3, 3), where coordinates
(nr, nc) stand for the row and the column of a cell. As the robot can bump into
walls, furniture or people, it could spill the cup of coffee. Spilling the coffee has
not the same cost according to the place where it happens: for instance, it is
more damaging in offices (where there are carpets) than in corridors (where the
floor is covered by lino). In Figure 2, the left (resp. middle) grid corresponds to
the cost (resp. probability) of spilling the coffee according to the location of the
robot. Four actions are available for the robot, which simply consists in decid-
ing in which direction to go: (N)orth, (S)outh, (E)ast or (W)est. Due to faulty
connections in its circuits, the robot has a tendency to drift to the left of the
expected direction (once in ten): for instance, instruction “East” at cell (2, 2)
sometimes leads to cell (1, 3) instead of (2, 3). The robot stops as soon as the
coffee is delivered or spilled. The aim is to determine a policy minimizing the
expected cost of spilling the coffee.

The formalism of MDPs seems well-suited for this problem of sequential de-
cision making under uncertainty. It can be formalized as follows: S = {(nr, nc) :
nr ∈ {1, 2, 3}, nc ∈ {1, 2, 3}}; A = {N,S,E,W} (the possible directions); pass′ =
0.1if s′ = failurea(s) or 0.9if s′ = successa(s) where state s equal (nr, nc) and
state successa(s) (resp. failurea(s)) is the state reached if action a succeeds
(resp. fails, drift to the left of the expected direction) in state s; when action
a brings the robot to the wall, we assume that successa(s) = failurea(s) = s,
meaning that the robot does not move; gs = 0,∀s ∈ S;

It now remains to define the rewards from the matrices of Figure 2. We
assume that cost rs (resp. probability Ps) of spilling the coffee when performing
an action in state s is equal to the value indicated at cell s in the left (resp.
middle) matrix. Note that in the general case, those costs and probabilities may
depend on the action and the destination state. The subtlety here is that a cost
is incurred only if a spilling occurs, which does not seem to naturally fit the
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Fig. 2. The Coffee Example: costs (left) and probabilities (center) of spilling coffee,
first decision rule (right) of π.

usual assumptions of MDPs. The most natural expression of vπt from vπt−1 writes
indeed, for any horizon h and π = (δh, δh−1, . . . , δ1):

vπ0 (s) = 0

vπt (s) = Psrs + (1− Ps)
∑
s′∈S

pδtss′v
π
t−1(s′) ∀t ≤ h

by explicitly taking into account the fact that once the coffee is spilled the
robot stops (and therefore no more cost is incurred in this case). For instance,
vπt (2, 2) = 0.04(−3) + 0.96(0.9vπt−1(2, 3) + 0.1vπt−1(1, 3)) for policy π whose first
decision rule is indicated on the right of Figure 2. This is not the usual form of
the Bellman equations due to Ps. In order to recover this usual form, one needs to
redefine rewards as cs = Psrs and transition probabilities as qass′ = (1−Ps)pass′ :

vπ0 (s) = 0

vπt (s) = cs +
∑
s′∈S

qδtss′v
π
t−1(s′) ∀t ≤ h

We now show that MDPs with functional rewards provide a more intuitive
setting for this problem, and encompass a wide class of MDP variants.

3 MDP with Functional Rewards

An MDP with functional rewards (FRMDP) is an MDP where each reward rass′
is replaced by a function fass′ : R → R where R is a valuation space with a
binary operator maxR that defines a (not necessarily complete) order relation
�R: ∀x, y ∈ R, x �R y ⇔ ∃z ∈ R, x = maxR(y, z). Furthermore, each final
reward gs ∈ IR is replaced by a value in R. Function fass′(x) measures the value
of executing action a in state s, moving to state s′, and assuming that x ∈ R
has already been received. Such functions are called reward update functions. By

abuse of notation, for any decision rule δ, function f
δ(s)
ss′ is denoted fδss′ .

In order to value a policy from an initial state, we assume that set R is
endowed with a mixture operation m that assigns an element m(p, x, y) = px
+ (1− p)y in R to each p in [0, 1] and each ordered pair (x, y) in R × R. Pair
(R,m) is assumed to be a mixture set [10], i.e., the following properties hold:

M1. 1x+ 0x = x,
M2. p1x+ (1− p1)y = (1− p1)y + p1x,
M3. p1[p2x+ (1− p2)y] + (1− p1)y = (p1p2)x+ (1− p1p2)y,

for all x, y in R and p1, p2 in [0, 1]. Note that the mixture of more than two
elements, i.e.,

∑
i pixi, is defined by inductive application of property M3. More-

over, we impose the following independence condition:
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I. x �R y ⇔ px+ (1− p)z �R py + (1− p)z
for all x, y, z in R and p in [0, 1]. This condition well-known in decision the-
ory [11] states that when comparing two elements, only the differing parts are
important in choosing the preferred ones.

