
HAL Id: hal-01216388
https://hal.science/hal-01216388

Submitted on 16 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

First order 0-pi phase transitions in
superconductor/ferromagnet/superconductor trilayers

A. V. Samokhvalov, Alexandre I. Buzdin

To cite this version:
A. V. Samokhvalov, Alexandre I. Buzdin. First order 0-pi phase transitions in superconduc-
tor/ferromagnet/superconductor trilayers. Physical Review B: Condensed Matter and Materials
Physics (1998-2015), 2015, 92 (5), pp.054511 (1-11). �10.1103/PhysRevB.92.054511�. �hal-01216388�

https://hal.science/hal-01216388
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


ar
X

iv
:1

50
9.

02
33

0v
1 

 [
co

nd
-m

at
.s

up
r-

co
n]

  8
 S

ep
 2

01
5

First order 0 - π phase transitions in superconductor/ferromagnet/superconductor
trilayers

A. V. Samokhvalov1, 2 and A. I. Buzdin3

1Institute for Physics of Microstructures, Russian Academy of Sciences,

603950 Nizhny Novgorod, GSP-105, Russia
2Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia

3Institut Universitaire de France and University of Bordeaux,

LOMA UMR-CNRS 5798, F-33405 Talence Cedex, France

(Dated: September 9, 2015)

We study the thermodynamics of the diffusive SFS trilayer composed of thin superconductor (S)
and ferromagnet (F) layers. On the basis the self-consistent solutions of nonlinear Usadel equations
in the F and S layers we obtain the Ginzburg–Landau expansion and compute the condensation free
energy and entropy of the 0 (even) and π (odd) order parameter configurations. The first order 0−π
transition as a function of temperature T occurs, which is responsible for a jump of the averaged
magnetic field penetration depth λ(T ) recently observed on experiments [N.Pompeo, et. al., Phys.
Rev. B 90, 064510 (2014)]. The generalized Ginzburg-Landau functional was proposed to describe
SFS trilayer for arbitrary phase difference between the superconducting order parameters in the S
layers. The temperature dependence of the SFS Josephson junction critical current demonstrates
the strong anharmonicity of the corresponding current–phase relation in the vicinity of the 0 − π
transition. In rf SQUID, coexistence of stable and metastable 0 and π states provides integer and
half–integer fluxoid configurations.

PACS numbers: 74.45.+c, 74.78.Na, 74.78.-w

I. INTRODUCTION

The ground state of the superconductor-ferromagnet-
superconductor (SFS) trilayer at zero current can be 0
or π state, depending on the value of the phase differ-
ence between the superconducting order parameters in
the two S electrodes. This phenomenon is related to
the damped oscillatory behavior of the Cooper pair wave
function in the ferromagnet due to the proximity effect1,2

(for more references and reviews, see Refs. 3–5). Usually
experiments directed towards the observation of the 0−π
crossover in SFS trilayer were concentrated on the mea-
surements of the critical Josephson current Ic of the SFS
junction6–9. The 0 − π transition manifests itself in the
vanishing of Ic if higher–order harmonics of the current–
phase relation are negligible10–12.

Recently, an unusual electromagnetic response of SF
systems was reported as a manifestation of the Cooper
pair wavefunction oscillations inside the ferromagnet.
Measurements of the London penetration depth in thin
Nb/Ni bilayers13 reveal a slightly nonmonotonic depen-
dence of the penetration depth on the F layer thickness,
which was in accordance with the theoretical analysis14.
Anomalous Meissner effect in hybrid SF structures was
the subject of several theoretical works15–17 predicting an
unusual paramagnetic response of such systems. Vanish-
ing or inversion of the Meissner effect is believed to be at-
tributed to spin-triplet superconducting correlations18,19

generated in inhomogeneous F layer due to proximity
effect and should result in the in-plane Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) instability20–22. Unusual
drop of the screening with decrease of temperature was
observed recently in23 by microwave measurements of the

London penetration depth λ in Nb/Pd0.84Ni0.16/Nb tri-
layers.

The transition temperature of SF structures into the
normal state has been examined both theoretically24–27

and experimentally28–31 (see Ref. 3,32, for reviews).
However, the study of the thermodynamic properties of
the phase transition between 0 and π states of SF hybrids
is more sparse. A first-order 0 − π transition was pre-
dicted for diffusive SFS junctions with a homogeneous F
barrier, if the current–phase relation takes into account
the second harmonic contribution11. Experimental ev-
idence of a 0 − π transition in SFS (Nb/CuxNi1−x/Nb)
Josephson junction was obtained from the measurements
of the temperature dependence of the critical current
in Refs. 8,9,33. Note that a small modulation of the
thickness of the barrier may favor the continuous 0 − π
transition11. A first-order transitions between 0 and π
states by temperature variation were demonstrated in
both the clean34,35 and dirty27 limits using numerical
self-consistent solutions of the microscopic Bogoliubov-
de-Gennes36,37 or Usadel38 equations, respectively. The
0 − π transition in ballistic SF systems has been shown
to have a pronounced effect on the distribution of the
Cooper pair wavefunction in the F region and the am-
plitude of order parameter ∆(T ) in S–layers34,35. The
theoretical model Proposed in Ref. 23 argued that the
observed jump λ(T ) in Nb/Pd0.84Ni0.16/Nb trilayers is
related to the first order phase transition from 0 to π
state on cooling.

