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The equations governing the conditions of mechanical equilibrium in fluid membranes subject to bending are revisited thanks to the principle of virtual work. The note proposes systematic tools to obtain the shape equation and the line condition instead of Christoffel symbols and the complex calculations they entail. The method seems adequate to investigate all problems involving surface energies.

Introduction

Lipid molecules dissolved in water spontaneously form bilayer membranes, with properties very similar to those of biological membranes and vesicles [START_REF] Alberts | Molecular biology of the cell, 4th edn[END_REF]. The knowledge of the mechanics of vesicles started more than thirty years ago when both experimental and theoretical studies of amphiphilic bilayers engaged the attention of physicists and the interest of mathematicians [START_REF]Structure and dynamics of membranes[END_REF]. In a viscous fluid, vesicles are drops a few tens of micrometers wide, bounded by impermeable lipid membranes a few nanometers thick. The membranes are homogeneous down to molecular dimensions; consequently, it is possible to represent the vesicle as a two-dimensional smooth surface in three-dimensional Euclidean space. Depending on the cases, the bilayers may be considered as liquid or solid.

When liquid, the lipid molecules form a two-dimensional lattice and the membranes are described with an effective energy that does not penalize tangential displacements. Their mechanical properties permit a continuous mechanical description; such a deformable object is characterized by a flexion-governed membrane rigidity resulting from the curvature energy. The general theory accounts for surface strain, director extension, and director tilt associated with the misalignment of the surface normal. Galilean invariance is tantamount to the invariance of the energy under arbitrary two-dimensional orthogonal transformations and regarded as a function of a symmetric two-dimensional tensor. In this respect, the Helfrich Hamiltonian, which is quadratic in the curvature eigenvalues, provides a good description of lipid membranes and associates bending with an energy penalty [START_REF] Helfrich | Elastic properties of lipid bilayers: theory and possible experiments[END_REF][START_REF] Zhong Can | Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders[END_REF][START_REF] Seifert | Configurations of fluid membranes and vesicles[END_REF]. Equilibrium configurations of the membrane satisfy a single normal 'shape' equation corresponding to the extrema of the Hamiltonian. Fournier used a variational method to study fluid membranes [START_REF] Fournier | On the stress and torque tensors in fluid membranes[END_REF]. Contrary wise, in this note, we revisit the mechanical behaviour of vesicle membranes by using the principle of virtual work [START_REF] Germain | The method of the virtual power in continuum mechanics -Part 2 : microstructure[END_REF][START_REF] Daher | The method of virtual power in continuum mechanics: application to media presenting singular surfaces and interfaces[END_REF][START_REF] Gouin | The d'Alembert-Lagrange principle for gradient theories and boundary conditions[END_REF] together with lemmas from the intrinsic differential geometry of surfaces; consequently, we do not need to use coordinate lines and Christoffel symbols associated with the membrane metric are useless here. For the Helfrich model, we established the equilibrium equation and the boundary conditions -which even apply to compressible media and extensible membranes on cell surfaces -as well as the condition on a surface/vesicle contact line [START_REF] Steigmann | Energy minimizing states of capillary systems with bulk, surface and line phases[END_REF][START_REF] Capovilla | Stresses in lipid membranes[END_REF][START_REF] Biscari | Impermeability effects in three-dimensional vesicles[END_REF][START_REF] Napoli | Equilibrium of nematics vesicles[END_REF][START_REF] Tu | Geometry of membranes[END_REF]. For example, in the case of bending energy, we obtain the equilibrium equation of the vesicle, the conditions on surfaces and line when the vesicle is in contact with a solid boundary; the condition on the vesicle membrane yields the 'shape' equation and a modified Young-Dupré equation on the line.

The note is organized as follows:

In Section 2, we recall the principle of virtual work. Section 3 introduces universal geometrical tools associated with the notion of virtual displacements introduced in Section 2.1 and the Stokes formula for volumes, surfaces and lines. The variations of tensorial quantities and differential forms on surfaces and lines are proposed in an intrinsic form, with no representation in coordinate lines. Section 4 describes the vesicles' main background and the consequence it has on the variation of the vesicle's energy. A conclusion focusing on the advantage of the intrinsic geometrical method ends the note.

