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Abstract: This paper deals with a new strategy for the control of anesthesia taking into account
the saturation of the actuator and the target interval tolerated for the depth of anesthesia during
a surgery. In addition, to take into account multiple time scale dynamics in the anesthesia
model, the system is re-expressed by decoupling the fast dynamics from the slow ones. These
slow dynamics are then considered as disturbances for the fast system. Similarly the fast states
correspond to disturbances for the slow subsystem. Taking into account the variability of the
patient by using the polytopic uncertainty framework, robust control design is proposed through
quasi-LMI (linear matrix inequalities) conditions. The characterization of domains of stability
and invariance for both the slow and fast subsystems is provided. Then associated convex
optimization issues are discussed. Finally, the theoretical conditions are evaluated on a panel of

simulated patients.

Keywords: Anesthesia, saturated control, multiple time scale dynamics, robustness.

1. INTRODUCTION

General anesthesia consists in the control of the anesthetic
and analgesic states of the patient by adjusting the per-
fusion of hypnotics and/or analgesics based on clinical
indicators such as heart rate, blood pressure and BIS
(Bispectral index, derived from the spectral analysis of
the electroencephalogram signal (EEG)). The idea of con-
trolling the injection of anesthetic drugs for maintaining
an adequate anesthetic state during surgery was already
proposed in Soltero et al. (1951). In the clinical practice,
however, few things have changed, and the control of the
depth of anesthesia continues to be done mainly by the
anesthesiologist. The difficulty to adopt a new system is
that it should demonstrate a safety guarantee and clinical
benefits for patients and provide significant advantages
compared to existing methods including manual ones (see,
for example, Manberg et al. (2008)).

Thus, the problem of closed-loop control of the depth
of anesthesia of a patient is a very challenging problem
due to the numerous phenomena to be considered as
patient variability, multivariable characteristics, positivity
constraints, dynamics dependent on the hypnotic agent,
... as pointed out in Bailey and Haddad (2005) and Nascu
et al. (2015). Several works have been done in this area
through various types of control algorithms: see, for exam-
ple, Lemos et al. (2014), van Heusden et al. (2014a) for an
overview. Let us point out some references in this topic.
On the one hand, PID-based feedback control strategies

have been followed to adjust the amount of Propofol ad-
ministered (Absalom et al. (2002), Absalom and Kenny
(2003), Soltesz (2013)). On the other hand, given the
significant variability in the models established for the
anesthesia, adaptive control techniques appear quite ap-
propriate. Thus, based on the properties of non-negative
linear dynamic systems, Haddad et al. (2003) proposed
an adaptive control strategy to ensure the asymptotic
stability of a target equilibrium point and also to ensure
the positivity of the closed loop system states. Other
alternative ways are the design of robust controllers as
shown in Lemos et al. (2014) or the use of model predictive
control as proposed in van Heusden et al. (2014a).

This paper revisits the control problem of the anesthetic
state of a patient under the framework of saturated sys-
tems. The fact to take into account the saturation of
the input in the context of anesthesia has been empha-
sized in van Heusden et al. (2014b). The global goal is
then to control the BIS in an interval fixed a priori,
taking into account directly the magnitude limitation of
the control signal, that is the limitation of the rate of
drug addition (in the current case the Propofol) intra-
venously. The saturated control systems is therefore the
theoretical framework of this work(see Tarbouriech et al.
(2011) and references therein). Moreover, the dynamics
of the evolution of the drug in the patient is usually
described by a pharmacokinetic model with multiple time
scales. Rather than treating the system as a singularly



perturbed system (Kokotovic et al. (1986)), we reformulate
the problem by separating fast and slow dynamics in order
to reduce the global control problem to that of the fast
subsystem (BIS being directly linked to the states of the
fast subsystem) perturbed by the slow dynamics. Actually,
the slow dynamics are then considered as disturbances for
the fast system, whereas in the same time the fast states
correspond to disturbances for the slow subsystem. This
is justified by the fact that the depth of anesthesia is a
direct function of the states of the fast dynamics. Taking
into account the variability of the patient thanks to the
polytopic uncertainty framework, the main contribution
of the paper resides in the robust control design proposed
through quasi-LMI (linear matrix inequalities) conditions.
The design of a state feedback control law together with
the characterization of domains of stability and invariance
for both the slow and fast subsystems is thus provided
from these conditions.