In this work we develop a theoretical approach based
on the nonlinear Usadel equations providing a general
description of diffusive SFS junction with thin supercon-
ducting layers at the transition from 0 to π state. The
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leakage of the Cooper pairs weakens the superconductiv-
ity near the interface with a F metal due to the proximity
effect3. The magnitude of the superconducting order pa-
rameter suppression depends on the parameters charac-
terizing the system such as the SF interface transparency,
the thickness of the S and F layers, etc. For large inter-
face transparency this effect seems to be especially strong
and results in suppression of the superconducting order
parameter and the transition temperature Tc of a thin su-
perconducting layer in contact with a ferromagnet metal.
If the thickness of a superconducting layer is smaller than
a critical one, the proximity effect totally destroys a su-
perconductivity. From the self-consistent solutions we
obtain the Ginzburg–Landau expansion and compute the
condensation free energy and entropy of the possible or-
der parameter configurations as a function of tempera-
ture T . As T varies, we find that the first order phase
transition between 0 and π states occurs, which is respon-
sible for a jump of the averaged penetration depth λ(T )
observed in Ref. 23. We also calculate the current–phase
relation I(ϕ) of the SFS junction which reveals strong
contribution of the higher harmonic terms. The 0 − π
states coexistence and switching leads to new modes of
magnetic flux penetration in superconducting loop con-
taining the SFS junction.
The paper is organized as follows. In Sec. II we briefly

discuss the basic equations. We analyze the case of thin
S layers and obtain the approximate solutions of the non-
linear Usadel equations in F layer near the superconduct-
ing critical temperature T . Tc. In Sec. III we find the
temperature T 0,π

c of the second–order superconducting
phase transition to the normal state for 0 and π order-
parameter configurations. The Sec. IV is devoted to the
analysis of the temperature-driven transition between 0
and π states. We obtain the Ginzburg–Landau expan-
sion and find the ground states of SFS junction near the
critical temperatures T 0,π

c . In Sec. V we generalize the
Ginzburg–Landau description for arbitrary phase differ-
ence ϕ between the superconducting order parameters of
the S layers and find the strongly nonsinusoidal current–
phase relation of the SFS junction in the vicinity of 0−π
transition. In Sec. VI we show that the coexistence of 0
and π states leads to peculiarities of the magnetic flux
penetration in superconducting loop with a single SFS
junction. Sec. VII contains a brief summary and discus-
sion.

II. MODEL AND BASIC EQUATIONS

Let us consider a SFS trilayers with a transparent SF
interfaces and thin S layers of thickness ds ∼ ξs, where
ξs is the superconducting coherence length. The con-
sidered geometry of the SFS structure is presented in
Fig. 1. In the previous observations of 0-π transition
in SFS junctions by temperature variation6,9 the super-
conducting electrodes were rather thick to overcome the
pair–breaking proximity effect of F layer and then the

F

SS

dfds ds

x

F

FIG. 1: (Color online) The schematic behavior of the pair
wave function F (x) = Fs,f inside the SFS trilayers. The red
solid line represents approximately the behavior of the pair
wave function in an even mode (0-state). Due to symmetry
the derivative ∂xFf is zero at the center of F layer. The pair
wave function in the odd mode (blue dashed line) vanishes at
the center of F layer, and F (x) has a π−shift in diametrically
opposite points (π−state).

influence of the 0-π transition on the superconducting
order parameter ∆(T ) in the electrodes was negligible.
From the theoretical point of view, weak depairing in S
electrodes means that the pair potential at the SF in-
terfaces is equal to its bulk value (the so-called rigid–
boundary condition5). Here we study the SFS structure
with relatively thin S layers and demonstrate that the 0-π
transition leads to the jump of the amplitude of the su-
perconducting order parameter, providing the anomalous
temperature behavior of the effective penetration depth
of the whole structure.

To elucidate our results we start the qualitative discus-
sion of the proximity effect on the properties of SFS sand-
wiches if the thickness of S layers is small enough. Due
to the damped oscillations of the pair wave function F
in the ferromagnetic layer, two different order–parameter
configurations are possible inside the SFS trilayers (see
Fig. 1). The first one corresponds to the case than the
order parameter is an even function of the coordinate x,
chosen perpendicular to the layers, and does not change
its sign in F layer. It means that in the ground state the
superconducting phase in both S layers must be the same
(0−phase). For the second case the pair wave function
is odd in x and cross zero at the center of the F layer
which causes a π−shift in the superconducting phase of
different S layers. This configuration corresponds to the
π−phase of the SFS structure. Since pair–breaking prox-
imity effect depends on the structure of the Copper pairs
wavefunction in ferromagnetic layer, a suppression of su-
perconductivity in thin S layers is expected to be dif-
ferent for 0 and π states. As a result the equilibrium
superconducting gaps ∆0,π for 0 and π states are dif-
ferent (∆0(T ) 6= ∆π(T )), and this leads to the different
effective penetration depth λ(T ) ∼ 1/∆(T ) in 0 and π
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states. So, 0-π transition in SFS trilayers has to be ac-
companied by a jump of λ. The coexistence of stable and
metastable states in the vicinity of 0−π transition leads
to a strong anharmonicity of the current-phase relation
in the SFS junction under consideration. As a result,
peculiarities of the magnetic flux penetration in a meso-
scopic superconducting loop containing the SFS junction
are expected.
Taking in mind that the F interlayer is dilute ferromag-

netic alloys like CuxNi1−x or PdxNi1−x we use the Usadel
equations38 which are convenient in the diffusive limit
(see3 for details). Moreover it is important to take into
account the magnetic disorder which is already present
in the magnetic alloys and provides the main mechanism
of the temperature induced 0-π transition9,39. We de-
scribe it by introducing the magnetic scattering time τs.
Note that in practice the exchange field h acting on the
electron’s spins in the ferromagnet and magnetic scatter-
ing rate τ−1

s are much larger than the superconducting
critical temperature Tc: h, τ−1

s ≫ Tc. The complete
nonlinear Usadel equations for the normal G(x, ω, h) and
anomalous F (x, ω, h) Green’s functions in F layer are9,39:

− Df

2

[

G(x, ω, h) ∂2
xF (x, ω, h)− F (x, ω, h) ∂2

xG(x, ω, h)
]