As mentioned in the introduction, preferences over policies can be defined
in two ways, as the value function of a policy can be given two definitions:
a recursive one and an explicit one. We present those two definitions in the
following two subsections. We show that the recursive definition allows the use
of dynamic programming under some conditions that we will specify. We then
reveal which property the reward update functions have to satisfy in order for
the explicit definition and the recursive definition to be equivalent.

Recursive Definition. The value function of a policy π = (δh, δh−1, . . . , δ1) in
a state s can be defined recursively with the functional version of the Bellman
equations:

vπ0 (s) = gs (3)

vπt (s) =
∑
s′∈S

pδtss′f
δt
ss′

(
vπt−1(s′)

)
∀t ≤ h

A policy π is preferred to a policy π′ in state s at step t, denoted by π %s,t π′,
if and only if vπt (s) �R vπ

′

t (s). Note that preference relation %s,t may be partial
as �R is not necessarily complete.

Usually, valuation space R is simply taken as the real line IR. The mixture
operation (resp. maxR) is then the usual convex combination between reals
(resp. the usual max operator). For instance, this is the case of standard MDPs,
which are FRMDPs where fass′ is defined from rass′ by fass′(x) = rass′ + x. The
coffee robot example can also be casted in this framework, by setting fass′(x) =
Psr

a
ss′ + (1− Ps)x and gs = 0.
Besides, FRMDPs include many previously proposed variants of MDPs as

special instances when R 6= IR. We detail here two examples:

Time-dependent MDPs [3]. FRMDPs can model problems where the rewards
depend on time. For instance, consider a navigation problem where one wants to
minimize the arrival time. The duration dass′(t) of a transition following action
a from state s to s′ depends on the departure time t at state s. The value of a
history or a policy from a state s, interpreted here as the arrival time, is thus a
function of the departure time. This situation can be modeled with R = IRIR,
which denotes the set of real functions. For any f ∈ R, if the value f(t) repre-
sents the expected final arrival time with t being the departure time from some
state s′, then fass′

(
f
)
(t) = f

(
dass′(t)+t

)
represents the expected final arrival time

when executing action a at time t from state s and arriving in state s′ (at time
dass′(t) + t). Function gs is set to the identity function Id. The choice for gs will
become clear when we present the solving method. For two functions f, g ∈ R,
maxR(f, g) = h where ∀x ∈ IR, h(x) = max(f(x), g(x)). Then, clearly, f �R g
if and only if ∀x ∈ IR, f(x) ≥ g(x). Here, note that R is only partially ordered
by �R. The mixture operation is simply the convex combination of functions.
Note that, contrarily to the dedicated framework provided by [3], FRMDPs can-
not accommodate problems where the transition function also depends on the
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departure time.

Risk-sensitive MDPs [12, 4]: In standard MDPs, the decision criterion for com-
paring policies in a state is simply the mathematical expectation. However, it is
insufficient when one wants to take into account risk aversion for instance. In that
aim, one can use expected utility (EU) instead. For a discrete random variable X
(total reward) whose possible realizations are x1, . . . , xk in R, with probabilities

p1, . . . , pk respectively, it is formulated as follows:
∑k
i=1 piu(xi), where u is the

utility function. An MDP using EU as a decision criterion is an FRMDP with
R = IRIR, ∀f ∈ R, ∀x ∈ IR, fass′

(
f
)
(x) = f

(
rass′ + x

)
and gs = u, where rass′ is

the immediate reward of the initial MDP. Here, again, the value function vπ of
policy π in a state s is a real function. Its interpretation is the following: vπ(s)(x)
represents the expected utility of the total reward obtained by following policy
π from state s, assuming that cumulated reward x has already been received. At
the last time step, clearly the value function of any policy in a state s is gs = u,
which can then be applied on the cumulated rewards received before reaching
the final time step. Operator maxR, relation �R and the mixture operation are
defined as in the previous example.