The principle of virtual work applied to continuous media

In continuum mechanics, the equilibrium of a medium can be studied with either the Newton model of forces or the Lagrange model of work of forces. At equilibrium, a minimization of the energy associated with a one-parameter family corresponds with the zero value of a linear functional of virtual displacements. The linear functional expressing the forces' work is related to the theory of distributions; a decomposition, associated with displacements considered as test functions whose supports are compact manifolds, uniquely determines a separated form respecting both the test functions and their transverse derivatives [START_REF] Schwartz | Théorie des distributions[END_REF]. Then, the equilibrium equation and the boundary conditions are straightforwardly deduced from the principle of virtual work.

The notion of virtual displacement

The position of a continuous medium is classically represented by a transformation ϕ of a three-dimensional reference domain D 0 into the physical set D. In order to describe ϕ analytically, the variables X = (X 1 , X 2 , X 3 ) which single out individual particles in D 0 correspond to Lagrange's variables; the variables x = (x 1 , x 2 , x 3 ) in D correspond to Euler's variables. Transformation ϕ thus represents the position of a continuous medium,

x = ϕ (X) or x i = ϕ i (X 1 , X 2 , X 3 ) , i ∈ {1, 2, 3} ,
and possesses inverse and continuous derivatives up to the second order except on singular surfaces, curves or points. To formulate the principle of virtual work in continuum mechanics, we recall the notion of virtual displacements [START_REF] Serrin | Mathematical principles of classical fluid mechanics[END_REF]: A one-parameter family of varied positions possessing continuous partial derivatives up to the second order and analytically expressed by the transformation x = Φ (X, η)

with η ∈ O,
where O is an open real set containing 0, and is such that Φ (X,0) = ϕ (X). The derivative, with respect to η at η = 0, is noted δ and is named variation [START_REF] Serrin | Mathematical principles of classical fluid mechanics[END_REF] . In the physical space, the virtual displacement ζ of a particle at x is such that ζ = δx when we assume δX = 0 and δη = 1 at η = 0; the virtual displacement ζ belongs to T x (D), a tangent vector bundle to D at x,

x ∈ D -→ ζ = ψ(x) ≡ ∂Φ ∂η | η=0 ∈ T x (D).

The background underlying the principle of virtual work

The virtual work of forces δτ is a linear functional value of the virtual displacement δϕ determined by the variation of each particle and defined by

δτ =< ℑ, δϕ > (1) 
where < , > denotes an inner product. In Relation (1), δϕ is submitted to covector ℑ denoting all forces and stresses. Let us simply note that in case of motion, we must add the inertial forces, corresponding to the accelerations of masses, to the volume forces, and eventually add the viscous stresses to the conservative stress tensor. The virtual displacements are naturally submitted to the constraints resulting from constitutive equations such as mass conservation for compressible media. In this case, the constraints are not necessarily expressed by Lagrange multipliers but are directly taken into account by virtual displacements submitted to the variations of the constitutive equations. Conversely, when geometrical assumptions are assumed, the Lagrange multipliers associated with geometrical conditions constrain the virtual displacements, which in all cases are named virtual displacements compatible with the constraints. The principle of virtual work is expressed in the form : For all virtual displacements compatible with the constraints, the virtual work of forces is null.

If the distribution ( 1) is in a separated form [START_REF] Schwartz | Théorie des distributions[END_REF], the principle of virtual work yields the equilibrium (or motion) equation and the boundary conditions [START_REF] Gouin | The d'Alembert-Lagrange principle for gradient theories and boundary conditions[END_REF].