+

[

ω + ih+
G(x, ω, h)

τs

]

F (x, ω, h) = 0 , (1)

G2(x, ω, h) + F (x, ω, h)F+(x, ω, h) = 1 . (2)

Here Df is the diffusion constant in the ferromagnet,
ω = 2πT (n+ 1/2) is a Matsubara frequency at the tem-
perature T . The equation for the function F+(x, ω, h) =
F ∗(x, ω,−h) coincides with Eqn. (1)3. For the 0−state
we should choose the even anomalous Green’s functions
F while for the π−state it should be the odd one. Using
the usual parametrization of the normal and anomalous
Green functions Gs = cos θs and Fs = sin θs, the com-
plete nonlinear Usadel equation in superconucting layers
can be written for ω > 0 as3

− Ds

2
∂2
xθs + ω sin θs = ∆cos θs , (3)

where Ds is the diffusion constant in the superconductor.
Assuming the SF interfaces to be transparent we have at
x = ±df/2

40:

Fs = F, σs ∂xFs = σf ∂xF , (4)

where σf and σs are the normal–state conductivities of
the F and S metals, respectively. The boundary condition
at the outer surfaces x = ±(ds + df/2) is

∂xFs = 0 . (5)

For thin S-layers ds . ξs =
√

Ds/2πTc0, the inverse
proximity effect is substantial, and the Usadel equation

(3) for the S layers have to be completed by the self-
consistency equation for the superconducting order pa-
rameter ∆(x):

∆(x) = πTρ
∑

ω

Fs(x, ω), (6)

where ρ is BCS coupling constant and Tc0 is the critical
temperature of a bulk sample of the material S.
For 0 and π states of SFS trilayers we have

F+(x, ω, h) = F ∗(x, ω,−h) = F (x, ω, h), and one can
replace F+(x, ω, h) by F (x, ω, h) in Eqn. (2). Just below
the critical temperature Tc anomalous Green’s functions
are small and the condition (2) can be rewritten as

G(x, ω, h) ≃ 1− F 2(x, ω, h)/2 . (7)

For ds ≪ ξs, where ξs =
√

Ds/2πTc0 is the supercon-
ducting coherence length, the variations of the functions
θs(x) and ∆(x) in the superconducting layers are small:
θs(x) ≃ θs, ∆(x) ≃ ∆. Therefore, we can average Eq. (3)
over the thickness of the S layers, using the boundary
condition (5). Finally, we obtain the following boundary
condition:

∂θs
∂s

∣

∣

∣

∣

sf

=
dsξf
ξ2s

(

∆cos θs − ω sin θs
πTc0

)

, (8)

∂θs
∂s

∣

∣

∣

∣

−sf

= ∓∂θs
∂s

∣

∣

∣

∣

sf

, (9)

where s = x/ξf and sf = df/2ξf . The top (bottom)
sign in (9) corresponds to the 0−phase (π−phase), re-
spectively.
Applying the method11 we can find the approximate

solution of the non-linear Usadel equation (1) in F layer
near the superconducting critical temperature T . Tc.
For the 0−state we should choose the even anomalous
Green’s functions F while for the π−state it should be
the odd one:

F (s, ω) ≃
{

a cosh(qs)

b sinh(qs)
− (10)

1

8k2

(

α+
3i

4

)

{

a3 cosh(3ks), 0− phase

b3 sinh(3ks), π − phase
,

where ξ2f = Df/h, k
2 = 2(ω/h+ i + α sgn(ω)) and α =

1/τsh is the dimensionless magnetic scattering rate. The
complex wave vector q is determined by the relations:

q2 = k2 ∓ a2 (α+ i/4) (11)

for 0 and π phases, respectively. If Tc < τ−1
s , h, we

may neglect the Matsubara frequencies in the Eq. (1)
assuming that k2 = (k1 + ik2)

2 = 2(α+ i) for ω > 0 :

k1 =

√

√

1 + α2 + α , k2 =

√

√

1 + α2 − α , (12)
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Then the decay characteristic length ξf1 and the oscilla-
tion period ξf2, may be written as

ξf1 = ξf/k1 , ξf2 = ξf/k2 . (13)

The ratio of the characteristic lengths ξf1/ξf2 < 1
clearly shows that magnetic scattering decreases the de-
cay length and increases the oscillation period39.

A. Even mode (0−phase)

In the limit |a| ≪ 1 we obtain from the even solution
(10,11) the expansion of F in powers of the amplitude a:

F (s) ≃ f cosh(ks)− f3g0(s) + o(f4) , (14)

g0(s) =
1

8k2
[4ks(α+ i/4) sinh(ks)

+(α+ 3i/4) cosh(3ks)] .

Using the first boundary condition (4) at s = sf we get
the relation between the amplitude a and Green’s func-
tion Fs = sin θs in superconductor:

f = f0 + f3
0

g0(sf )

cosh(ksf )
, f0 =

Fs

cosh(ksf )
. (15)

Substitution of the solution (14) to the relations (8,9)
results in the following equation with respect to the am-
plitude Fs in the S layers:

(ω + 1/τ0)Fs = ∆− 1

2

(

∆F 2
s + εΛ0F

3
s

)

(16)

where

τ−1
0 = επTc0k tanh(ksf ) (17)

is the depairing parameter of even mode and

Λ0 = πTc0

[

i

2k
tanh(ksf )− (18)

α+ i/4

k

tanh(ksf )

cosh2(ksf )
− sf (α+ i/4)

cosh4(ksf )

]

.

Here the key parameter

ε =
σf

σs

ξ2s
dsξf

determines the influence of the proximity effect on the S
layers.