In a close framework with R = IR, Kreps and Porteus [7] axiomatically jus-
tified a preference system defined recursively for taking into account preferences
on temporal resolution of uncertainty. They identified under which conditions
preferences over policies can be represented by functions fass′ and showed that
fass′ ’s have to be strictly increasing functions. In their framework, Kreps and
Porteus [8] showed that backward induction can be used to determine an opti-
mal policy in finite horizon. Those general results can naturally and easily be
extended to FRMDPs.

Proposition 1 If Condition I holds and the functions fass′ ’s are strictly in-
creasing, then an optimal value function v∗h can be computed recursively with a
functional version of the Bellman optimality equations:

v∗0(s) = gs (4)

v∗t (s) = max
a∈A

R
∑
s′∈S

pass′f
a
ss′
(
v∗t−1(s′)

)
∀t ≤ h

Proof. First, note that Condition I implies:

(x �R y and z �R z′) ⇒ px+ (1− p)z �R py + (1− p)z′

for all x, y, z, z′ in R and p in [0, 1]. This last condition can then be extended
for mixing n elements by induction.

The proof of the proposition can then be done by induction. Obviously,
v∗0(s) = gs as it is true for any policy. Assume that v∗t−1 is the value function of
an optimal policy. Then, for any policy π, we have ∀s ∈ S, v∗t−1(s) �R vπt−1(s).
As all reward update functions are strictly increasing, for any action a, we have
∀s, s′ ∈ S, fass′

(
v∗t (s′)

)
�R fass′

(
vπt (s′)

)
. Compute v∗t (s) following Equation 4.

By Condition I, we have then for any policy π, ∀s ∈ S, v∗t (s) �R vπt (s).

Note the importance of the existence of the operator maxR as it entails
the unicity of the optimal value function, even if R may be partially ordered (as
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1: ∀s ∈ S, v∗0(s)← gs; t← 0
2: repeat
3: t← t+ 1
4: for all s ∈ S do
5: for all a ∈ A do
6: qt(s, a)←

∑
s′∈S p

a
ss′f

a
ss′

(
v∗t−1(s′)

)
7: end for
8: v∗t (s)← max

a∈A
Rqt(s, a)

9: end for
10: until t = h

Fig. 3. Functional Backward Induction

whenR = IRIR for instance). The conditions of Proposition 1 hold for all previous
examples. When R = IRIR, it is obvious from the fact that �R is nothing but the
pointwise dominance relation between functions. From now on, we will assume
that the validity conditions of Proposition 1 hold. Then, Prop. 1 implies that
the functional backward induction (Fig. 3) can be used to find an optimal policy.

Explicit Definition. Another natural way for constructing preferences over
policies in FRMDPs is as follows. First, we define the value of a history γ = (sh,
ah, sh−1, . . ., a1, s0) by r(γ) = fahshsh−1

◦ fah−1
sh−1sh−2 ◦ . . . ◦ fa1s1s0 ◦ gs0 where ◦

denotes the function composition operator. Note that r(γ) is in R. Then, as the
application of a policy π in a state s induces a probability distribution, denoted
Pπs , over histories, the value of π in state s can be defined by:

vπh(s) =
∑
γ

Pπs (γ)r(γ) (5)

Using these value functions, we can compare policies. A policy π is preferred
to a policy π′ in state s at horizon h if and only if vπh(s) %R vπ

′

h (s). Then, the
value function of optimal policies in s at horizon h can be found as follows:

v∗h(s) = max
π

Rvπh(s) (6)

Unfortunately, when one only assumes that fass′ is strictly increasing, (3)
and (5) do not define the same functions in general, that is we do not have
vπh(s) = vπh(s) for all policy π and all state s. Thus, optimal policies can be
different in the two preference systems, which may be problematic. A linearity
requirement on those reward update functions has to be enforced for the two
preference systems to be equivalent. A function f : R → R is said to be linear
(with respect to the mixture set) if and only if ∀x, y ∈ R,∀p ∈ [0, 1]:

f(px+ (1− p)y) = pf(x) + (1− p)f(y)

The following proposition formally states this result:

Proposition 2 If all reward update functions are linear functions, then:

(i) With (3), (5) can be computed recursively , i.e., vπt (s) = vπt (s) ∀π,∀s,∀t
If moreover Condition I holds and all reward update functions are strictly

increasing, then:

(ii) With (4), (6) can be computed recursively, i.e., v∗t (s) = v∗t (s) ∀s,∀t
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Proof. Again, the proof of (i) can be done by induction to show that the value
function defined by Equations 3 and that defined by Equations 5 are equal.
Property (ii) is then a corollary of Proposition 1.