Intrinsic geometrical tools for the energy of surfaces and lines

We assume that D has a differential boundary S, except on its edge C. We respectively note S 0 and C 0 the images of S and C in D 0 ; D and D 0 are Euclidian sets. The unit vector n and its image n 0 are the oriented normal vectors to S and S 0 ; c m ≡ (R m ) -1 is the mean curvature of S; the vector t is the oriented unit vector to C and n ′ = t × n is the unit binormal vector [START_REF] Aris | Vectors, tensors, and the basic equations of fluid mechanics[END_REF][START_REF] Kobayashi | Foundations of differential geometry[END_REF]. The tensor F ≡ ∂x/∂X denotes the Jacobian transformation of ϕ; symbols div, rot, tr and superscript T refer to the divergence, rotational, trace operators and the transposition, respectively; 1 denotes the identity tensor.

Lemma 1 : we have the following relations

δ det F = det F div ζ , (2) 
δ F -1 n = -F -1 ∂ζ ∂x n + F -1 δn. (3) 

Proof of Rel. (2):

The Jacobi identity written in the form δ(det F ) = det F tr F -1 δF and

δF = δ ∂x ∂X = ∂ζ ∂X , imply, tr F -1 δF = tr ∂X ∂x ∂ζ ∂X = tr ∂ζ ∂X ∂X ∂x = tr ∂ζ ∂x = div ζ.
For an incompressible medium, det F = 1 and

ζ verifies div ζ = 0. ( 4 
)
Proof of Rel. (3):

δ F -1 n = δ F -1 n + F -1 δn and F -1 F = 1 =⇒ δ F -1 F + F -1 δF = 0, imply δ F -1 = -F -1 ∂ζ ∂X F -1 = -F -1 ∂ζ ∂x . (5) 
Lemma 2 : The variation of E = S σ ds is given by the relation

δE = S δσ - 2σ R m n T + grad T σ 1 -nn T ζ ds + C σ n ′ T ζ dl. ( 6 
)
where σ is a scalar field defined on S and ds, dl are the surface and the line measures.

Proof of Rel. ( 6):

The normal vector field is locally extended in the vicinity of S by the relation n(x) = grad d(x), where d is the distance of point x to S; for any vector field w,

rot(n × w) = n div w -w div n + ∂n ∂x w - ∂w ∂x n.
From n T ∂n ∂x = 0 and div n = -2 R m , we deduce on S,

n T rot(n × w) = div w + 2 R m n T w -n T ∂w ∂x n. (7) 
Due to E = S σ det (n, d 1 x, d 2 x) where d 1 x and d 2 x are two coordinate lines of S, we get,

E = S0 σ det F det(F -1 n, d 1 X, d 2 X), with d 1 x = F d 1 X, d 2 x = F d 2 X. Then, δE = S0 δσ det F det (F -1 n, d 1 X, d 2 X) + S0 σ δ det F det (F -1 n, d 1 X, d 2 X) .
Due to Lemma 1, n T ∂n ∂x = 0 and to n T δn = 0,

S0 σ δ det F det (F -1 n, d 1 X, d 2 X) = S σ div ζ det(n, d 1 x, d 2 x) + σ det (δn, d 1 x, d 2 x) -σ det ∂ζ ∂x n, d 1 x, d 2 x ds = S div(σ ζ) -(grad T σ) ζ -σn T ∂ζ ∂x n ds. Relation (7) yields div (σ ζ) + 2σ R m n T ζ -n T ∂(σ ζ) ∂x n = n T rot (σ n × ζ). Then, S0 σ δ det F det (F -1 n, d 1 X, d 2 X) = S - 2σ R m n T + grad T σ (nn T -1) ζ ds + S n T rot (σ n × ζ) ds,
where grad T σ (1nn T ) ≡ grad T tg σ belongs to the cotangent plane to S and

S n T rot (σ n × ζ) ds = C (t, σ n, ζ) dl = C σ n ′ T ζ dl.
Then, we obtain relation [START_REF] Fournier | On the stress and torque tensors in fluid membranes[END_REF].

Lemma 3 : The variation of the internal energy is

δ D ρ α dv = D (grad p) T ζ dv - S p n T ζ ds. ( 8 
)
where ρ is the mass density, α(ρ) is the fluid specific energy, p = ρ 2 ∂α ∂ρ is the thermodynamical pressure [START_REF] Rocard | Thermodynamique[END_REF] and dv is the measure of volume.