B. Odd mode (π−phase)

In the limit |b| ≪ 1 we obtain from the odd solution
(10,11) the following expansion of F in powers of the
amplitude b:

F (s) ≃ f sinh(ks) + f3gπ(s) + o(f4) , (19)

gπ(s) =
1

8k2
[4ks(α+ i/4) cosh(ks)

−(α+ 3i/4) sinh(3ks)] .

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

0

T0, c
/ T

c0

df / f 

0

FIG. 2: (Color online) The typical dependence of the criti-
cal temperature T 0,π

c on the thickness of F layer df for even
mode(0−phase) (solid red line) and for odd mode(π−phase)
(dashed blue line). Here we choose: ds = 2ξs; σf/σs = 0.12;
ξs/ξf = 3 (ε = 0.18); hτs = 7.

Using the first boundary condition (4) at s = sf we get
the relation between the amplitude b and Green’s func-
tion Fs = sin θs in superconductor:

f = fπ − f3
π

gπ(sf )

sinh(ksf )
, fπ =

Fs

sinh(ksf )
. (20)

Substitution of the solution (19) to the relations (8,9)
results in:

(ω + 1/τπ)Fs = ∆− 1

2

(

∆F 2
s + εΛπF

3
s

)

, (21)

where

τ−1
π = επTc0k coth(ksf ) (22)

is the depairing parameter of odd mode and

Λπ = πTc0

[

i

2k
coth(ksf )+ (23)

α+ i/4

k

coth(ksf )

sinh2(ksf )
− sf (α+ i/4)

sinh4(ksf )

]

.

III. THE CRITICAL TEMPERATURE OF SFS
TRILAYER

To find the temperature T 0,π
c of the second–order su-

perconducting phase transition, the equations (16), (21)
should be linearized with respect to the Fs ≪ 1

Fs ≃ Fs0 =
∆

ω + 1/τ0,π
. (24)
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Substituting Eq. (24) into the self-consistency equation
(11) one obtains the equation for the critical temperature
T 0,π
c :

ln

(

T 0,π
c

Tc0

)

= Ψ

(

1

2

)

− Re

[

Ψ

(

1

2
+ Ω0,π

)]

, (25)

where Ψ is the digamma function. The depairing param-
eter Ω0,π(T ) = 1/2πTτ0,π

Ω0,π =
ε

2

Tc0

T 0,π
c

{

k tanh(ksf ), 0− phase

k coth(ksf ), π − phase
(26)

is responsible for the superconductivity destruction in the
S layers due to the proximity effect. Figure 2 shows a typ-
ical dependency of the critical temperature T 0,π

c on the
thickness of F layer df , obtained from Eqs. (25),(26).
The crossing of the curves T 0

c (df ) and T π
c (df ) occurs

at d∗f , and for df > d∗f the critical temperature of the
π−phase becomes higher than the critical temperature
of the 0−phase.

IV. PHASE TRANSITIONS IN SFS TRILAYERS

To obtain the Ginzburg–Landau (GL) expansion for
the 0− and π−states near the critical temperature T 0,π

c

we can use the equations (16),(21). Assuming |Fs| ≪
1 and using Fs0 (24) as a zero-order approximation we
find the solution of Eqs. (16),(21) within the first-order
perturbation theory:

Fs = sin θs ≃ Fs0 −
F 3
s0

2

[

1 +
εΛ0,π

ω + 1/τ0,π

]

. (27)

Substitution of (27) into the self–consistency equation (6)
one obtains a dependence of the superconducting gap ∆
on the temperature T = T 0,π

c − δT

− a0,π
δT

T 0,π
c

+ b0,π∆2 = 0 , (28)

where the coefficients a0,π and b0,π are determined by the
following expressions:

a0,π = 1− Re
[

Ω0,πΨ
(1)(1/2 + Ω0,π)

]

, (29)

b0,π =
−1

(4πT 0,π
c )2

Re
[

Ψ(2)(1/2 + Ω0,π) (30)

− εΛ0,π

6πT 0,π
c

Ψ(3)(1/2 + Ω0,π)

]

,

where Ψ(n)(z) = dnΨ(z)/dzn . Naturally all parameters
a0,π, b0,π and T 0,π

c are different for 0 or π states. Fig-
ure 3 shows a typical dependence of the coefficients of
the Ginzburg–Landau expansion a0,π, b0,π on the thick-
ness of F layer df , obtained from Eqs. (29),(30).

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

b

ab0

a0,
, b

0,

df / f 

a0

FIG. 3: (Color online) The typical dependence of the coef-
ficients of the Ginzburg–Landau expansion a0,π, b0,π on the
thickness of F layer df : a0 (b0) – closed (open) red circles;
aπ (bπ) – closed (open) blue triangles. Here we choose the
parameters for Fig. 2.

The equilibrium value of superconducting gap

∆2
0,π =

a0,π

b0,π
T 0,π
c − T

T 0,π
c

(31)

corresponds to the extremum of the standard Ginzburg-
Landau functional

F 0,π
GL (T ) = E0

[

a0,π
T − T 0,π

c

T 0,π
c

∆2 +
b0,π

2
∆4

]

, (32)

where the characteristic energy E0 = N(0)SJd T
2
c0 is de-

termined by the total electron density of states N(0), the
cross section area SJ of the junction, the total thickness
of the trilayer d = 2ds + df and the critical temperature
Tc0. The value of the superconducting order parameter
∆, the temperatures T , T 0,π

c are assumed to be measured
in the units of Tc0. The functional (32) provides us the
complete description of the ground states of SFS junc-
tion near the critical temperature T 0,π

c . The equilibrium

energy of the system E0,π(T ) = F 0,π
GL (∆0,π) is

E0,π(T ) = −E0

[

a0,π (T 0,π
c − T )/T 0,π

c

]2

2b0,π
. (33)

The condition of the first order transition between 0 and
π states is F 0(∆0) = Fπ(∆π), and then the temperature
of this transition T0 is determined by:

T 0
c − T0

T π
c − T0

=
aπ

a0

√

b0

bπ
. (34)

At df . d∗f , first the transition from normal state to
the superconducting 0 state occurs, but further decrease
of the temperature provokes the transition from 0 to π
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FIG. 4: The (T, df ) phase diagram for the SFS trilayers in the vicinity of crossing (df ≈ d∗f ) of the curves T 0
c (df ) and T π

c (df ):
(a) d∗f ≃ 1.95ξf ; (b) d∗f ≃ 5.31ξf . At temperature T0 the first-order transition between the 0− and π− states takes place.
Here we choose the parameters for Fig. 2.The insert gives the dependence of the value of the superconducting gap jump
∆2

0(T0)/∆
2
π(T0) (37) and the latent heat Q (36) on the transition temperature T0.

state. The correspondent (T, df ) phase diagram for the
SFS trilayers is shown in Fig. 4.
The 0 − π transition is accompanied by a discontinu-

ity in the entropy S0,π(T ) = −
[

∂E0,π(T )/∂T
]

at the
temperature T0:

Sπ(T0)

S0(T0)
=

T 0
c − T0

T π
c − T0

. (35)

Then the latent heat at the first order 0− π transition is

Q = ±T0

[

Sπ(T0)− S0(T0)
]

> 0 (36)

for 0 ⇄ π transitions, respectively. Simultaneously, at
the transition temperature T0 the superconducting order
parameter jumps from ∆0 to ∆π or vice versa. The ratio
of values ∆0 and ∆π is given by the expression:

∆2
π(T0) =

aπ

bπ

(

T π
c − T0

T 0
c

)

= ∆2
0(T0)

√

b0

bπ
. (37)

The inserts in Fig. 4 show the dependence of the ra-
tio ∆2

0(T0)/∆
2
π(T0) (37) and the latent heat Q(T0) (36)

on the transition temperature T0. Certainly, the jump
of the superconducting gap provokes the jump of the
London penetration depth 1/λ ∼ ∆. Figure 5 shows
schematically the temperature dependence of the equi-
librium gap ∆2

0,π (31) and the Ginzburg–Landau energy

E0,π(T ) (33) in the vicinity of the 0 → π transition for
the case T π

c < T 0
c and bπ > b0. We readily see that the

superconducting order parameter decrease results in the
positive jump of the London penetration depth. At all
reasonable parameters h, τ−1

s , ξf we obtain namely this
scenario, which is indeed realized on the experiment23.

V. THE CURRENT–PHASE RELATION

Let us now discuss the peculiarities of the Josephson
effect in the SFS trilayers at the first–order transition

T
0

 

 

FGL(0

Tc
T

c
T0
c

T

 

TT
0

FIG. 5: (Color online) Schematic dependence of the gap ∆2
0,π

(31) and the Ginzburg–Landau energy FGL(∆0,π) (33) on the
temperature T : T π

c < T 0
c and (a2/b)π > (a2/b)0 . The inset

gives the schematic temperature dependence of the penetra-
tion depth λ ∼ 1/∆0,π .

from 0 to π state. The theory describing how the 0 state
is transformed into the π state for diffusive SFS junctions
was developed in Ref. 11 for rigid boundary conditions5

at SF interface. It was shown that the critical current
does not vanish at the transition and is determined by
the second–harmonic term in the current–phase relation

I(ϕ) = I1 sinϕ+ I2 sin 2ϕ , (38)
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which corresponds to the following phase–dependent con-
tribution to the free energy of the junction:

EJ (ϕ) =
Φ0

2πc

[

−I1 (1− cosϕ)− I2
2
(1− cos 2ϕ)

]

,

(39)
where Φ0 = π~c/e is the flux quantum. Since the am-
plitudes of the harmonics I1 and I2 depend strongly on
the superconducting order parameter ∆ in S layers (see
Appendix A for details), the current–phase relation of
the junction I(ϕ) seems to be very sensitive both to a
suppression of superconductivity in thin S layers and to
jumps of ∆ during the transitions between 0 and π states
of the SFS trilayers.
To consider the Josephson coupling in the SFS trilay-

ers in the presence of first–order 0 − π transition, the
Ginzburg–Landau functional (32) should be generalized
for arbitrary phase difference ϕ between the supercon-
ducting order parameters in the S layers. For two coupled
S layers with the order parameter ∆1,2 = ∆exp(±iϕ/2)
the Ginzburg–Landau expansion Fϕ

GL of the free energy
includes the mixing quadratic term ∆1∆

∗
2 + ∆∗

1∆2 ∼
∆2 cosϕ. The mixing terms of fourth order have the
form (|∆1|2 + |∆2|2)(∆1∆

∗
2 + ∆∗

1∆2) ∼ ∆4 cosϕ and
∆2

1(∆
∗
2)

2 + (∆∗
1)

2∆2
2 ∼ ∆4 cos 2ϕ, and provide both ϕ

and 2ϕ periodicity of the function Fϕ
GL. Therefore, in

general, the Ginzburg–Landau expansion can be written
as

Fϕ
GL(T, ϕ)/E0 = −aϕ(T )∆

2 +
bϕ
2
∆4 , (40)

which incorporates the phase–dependent contribution via
the coefficients

aϕ(T ) = γ1 cosϕ+
Tc − T

T ∗
c

(1 + γ2 cosϕ) ,

bϕ = β0 + β1 cosϕ+ β2 cos(2ϕ) .