As a side note, one can also remark that R endowed with a mixture set,
Condition I and the linearity requirement implies that FRMDPs are algebraic
MDPs [13].
For the previous examples, the linearity condition is satisfied. This is obvious for
the coffee robot problem. When R = IRIR, for instance for risk-sensitive MDPs,
we can check that ∀f, g ∈ R, ∀p ∈ [0, 1], ∀x ∈ IR,

fass′
(
pf + (1− p)g

)
(x) =

(
pf + (1− p)g

)
(rass′ + x)

= pf
(
rass′ + x

)
+ (1− p)g

(
rass′ + x

)
= pfass′

(
f
)
(x) + (1− p)fass′

(
g
)
(x)

Generalization When maxR Does Not Exist. In this section, we relax the
requirements imposed on R. We do not assume anymore that there exists an
operator maxR. The only assumption that we make on R is that it is partially
ordered by an order relation �R. For instance, in this setting, one can think of
multicriteria problems with R = IRk (where k is the number of criteria) and �R
the Pareto dominance1. Clearly, in such an example, maxR is not defined.

In this generalized framework, propositions similar to the previous ones can
be proved. We first give a few notations. The set of maximal elements of a
set with respect to an order relation �R is denoted ∀Y ⊆ R,max�R(Y ) =
{y ∈ Y : ∀z ∈ Y, not(z �R y)}. Furthermore, we denote by P∗(R,�R) the
set {Y ⊆ R : Y = max�R(Y )}. max�R can be seen as a binary operator, i.e.
∀X,Y ∈ P∗(R,�R), max�R(X,Y ) = max�R(X ∪Y ). Besides, for any function
f : R → R, for any Y ⊆ R, f(Y ) = {f(y) : y ∈ Y } ⊆ R.

All the propositions that we have presented previously can now be written by
replacing R by space P∗(R,�R) which is endowed with max�R seen as a binary
operator. We just write the equations for finding the maximal value functions,
which are elements of the following sets:

V ∗0 (s) = {gs}
V ∗t (s) = maxa∈A

�R{
∑
s′∈S p

a
ss′f

a
ss′

(
v(s′)

)
: v ∈ V ∗t−1}

where V ∗t−1 = {v ∈ RS : ∀s ∈ S, v(s) ∈ V ∗t−1(s)}. In this more general setting,
one can then formulate a generalized functional backward induction (Fig. 4)

Discussion. As noted before, FRMDPs may be reformulated as MDPs by state
augmentation. However, this may not be a natural way for representing pref-
erences in the sequential decision-making problem at hand. We argue that the
general FRMDP framework is more suitable when preferences become a bit so-
phisticated. First, it allows more flexibility into the modeling of preferences by
allowing functional rewards. Moreover, it clearly uncouples, when modeling a
problem, the dynamic of the system and the preference structure.

In practice, for being able to apply efficiently the functional backward induc-
tion or the functional value iteration, one exploits specific properties of set R,

1 (x1, . . . , xk) �R (y1, . . . , yk)⇔ ∀i = 1, . . . , k, xi ≥ yi.
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1: ∀s ∈ S, V ∗0 (s)← {gs}; t← 0
2: repeat
3: t← t+ 1
4: for all s ∈ S do
5: for all a ∈ A do
6: Qt(s, a)← max�R

v∈V ∗t−1

∑
s′∈S p

a
ss′f

a
ss′

(
v(s′)

)
7: end for
8: V ∗t (s)← max

a∈A
�RQt(s, a)

9: end for
10: until t = h

Fig. 4. Generalized Functional Backward Induction

together with the nature of operator maxR (or relation �R). For instance, if R
is the set of piecewise-linear real functions and maxR is the pointwise maximum
operation, Boyan and Littman [3] (in the setting of time-dependent MDPs) dis-
cuss the restrictions needed for exact computations, and suggest efficient data
structures to represent and manipulate the subsequent (piecewise-linear) value
functions. More generally, if R is the set of real functions, these real functions
may be approximated by piecewise-linear functions, and algorithms dedicated
to this latter type of functions can be applied to find approximate solutions by
adapting the work of Liu and Koenig [14].

Interestingly, note that the class of piecewise linear functions is not the only
one for which efficient algorithms can be designed. Consider a certain class C
of real functions such that C is a real space vector. A real function f is called
piecewise-C if the real line can be partitioned into intervals such that f re-
stricted on each interval is in C, i.e., ∃n ∈ IN∗,∃f1, . . . , fn ∈ C,∃w0, . . . , wn ∈
IR ∪ {−∞,+∞}, w0 < . . . < wn,∀i = 1, . . . , n, ∀x ∈]wi−1, wi], f(x) = fi(x).
Obviously, any function in C is piecewise-C. Let PWC denote the set of real
functions that are piecewise-C.