Proof of Rel. ( 8):

δ D ρ α dv = D ρ δα dv where δα = (∂α/∂ρ) δρ. Due to mass conserva- tion, ρ det F = ρ 0 (X), (9) 
where ρ 0 is defined on D 0 . The differentiation of Eq. ( 9) yields δρ det F + ρ δ(det F ) = 0, and from Lemma 1, we get

δ ρ = -ρ div ζ.
Consequently, div (p ζ) = p div ζ + (grad p) T ζ and we deduce relation [START_REF] Daher | The method of virtual power in continuum mechanics: application to media presenting singular surfaces and interfaces[END_REF].

In the same way, Lemma 4 : For any scalar field p defined on D,

δ D p div ζ dv = - D (grad p) T ζ dv + S p n T ζ ds. ( 10 
)
Lemma 5 : The variation of the external unit vector normal to S is

δn = nn T -1 ∂ζ ∂x T n. ( 11 
)
Proof of Rel. [START_REF] Capovilla | Stresses in lipid membranes[END_REF]:

The property n T dx = 0 =⇒ n T F dX = 0 implies that vector F T n is normal to S 0 and consequently, n T 0 n 0 = 1 yields

n 0 = F T n (n T F F T n) , n = F -1T n 0 (n T 0 F -1 F -1T n 0 )
.

Then, δn 0 = 0 on the reference surface S 0 implies,

δn = δF -1T n 0 n T 0 F -1 F -1T n 0 - 1 2 F -1 n 0 δ n T 0 F -1 F -1T n 0 n T 0 F -1 F -1T n 0 3 2
.

From Eq. ( 5), δF -1T = -∂ζ ∂x T F -1T and consequently,

δn = - ∂ζ ∂x T n + 1 2 n n T ∂ζ ∂x n + n T ∂ζ ∂x T n .
Then, n T ∂ζ ∂x n = n T ∂ζ ∂x T n implies relation [START_REF] Capovilla | Stresses in lipid membranes[END_REF].

Lemma 6 : The variation of the mean curvature of S is

δc m = ∂c m ∂x ζ + 1 2 ∆ tg (n T ζ), (12) 
where ∆ tg is the tangential Beltrami-Laplace operator on surface S.

Proof of Rel. (12):

The variation of a derivative is given by

δ ∂n ∂x = ∂δn ∂x - ∂n ∂x ∂ζ ∂x . (13) 
From 2 c m = -div n = -tr ∂n ∂x and Eq. ( 13) we get,

2 δc m = -tr ∂δn ∂x + tr ∂n ∂x ∂ζ ∂x = -div δn + div ∂n ∂x ζ -2 ∂(div n) ∂x ζ.
But, ∂(div n) ∂x = -2 ∂c m ∂x and by using Eq. ( 11) we get,

-div δn + div ∂n ∂x ζ = div   1 -nn T ∂ n T ζ ∂x T   = div grad tg (n T ζ),
and from div grad tg (n

T ζ) = ∆ tg (n T ζ) ( 1 )
, we deduce relation [START_REF] Biscari | Impermeability effects in three-dimensional vesicles[END_REF].

1 For all vector fields x ∈ D → v(x), divtgv = divv-n T (∂v/∂x) n. Then, divtgv = divvtr nn T (∂v/∂x) . But div nn T v = div nn T v + tr nn T (∂v/∂x) and div nn T = 4 Description of a vesicle membrane in contact with a solid surface