For convenience the superconducting order parameter ∆,
temperatures T , Tc, T

∗
c and the exchange field h are mea-

sured in units of Tc0. To find the parameters Tc, T
∗
c , γ1,2,

β0,1,2 we take into account that the generalized functional
(40) reduces to the expression (32) if ϕ = 0, π:

Fϕ
GL(T, 0) = F 0

GL(T ) , Fϕ
GL(T, π) = Fπ

GL(T ) . (41)

As a result for T ≤ min(T 0
c , T π

c ) the coefficients Tc, T
∗
c ,

γ1,2, β0,1,2 can be expressed as

T ∗

c =
2

a0/T 0
c + aπ/T π

c

, Tc =
T ∗
c

2

(

a0 + aπ
)

,

γ1 =
a0 − aπ

2
− Tc

T ∗
c

γ2 , γ2 =
T ∗
c

2

(

a0

T 0
c

− aπ

T π
c

)

,

β1 =
(

b0 − bπ
)

/2 , β0 + β2 =
(

b0 + bπ
)

/2 .

The coefficient β2 in expansion (40) can be determined
from the current-phase relation for rigid boundary con-

ditions (see Appendix A):

β2 = − π

192

h

T 3
c

ξf
d

Im

{

1

k sinh2 δ
× (42)

[

δ

2
− i

α+ i/4

sinh δ

(

cosh δ − δ

sinh δ

)]}

,

where δ = 2sfk = df/ξf1 + idf/ξf2. Substitution of the
equilibrium value of the order parameter

∆2
ϕ(T ) = aϕ(T )/bϕ . (43)

into the expression (40) provides the temperature depen-
dence of the free energy E(T, ϕ) of the SFS trilayers for
an arbitrary phase difference ϕ

E(T, ϕ)/E0 = −a2ϕ(T )/2bϕ . (44)

which results in the following current–phase relation
I(ϕ) = (2e/~) ∂E/∂ϕ:

I(T, ϕ) = I0 sinϕ
aϕ(T )

bϕ
× (45)

[

γ1 + γ2
Tc − T

T ∗
c

− aϕ(T )

2bϕ
(β1 + 4β2 cosϕ)

]

,

where I0 = 2πcE0/Φ0. The current–phase relation I(ϕ)
(45) is shown in Fig. 6a for fixed thickness of the bar-
rier df = 1.94ξf in the vicinity of the 0 − π transition
and several values of the temperature T . For chosen pa-
rameters of SFS trilayers (see Fig. 3) the first 0-π tran-
sition takes place at df . 1.95ξf . Corresponding value
of the coefficient β2 ≃ −0.013 gives a rather large value
of the second–harmonic term (|I2| ∼ |I1|), which domi-
nates near the transition. Due to the strong contribution
of higher harmonics the current–phase relation is rather
anharmonic, and the maximal value of |I(T, ϕ)| occurs
at ϕ 6= π/2. Figure 6b shows the temperature depen-
dence of the critical current Ic(T ) = maxϕ |I(T, ϕ)| near
the temperature T0. The characteristic multimode an-
harmonicity of the current-phase relation results in the
disappearance of the typical nonmonotonic temperature
dependence of the critical current in a vicinity of the 0−π
transition. We have obtained the positive amplitude of
second harmonic I2 > 0, which means that it occurs dis-
continuously by a jump between 0 and π phase states at
the transition point TI , where the critical current Ic(T )
formally changes it sign. The shift of the temperature
TI with respect to T0 depends on the higher harmonics
contribution.
For comparison figure 7 shows the current–phase rela-

tions I(ϕ) (45) and the temperature dependence of the
critical current Ic(T ) in a vicinity of the second π−0 tran-
sition (see Fig. 3) which takes place at df . 5.31ξf . Cor-
responding value of the coefficient β2 ≃ −0.18 10−4 gives
a small value of the second–harmonic term (|I2| ≪ |I1|),
and the the current–phase relation is quite harmonic ex-
cept the case T ≈ T0 ≃ TI . The SFS junction reveals the
typical nonmonotonic behavior of the critical current Ic
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 T / Tc0

FIG. 6: (Color online) (a) Current–phase relation of SFS junction I(ϕ) (45) for several values of the temperature T/Tc0 =
0.30, 0.31, 0.32 in the vicinity of the 0− π transition for df = 1.94ξf (T 0

c /Tc0 ≃ 0.332, T π
c /Tc0 ≃ 0.327, Tc/Tc0 ≃ 0.329). The

case T = T0 ≃ 0.311 Tc0 is shown by the dash-dotted curve (I∆ = I0 ∆
2
0(T ), where ∆0(T ) = 1.764 Tc tanh(1.74

√

Tc/T − 1 is
BCS superconducting gap for the temperature T ). (b) Dependence of the critical current Ic(T ) = max|I(T, ϕ)| (red solid line)
and the amplitudes of harmonics I1, I2 (blue dashed lines) on temperature T . The insert gives the temperature dependence
of a relative amplitude of the first harmonic κ = I1/I2. Here we choose the parameters of Fig. 3: ds = 2ξs; σf/σs = 0.12;
ξs/ξf = 3 (d∗f ≃ 1.946ξf , ε = 0.18) and h = 10Tc0, hτs = 7.
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I
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I
1
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5 / I
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2

FIG. 7: (Color online) (a) Current–phase relation of SFS junction I(ϕ) (45) for several values of the temperature T/Tc0 =
0.28, 0.29, 0.30 in the vicinity of the second 0−π transition for df = 5.3ξf (T 0

c /Tc0 ≃ 0.317, T π
c /Tc0 ≃ 0.318, Tc/Tc0 ≃ 0.3175 ).

The case T = T0 ≃ 0.29 Tc0 is shown by the dash-dotted curve (I∆ = I0 ∆
2
0(T ), where ∆0(T ) = 1.764 Tc tanh(1.74

√

Tc/T − 1
is BCS superconducting gap for the temperature T ). (b) Dependence of the critical current Ic(T ) = max|I(T, ϕ)| (red solid
line) and the amplitudes of harmonics I1, I2 (blue dashed lines) on temperature T . Here we choose the parameters of Fig. 3:
ds = 2ξs; σf/σs = 0.12; ξs/ξf = 3 (d∗f ≃ 5.31ξf , ε = 0.18) and h = 10Tc0, hτs = 7.

as a function of the temperature T , and the position of
the cusp TI naturally coincides with the temperature T0.