If we take R = PWC, value functions are elements of PWCS , the set of
functions from S to PWC. We define operator L from PWCS to PWCS by:

(Lv)(s) = maxa∈A
R∑

s′∈S p
a
ss′f

a
ss′(v)

where v ∈ PWCS and s ∈ S. With this operator, (4) can simply be rewritten:

v∗0(s) = gs
v∗t (s) = L(v∗t−1)(s) ∀t ≤ h

It is then easy to see that the real space vector PWCS is closed under operator
L, i.e., Lv ∈ PWCS for any v ∈ PWCS .

This framework is a generalization of piecewise-linear functions. Other classes
of functions may be convenient for efficient computations, e.g., the class of
piecewise-linex function2 [14]. Another interesting class is C = P2, the set of
polynomials of degree 2, as the application of operator L on functions in PWP2

can be computed efficiently. We detail how to proceed in the next first example.

2 A linex function is the sum of a linear function and an exponential function.
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4 Illustrative Examples

Our framework is very general as it encompasses many previously proposed mod-
els. We now present three new examples to illustrate the usefulness of our results.
In standard MDPs, one wants to find a policy that maximizes the expected cu-
mulated rewards. However, in high-stake planning situations, it is sensible to
take also into account the variability of the total reward received from the initial
state. A way to tackle this issue is to compute a policy optimizing the expected
utility (EU) of the total reward. Expected utility is very popular in decision
theory, as it enables to simply model risk aversion by concavity of the utility
function (λu(x) + (1− λ)u(x′) ≤ u(λx+ (1− λ)x′) for λ ∈ [0, 1]). If utility func-
tion u is quadratic, i.e., u(x) = bx2 + cx+ d, risk aversion is therefore modeled
by setting coefficient b to a negative value.

Deterministic Rewards. In this first example, we show how one can op-
timize EU with a quadratic utility function and deterministic rewards. Let
P2 = {f(x) = bx2 + cx + d : b, c, d ∈ IR} be the set of polynomials of degree at
most 2. Let PWP2 be the set of functions that are piecewise-P2.

In order to operationally implement operator L, three primitives are required:
one primitive implementing function fas,s′ , one for the linear combination of
functions in PWP2, and one for the pointwise maximum of functions in PWP2.

For any states s, s′ and any action a, function fass′ is defined here by ∀v ∈
PWP2, ∀x ∈ IR, fass′

(
v
)
(x) = v(rass′+x). By definition, any piecewise-P2 function

v is defined by a sequence (wi, bi, ci, di) for i = 1, . . . , n where ∀x ∈ IR, ∃j =
1, . . . , n, x ∈]wj−1, wj ], v(x) = bjx

2 + cjx+ dj . Function fass′(v) is given by the
following sequence for i = 1, . . . , n, (wi− rass′ , bi, 2birass′ + ci, bir

a
ss′

2 + cir
a
ss′ +di).

To obtain linear combinations of piecewise-quadratic functions, one first finds
an interval partition of the real line such that on each interval, each PWP2

function is in P2, then computes linear combinations of coefficients bi, ci, di.

We now present how to compute the pointwise max of two functions in
PWP2. The case of more than two functions is obtained by induction. We present
the computation in the general case, but this computation could be slightly sim-
plified by using the fact that the functions are all increasing since they represent
utility functions. Let v, v′ ∈ PWP2. We can assume that both functions are de-
fined on the same interval partition, otherwise just take a finer interval partition.
On each interval ]w,w′], four cases can occur:

1. v− v′ has no root in ]w,w′[, then the max on ]w,w′] is v if v− v′ is positive
in ]w,w′[ and v′ otherwise.

2. v − v′ has one root r in ]w,w′[, then we obtain two P2 functions (possibly
identical), one defined on ]w, r], the other on ]r, w′], equal to v or v′ depending
on the sign of v − v′ on these two intervals.

3. v − v′ has two roots r1 < r2 in ]w,w′[, then we obtain three P2 functions
on the following three intervals ]w, r1], ]r1, r2] and ]r2, w

′] equal to v or v′

depending on the sign of v − v′ in those intervals.

4. v − v′ = 0, then the max on ]w,w′] is simply v.
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Note that the computation of the roots is of course very simple since it amounts
to solve quadratic equations by using discriminants.