Membranes' bending energy

Vesicles consist in a three-dimensional domain bounded by a liquid bilayer. Vesicle interfaces are represented by material surfaces endowed with a bending surface energy. In our representation, a vesicle fills set D and lies on the surface of a solid; the vesicle is also surrounded by a fluid (see Fig. 1). All the interfaces between vesicle, solid and liquid are assumed to be regular. We note To obtain the equilibrium equation and the boundary conditions, it is neces-

div (n) n T + n T (∂n/∂x) T . From (∂n/∂x) n = 0 and divn = -2/Rm , we get divtgv = div (1 -nn T ) v -2 n T v/Rm . From divtgvtg = divvtg where vtg = (1 -nn T )v, we get div gradtg(n T ζ) = divtg gradtg (n T ζ) = ∆tg(n T ζ).
2 Our aim is not to consider the thermodynamics of interfaces. Consequently σ i , i ∈ {1, 2, 3} are not taken into account as a function of variables like temperature or entropy.

sary to propose a constitutive behaviour for the membrane's energy density σ 2 . As proved in the literature, the surface energy density on S 2 must be a function of the curvature tensor along the surface. To be intrinsic, σ 2 must be a function of the two curvature tensor invariants. If we note c 1 = 1/R 1 and c 2 = 1/R 2 the eigenvalues of the curvature tensor, the mean curvature and the Gauss curvature of S 2 are respectively noted,

H = c 1 + c 2 2 = 1 R m , K = c 1 c 2 = 1 R 1 R 2 .
The external normal n 2 to S 2 can be locally extended in the vicinity of S 2 by the relation n 2 (x) = grad d 2 (x), where d 2 is the distance of point x to S 2 (see Section 3, Lemma 2). Then,

2H = -div n 2 ≡ -tr ∂n 2 ∂x , ∂n 2 ∂x = ∂n 2 ∂x T , n 2 T ∂n 2 ∂x = 0, (14) 
2K = tr ∂n 2 ∂x 2 -tr ∂n 2 ∂x 2 .
The surface's energy density σ 2 is assumed to be a regular function of H and K, but in the Helfrich model, the vesicle's surface energy is linear in K.

The Gauss-Bonnet theorem ensures that the integration term corresponding to K is constant for closed surfaces, otherwise, the geodesic curvature of the boundary plays a role; this means, as established in [START_REF] Fournier | On the stress and torque tensors in fluid membranes[END_REF], that the Gaussian curvature affects the boundary line actions. Nonetheless, experimental and theoretical studies have shown that the energy mainly stems from the bending [START_REF]Structure and dynamics of membranes[END_REF]; consequently, in the Helfrich model, the surface energy density on S 2 is taken as a form without term in K:

σ 2 = σ o + κ 2 [2H -c o ] 2 , ( 15 
)
where κ is the bending rigidity, c o is the spontaneous curvature and σ o is the superficial energy of capillarity. The main interest being the membrane's bending energy and its behaviour, we assume that the values of σ o , σ 1 and σ 3 are constant. This special case can be easily extended, as done in [START_REF] Gouin | Interfaces endowed with non-constant surface energies revisited with the d'Alembert-Lagrange principle[END_REF] for an other problem of capillarity.

Lemma 7 : The variation of the bending energy

E 2 = S2 σ 2 ds of a mem- brane is δE 2 = S2 dσ 2 dn 2 -2H σ 2 + 1 2 ∆ tg ∂σ 2 ∂H n T 2 ζ ds + C n ′T 2 (σ 2 ζ + w) dl, ( 16 
)
where w = 1 2

∂σ 2 ∂H grad tg (n T 2 ζ) -n T 2 ζ grad tg ∂σ 2 ∂H and d dn 2 ≡ ∂ ∂x n 2
is the normal derivative in the direction n 2 .

Proof of Rel. ( 16):

From Eq. ( 6), σ 2 = σ 2 (H) and Eq. ( 12), we obtain,

δE 2 = S2 ∂σ 2 ∂H ∂H ∂x ζ + 1 2 ∂σ 2 ∂H div grad tg (n T 2 ζ) -2 σ 2 Hn T 2 ζ -grad σ 2 1 -n 2 n T 2 ζ ds + C σ 2 n ′T 2 ζ dl But, grad σ 2 = ∂σ 2 ∂H ∂H ∂x ; then, δE 2 = S2 1 2 ∂σ 2 ∂H div grad tg (n T 2 ζ) + dσ 2 dn 2 -2 H σ 2 n T 2 ζ ds+ C σ 2 n ′T 2 ζ dl,
and from 1 2

∂σ 2 ∂H div grad tg (n T 2 ζ) = 1 2 ∆ tg ∂σ 2 ∂H n T 2 ζ + div w,
we deduce relation [START_REF] Serrin | Mathematical principles of classical fluid mechanics[END_REF].