If we restrict our consideration to the two harmonics
approach (38), one will be able to determine the ampli-
tude of both harmonics I1 and I2 via critical current Ic
measurements, as it has been proposed in Ref. 41. Since
a relative amplitude of the first harmonic κ = I1/I2 is
small (|κ| < 2) in the vicinity of 0− π transition (see the
insert in Fig. 6b), the system has two stable states ϕ = 0
and ϕ = π at I = 0. To ”depin” the Josephson phase

from the low energy 0 (π) state or from the high energy
π (0) for I1 > 0 (I1 < 0), respectively, the critical current

Ic±(κ) =
I2
32

(

√

κ2 + 32± 3|κ|
)3/2

(46)

×
(

√

κ2 + 32∓ |κ|
)1/2

should be applied41. During switching from the voltage
state to the zero resistance state at T ≈ T0, the phase
may stick in the high energy state with a probability close
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FIG. 8: (Color online) The shape of the Josephson vortex
ϕ0,π(x) (48),(49) for two values of the relative amplitude of
the first harmonic κ = I1/I2 in the vicinity of the 0 − π
transition: blue dashed line – |κ| = 0.05; red solid line –
|κ| = 10−4.

to 50%, and the smaller current Ic− becomes measurable
in the SFS structure with a low damping42. Then for
|κ| ≪ 1 near 0 − π transition the amplitude of the har-
monics I1,2 is determined by the relations

|I1| ≃ (Ic+ − Ic−) /
√
2 , I2 ≃ (Ic+ + Ic−) /2 . (47)

The structure of the Josephson vortex which may ex-
ist in a long Josephson junction with a large second har-
monic (|κ| < 2) is rather peculiar and is described by the
following expressions11

ϕ0 =

{

2π − ϕκ(x/λJ2), x < 0
ϕκ(x/λJ2), x > 0

, ϕπ = ϕ0 − π (48)

for I1 > 0 (I1 < 0), respectively, where

ϕκ(χ) = arccos

(

1− 2(1 + |κ|)
1 + |κ|cosh2(χ

√

1 + |κ|)

)

(49)

and the Josephson length λ−2
J2 = cΦ0S/8π

2I2t depends
on the current density I2/S and the effective junction
thickness t. The change of the form of the Josephson
vortex in the vicinity of the 0− π transition is shown in
Fig. 8.

VI. SINGLE–JUNCTION LOOP

Let us consider a small superconducting loop with an
inductance L interrupted by the single SFS junction (rf
SQUID). We assume that the junction is described by
the current–phase relation (45) and choose the parame-
ters in a narrow region near the 0 − π transition. The

0 0.25 0.50 0.75 1.00

0.25

0.50

0.75

1

0.3 0.29
0.32

0.28

e

T
0

FIG. 9: (Color online) Magnetic flux through the single–
junction loop Φ as a function of the external flux Φe for the
normalized inductance LI = 250 and several values of the
temperature T/Tc0 = 0.28, 0.29, 0.3, 0.31, 0.32 in the vicin-
ity of the 0 − π transition for df = 1.94ξf . The case for
T = T0 ≃ 0.31 Tc0 is shown by the dash-dotted curve. Here
we choose the parameters of Fig. 6 and LI = 500.

ground state of the circuit is determined by minimizing
the SQUID free energy

W (T, φ) = E(T, φ) +
Φ2

0

8π2L
(φ− φe)

2 , (50)

where φe = 2πΦe/Φ0 – is the normalized magnetic flux of
an external field through the loop43. The total magnetic
flux through the loop Φ = (φ/2π)Φ0 is related to the
external flux Φe as

φe = φ+ LII(T, φ)/I0 , (51)

with the normalized inductance LI = 2πL I0/cΦ0.
Figure 9 shows the dependence Φ(Φe) determined by
Eqs. (50) and (51) for several values of the tempera-
ture T near the transition temperature T0. New features
of Φ(Φe) dependence appear for T close to T0 due to
the coexistence of stable and metastable 0 and π states.
Strong anharmonicity of the current-phase relation for
T ≈ T0 ∼ Tc results in the coexistence of integer and
half–integer fluxoid configuration in SQUID’s and gener-
ation of two flux jumps per one external flux quantum.
This behavior is similar to the magnetic-flux penetration
in superconducting loop with a clean SFS junction at low
temperatures T ≪ Tc

44.

VII. SUMMARY

We have studied the thermodynamics of diffusive
SFS trilayer with relatively thin S layers through self-
consistent solutions of nonlinear Usadel equations, in
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the dirty limit. Our results may be viewed as gen-
eralization of those obtained in Ref. 11, when the su-
perconducting electrodes are the rather thin, and the
critical temperature Tc is affected by the ferromagnetic
layer. We have shown that as the temperature T is
varied a given SFS junction can flip from the 0 state
to the π state. The resulting phase transition is first–
order, in agreement with the experiments8,9,33 and is
responsible for a jump of the amplitude of the super-
conducting order parameter ∆, providing the anomalous
temperature behavior of the effective penetration depth
λ(T ) observed in Ref. 23. Taking the typical parameters
N(0) ∼ 1033 erg−1 sm−3, Tc0 ∼ 10K ≈ 10−15 erg we may
estimate for the Nb/Pd0.84Ni0.16/Nb trilayer23,45 (d ≃
30 nm, S ∼ 0.1 sm2) the latent heat Q ∼ 0.01E0 ≈ 0.3 pJ.
Such picojoule latent heat can be readily observed via
standard ac calorimetry techniques used to measure spe-
cific and latent heats in films: attojoule level results have
been reported46. We see, therefore, that the latent heat
Q (36) associated with the first–order 0−π transition in
SFS trilayer is quite observable.
We have proposed the general form of the Ginzburg-