For this setting, we implemented the functional value iteration with piecewise-
quadratic functions. On the classic problem of navigation of an autonomous
agent in a grid, our experiments show that the functional value iteration is be-
tween 10% to 50% slower than standard value iteration, depending on the size of
the problem and the quadratic utility function. This experimental observation
indicates that functional value iteration could be reasonably exploited when a
suitable class of functions is chosen.

Random Rewards. The second problem we present is a generalization of an
optimal path problem in graphs with stochastic weights investigated by Loui
[15]. The difference here is that the consequences of actions are stochastic. More
specifically, this problem corresponds to an MDP where rewards are not known
precisely. For illustration, consider a stochastic shortest problem where the du-
ration of an action is not known with certainty. In this setting, one could model
the durations with independent random variables. If we were optimizing the
expected duration time, one could replace the random variables by their mean
and solve the problem as a standard MDP. However, if instead, we optimize the
expected utility of the total duration time, in order to take into account risk
attitude, the problem does not boil down to a standard MDP anymore.

Such a problem can be formalized in the setting of FRMDP as follows: R is
the set of real random variables; fass′(X) = Rass′ + X where Rass′ ∈ R; gs = 0
where 0 is the null random variable.

Without any assumption on the random variables, the determination of a
policy optimizing EU in this setting can be hard in the general case. We assume
from now on that all rewards are independent Gaussian random variables. This
property has nice consequences from the computational viewpoint: the Gaus-
sian distribution N (µ, σ2) is completely characterized by its mean µ and its
variance σ2, and furthermore λ1X1 + λ2X2 ∼ N (λ1µ1 + λ2µ2, λ

2
1σ

2
1 + λ22σ

2
2)

for two independent random variables X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2).

Consequently, the sum of rewards obtained along a history and therefore the
total reward obtained by applying a given policy are both Gaussian random
variables. As underlined by [15], the expected utility of a Gaussian distribution
N (µ, σ2) is equal to d + cµ + bµ2 + bσ2 if the utility function u is quadratic,
i.e., u(x) = bx2 + cx + d. As u is a utility function, we restrict its domain of
definition to an interval on which it is increasing. Then, on that interval, the
function u′ : IR2 → IR defined by u′(x, y) = d+ cx+ bx2 + by is increasing in its
first argument. For risk aversion, b is negative, which means that u′ is decreas-
ing on its second argument. Consequently, for two Gaussian defined respectively
by (µ, σ2) and (µ′, σ′2), whenever µ ≥ µ′ and σ2 ≤ σ′2, one can conclude that
the Gaussian defined by (µ, σ2) is preferred. This observation suggests to use
the following approach. The sequential decision-making problem can be formal-
ized in the setting of FRMDPs as follows: R = {(µ, σ2) : µ ∈ IR, σ2 ∈ IR∗+};
fass′(µ, σ

2) = (µass′ + µ, σass′
2 + σ2) where Rass′ ∼ N (µass′ , σ

a
ss′

2); gs = (0, 0).
We define �R as follows (µ, σ2) �R (µ′, σ′2) ⇔ (µ ≥ µ′ and σ2 ≤ σ′2). Note
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that this order relation is partial. The mixture set on R is defined as follows:
p(µ, σ2) + (1 − p)(µ′, σ′2) = (pµ + (1 − p)µ′, p2σ2 + (1 − p)2σ′2). Condition I
holds in this context and one can easily check that functions fass′ ’s are linear
and strictly increasing. Since order relation �R is partial, applying the Bellman
optimality equations yields a set of maximal value functions. Finally, the value
function that is optimal with respect to EU can be found by scanning this set.

Time-Dependent Rewards. As a final example, we simply note that various
features of different previously proposed extensions of MDPs can be mixed and
take into account simultaneously in FRMDPS. For instance, the optimization of
expected utility in problems where rewards are time-dependent can naturally be
expressed in our framework. However, to the best of our knowledge, no previous
framework can model this kind of setting.

5 Conclusion

In this paper, we have proposed FRMDPs as a new general framework for mod-
eling sequential decision-making problems under uncertainty when preferences
are sophisticated. It generalizes many previously known propositions and en-
compasses new problems. We made explicit the conditions that allow the use
of a functional backward induction algorithm. We showed in this paper that in
some situations an FRMDP could be solved directly and efficiently. To illustrate
our proposition, we showed its exploitation on three new problems that previous
frameworks could not tackle.
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