Expression of the virtual work of forces

For the Helfrich model, the total energy of the vesicle writes

Ξ = D ρ α(ρ) dv + S1 σ 1 ds + S2 σ 2 ds.
The virtual work of volume force ρ f defined on D writes D ρ f T ζ dv. The virtual work of surface force T exerted on S is S T T ζ ds. Due to Eq. ( 6), -C σ 3 n ′ T 1 ζ dl corresponds to the action of S 3 on edge C. Finally, the virtual work of forces writes

δτ = -δΞ + D ρ f T ζ dv + S T T ζ ds - C σ 3 n ′ T 1 ζ dl. (17) 
From Eqs. ( 6), ( 8), ( 16) and [START_REF] Aris | Vectors, tensors, and the basic equations of fluid mechanics[END_REF], we obtain

δτ = D ρ f T -grad T p ζ dv + S1 p + 2 σ 1 R m1 n T 1 + T T 1 ζ ds + S2 p - dσ 2 dn 2 + 2H σ 2 - 1 2 ∆ tg ∂σ 2 ∂H n T 2 + T T 2 ζ ds + C (σ 1 -σ 3 ) n ′ T 1 -σ 2 n ′ T 2 ζ -n ′ T 2 w dl, (18) 
where 2/R m1 is the mean curvature of S 1 , and T 1 and T 2 correspond to the surface forces exerted on S 1 and S 2 , respectively.

Equations governing equilibrium and boundary conditions

The fundamental lemma of variational calculus applied to each integral of Eq. ( 18) yields the equilibrium equation associated with domain D, the conditions on surfaces S 1 and S 2 and the condition on contact line C.

Equilibrium equation in D

grad p = ρ f . This is the classical condition for equilibrium.

Condition on surface

S 1 p + 2 σ 1 R m1 n 1 + T 1 = 0.
Then T 1 = -p 1 n 1 is a normal stress vector to surface S 1 and we obtain the classical Laplace condition,

p 1 -p = 2 σ 1 R m1 . Condition on membrane surface S 2 p - dσ 2 dn 2 + 2H σ 2 - 1 2 ∆ tg ∂σ 2 ∂H n 2 + T 2 = 0. ( 19 
)
Then, the stress vector must be normal to S 2 . In fact T 2 = -p 2 n 2 corresponds to the action of the external fluid on the membrane. From σ 2 = σ 2 (H), and taking Eq. ( 14 Finally, Eq. ( 19) yields,

p -p 2 -(2 H 2 -K) ∂σ 2 ∂H + 2H σ 2 - 1 2 ∆ tg ∂σ 2 ∂H = 0. (20) 
In the case of the Helfrich model ( 15), we obtain from Eq. ( 20) the 'shape' equation ( 3):

p -p 2 + κ (2 H -c o ) 2K -2H 2 -c o H + 2 H σ o -2κ∆ tg H = 0. ( 21 
)
Condition on line C .

To get the line condition, we must consider a virtual displacement tangent to the fixed surface S 1 and consequently ζ = α t + β t × n 1 , where α and β are two scalar fields defined on C. From the last integral of Eq. ( 18), we get immediately: For any scalar field

x ∈ C -→ β (x) ∈ ℜ, C (σ 1 -σ 3 ) n ′ T 1 -σ 2 n ′ T 2 ζ -n ′ T 2 w dl = 0, Due to the fact that n T 2 ζ = β n T 2 (t × n 1 ) = β t T (n 1 × n 2 ) = β sin θ, where θ = ( n 1 , n 2 )
is the Young angle, and the term β sin θ is uniquely function of arc length l, we get n ′ T 2 grad tg (β sin θ) = 0. Consequently, from Lemma 7,