Landau functional to describe SFS trilayer for arbitrary
phase difference ϕ between the order parameters in the
superconducting layers. Calculation of the current–phase
relation I(ϕ) shows that the ground state of the SFS
junction is 0 or π, and the transition between the 0 and π
states appears discontinuous. The current–phase relation
strongly deviates from the simple sinusoidal one due to
strong dependence of superconductivity in thin S layers
on the structure of the pair wave function in the ferro-
magnetic, even at temperatures T near the critical value
Tc. The characteristic anharmonicity of the current–
phase relation results in disappearance of the typical non-
monotonic temperature dependence of the critical cur-
rent in a vicinity of the 0 − π transition. Certainly, the
anharmonicity of the current–phase relation becomes less
pronounced for thick ferromagnetic layer, if df ≫ ξf .
We show that coexisting stable and metastable 0 and

π states appear in the vicinity of 0 − π transition. As a
consequence, integer and half-integer fluxoid configura-
tions exist in the superconducting loop interrupted by the
junction. The coexistence of 0 and π states is manifested
as two jumps in the dependence of enclosed magnetic flux
in the loop per period44.
acknowledgmentsThe authors thank E. Silva, V.V.

Ryazanov and A.S. Mel’nikov for stimulating discussions.
This work was supported, in part, by the NanoSC-COST
(Belgium), Action MP1201 , by ANR (France), Grant
MASH and by the Russian Foundation for Basic Re-
search. One of the authors (A.V.S.) is supported by
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Appendix A: The current–phase relation for rigid
boundary conditions

Let us briefly remind of approach developed in Ref. 11
to study the problem of the second–harmonic contribu-

tion to the the current–phase relation (38) in the frame-
work of the rigid boundary conditions. The general ex-
pression for the supercurrent through a SFS junction is
given by

Is = −I0(T/Tc)
∑

ω>0

Im
{

F+F ′

s

}

, (A1)

where F+(s, h) = F ∗(s,−h), I0 = 4πTceSN(0)Df/ξf , S
is the area of cross section of the junction, and N(0) is
the electron density of states per one-spin projection.

The solution of Eqns. (1), (7) for T . Tc and an arbi-
trary phase difference ϕ is11

F (s) ≃ a cosh(qs) + b sinh(ps) (A2)

+
b2 − a2

8k2

(

α+
3i

4

)

[a cosh(3ks) + b sinh(3ks)] ,

where the complex wave vectors q and p are different
from the wave vector k due to nonlinear effects. Just
below Tc the nonlinear corrections seem to be small and
wave vectors q and p are determined by the relations

q ≃ k − a2

2k
(α+ i/4) +

b2

2k
(α+ 5i/4) , (A3)

p ≃ k − a2

2k
(α+ 5i/4)− b2

2k
(α+ i/4) . (A4)

The function F+(s) is obtained by replacing b in ex-
pression (A2) by −b. Neglecting the influence of the
F layer on the S layers, one can find the amplitudes a
and b from the rigid boundary conditions assuming that
the anomalous Green’s function for the Matsubara fre-
quency ω at the boundary of left (right) S layer coincides
with the bulk one: Fs(ω,∓sf) = ∆B e±iϕ/2/Ω, where
∆B is the temperature dependent BCS order parameter
and Ω =

√

ω2 + |∆B |2. Using the boundary conditions

F (±sf ) = Fs(ω,±sf ) (A5)

we get from (A2),(A4),(A4) the following expressions for
the amplitudes a and b:

a = a0 + a1 , b = b0 + b1 , (A6)

a0 =
∆B

Ω

cos(ϕ/2)

cosh(δ/2)
, b0 = −i

∆B

Ω

sin(ϕ/2)

sinh(δ/2)
, (A7)
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a1 =
−a0

8k2 cosh(δ/2)

[(

b20 − a20
)

(α+ 3i/4) (cosh(3δ/2) + 2δ sinh(δ/2)) + iδ
(

a20 + b20
)

sinh(δ/2)
]

, (A8)

b1 =
−b0

8k2 sinh(δ/2)

[(

b20 − a20
)

(α+ 3i/4) (sinh(3δ/2)− 2δ cosh(δ/2)) + iδ
(

a20 + b20
)

cosh(δ/2)
]

, (A9)

where δ = δ1+ iδ2 and δ1,2 = df/ξf1,f2. Substitution of the solutions (A2), (A6), (A7), (A8) to the general expression
for the total Josephson current (A1) results in the following expression for the amplitude of the first harmonic I1 of
the current–phase relation (38):

I1 =
I0
8

(

∆B

Tc

)2
[

Im

{

ik

sinh δ

}

− 1

12

(

∆B

Tc

)2

Im

{

i(α+ 5i/4)

k sinh δ
− i(α+ i/4) (1− δ/ tanh δ)

k sinh3 δ

}

]

. (A10)

The second harmonic amplitude is much smaller and described by the following expression

I2 =
I0
192

(

∆B

Tc

)4

Im

{

1

k sinh2 δ

[

δ

2
− i

α+ i/4

sinh δ

(

cosh δ − δ

sinh δ

)]}

. (A11)

Actually the Josephson energy (39) is the phase dependent contribution to the Ginzburg-Landau energy (40).

1

2
E0

(

∆

Tc0

)4

β2 cos 2ϕ ≡ −Φ0I2
4πc

cos 2ϕ . (A12)

The last equality determines the coefficient β2 (42) in the functional (40):

β2 = − π

192

(

Tc0

Tc

)3
h

Tc0

ξf
d

Im

{

1

k sinh2 δ

[

δ

2
− i

α+ i/4

sinh δ

(

cosh δ − δ

sinh δ

)]}

, (A13)
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