n ′ T 2 w = - 1 2 n T 2 ζ n ′ T 2 grad tg ∂σ 2 ∂H = - 1 2 β sin θ σ ′′ 2 (H) dH dn ′ 2 ,
where dH dn ′ 2 is the value of the derivative of H along the line orthogonal to C

on S 2 . Consequently, ∀ {l -→ β(l) ∈ ℜ}, C β (σ 1 -σ 3 ) n ′ T 1 (t × n 1 ) -σ 2 n ′ T 2 (t × n 1 ) + σ ′′ 2 (H) 2 dH dn ′ 2 sin θ dl = 0. Then, C -β (σ 1 -σ 3 ) + σ 2 n T 2 n 1 - σ ′′ 2 (H) 2 dH dn ′ 2 sin θ dl = 0,
and we obtain the line condition where the scalar λ 0 is a constant Lagrange multiplier and p is a distributed Lagrange multiplier. Due to Eq. ( 10), the 'shape' equation that they deduced is identical to Eq. (21).

(σ 1 -σ 3 ) + σ 2 cos θ - σ ′′ 2 (H) 2 dH dn ′ 2 sin θ = 0. ( 22 

Conclusion and remarks

In this note, we propose simple systematic tools coming from surface geometry and from the principle of virtual work to obtain the boundary conditions on surfaces and lines for three-dimensional domains where the surfaces are endowed with surface energy densities. The tools are based on the Helfrich model with bending energy which is usually proposed to study the mechanics of biological membranes. The model does not take line energy into account, but the calculations will be similar to obtain the conditions at the boundaries of three-dimensional domains. Relation ( 6) is the key point of the model and highlights the extreme importance of knowing the variation of δσ and consequently the behaviour of the surface energy σ. For example, in [START_REF] Gouin | Interfaces endowed with non-constant surface energies revisited with the d'Alembert-Lagrange principle[END_REF] we obtained a case where the capillary surface energy depended on the composition of the surface layer. The obtained results do not need to assume vesicle incompressibility and constant area of the membrane. We notice that the calculations proposed in the literature use the Christoffel symbols associated with coordinate curves on the surfaces, but the Christoffel symbols do not appear in the resulting expressions of the boundary conditions. This is an important reason for the straightforwardness of our method.

Fig. 1 A

 1 Fig. 1 A drop-shaped vesicle lies on a solid surface. The vesicle is bordered by a fluid (liquid) and a solid; S 1 is the boundary between liquid/solid; S 2 is the interface between vesicle/fluid (membrane of the vesicle); S 3 is the boundary between fluid/solid; n 1 and n 2 are the unit normal vectors to S 1 and S 2 , external to the domain of the vesicle; contact line C is shared by S 1 and S 2 and t is the unit tangent vector to C relative to n 1 ; n ′ 1 = n 1 × t and n ′ 2 = t × n 2 are the binormals to C relative to S 1 and S 2 , respectively.

)

  In the Helfrich model[START_REF] Schwartz | Théorie des distributions[END_REF] the condition (22) yields(σ 1 -σ 3 ) + σ 2 cos θ -2 κ dH dn ′ 2 sin θ = 0. (23) Condition (23) replaces the classical Young-Dupré condition by taking additive term -2 κ dH dn ′ 2 sin θ into account.total constant area S 0 and introduce the constraint S ds = S 0 . Then, the virtual work is expressed asδτ = D ρ f T ζ dv + S T T ζ ds -δ S σ ds + λ 0 δ S ds + δ D p div ζ dv,

Let us note that Helfrich et al[START_REF] Helfrich | Elastic properties of lipid bilayers: theory and possible experiments[END_REF][START_REF] Zhong Can | Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders[END_REF][START_REF] Seifert | Configurations of fluid membranes and vesicles[END_REF] consider the vesicle as incompressible and the virtual displacement verifies div ζ = 0 (see Eq. (4)). They assume that the lipid bilayer S has a