2. MODELLING ASPECTS AND PROBLEM
FORMULATION

2.1 The traditional patient model

The compartment model used to describe the circulation of
drugs in a patient’s body is based on a three-compartment
model as shown in Figure 1 from Glass et al. (1989). The
first compartment is the central compartment in which
the drug is administered. It is formed mainly by the
intravenous blood. The other two compartments constitute
muscle and fat. This model assumes that the system
is represented by various compartments, the drug being
transported from one compartment to another one and its
elimination being done by the metabolic process.
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Fig. 1. The three compartments model

The effect of the drug on the patient is expressed through-
out the effect site, which represents the action of drugs on
the brain. This action is expressed through the concentra-
tion at the effect site (denoted Ceys) directly related to
the concentration in the central compartment (Figure 1)
through a first order dynamics:

Cepp(t) = Keo(1(t)/Ve — Cess(t)),

Then, the compartmental model can be expressed as
follows:

Fan(t) = ATan(t) + Buan(t), 7an(0) >0 (1)

with
_KeO KEO/‘/C 0 0
Ao 0 —(a;1 +a +az1) az a3
=1 o0 asn —a12 0
0 as1 0 —ais
B=[0100]

where z., = [Cepy 1 22 x3), z1(t), x2(t), z3(t) are
the masses in grams of the propofol in the different
compartments and wg, is the infusion rate in g/min of
the anesthetic.

The parameters a;; > 0, Vi # j, ¢,5 = 1,2,3, are the
transfer rates of the drug between compartments. The
parameter a1 represents the rate of elimination from the
central compartment. These parameters are functions of
the patient characteristics (weight, age, height, ...). There
exists several empirical models, which give the relation
between those parameters and patient’s characteristics
(Coppens et al. (2011)). In particular one can cite the
model of Schnider et al. (1998) that we use here to define a
typical patient and to build uncertain models to represent
the inter-patient variability.

The depth of anesthesia indicator widely used by clinicians
is the BIS (the bispectral index). It is a signal derived
from the EEG analysis, which quantifies the level of
consciousness of a patient from 0 (no cerebral activity)
to 100 (fully awake patient). The relationship between the
concentration at the effect site (Cesy) and the BIS can
be described empirically by a decreasing sigmoid function
(Bailey and Haddad (2005)):

Clys(t)

BIS(C.(t)) = BISy(1 — ———IT7
( ff( )) 0( O;Yff(t) + Ecgo

), (2)

The BISj is the BIS value of an awake patient typically set
to 100, EC5g corresponds to drug concentration associated
with 50% of the maximum effect and v is a parameter
modeling the degree of non-linearity. Typical values for
these parameters are EC59 = 3.4ug/ml and v = 3. This
relationship is illustrated in Figure 2.
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Fig. 2. BIS Index versus effet site concentration.

Note,however, that the chosen three-compartment model
is one example of compartment models. It has been chosen
for its simplicity and its good representativity even if there
exist other models of different complexity for the propofol -
BIS relation Lemos et al. (2014). Furthermore, to be more
realistic, the model considered should include a time-delay.
Such aspect will be studied in the future.

2.2 Model uncertainties

In the traditional model introduced above, also known as
Pharmacokinetic/Pharmacodynamic (PK/PD) model, it
is customary to distinguish between two different types
of uncertainty: the uncertainty caused by inter-patient
variability (i.e., the variability observed between different



individuals), and the uncertainty originating from intra-
patient variability (i.e., the variability observed within one
particular individual).

In this work, we focus only on the inter-patient variability
with the use of Schnider model (Table 1) to predict the
PK/PD model parameters. The lean body mass (LBM)
is calculated using the James formula [James (1976)] as
follows:

Male: LBM = 1.1xweight-128x (weight /height)?
Female: LBM = 1.07 x weight-148 x (weight /height )?

Only three of the model parameters are dependent of the
patient’s characteristics (a11,@12,a21). Thus, for a given
range of patients, the uncertainties of the A matrix can be
included in a polytope with N = 23 = 8 vertices, that is:

N N
A=A withd A =1, A >0 (3)
i=1 i=1
with Al corresponding to the vertices of the polytope in
which A is defined.

2.3 Equilibrium point

We consider generally that during a surgery, the BIS
must be brought then maintained close to 50, or at least
in an interval between 40 and 60. Given the sigmoid
describing the relation between the BIS and the effect
site concentration, it follows that for the BIS equal to
50% of BISy the effect site concentration must be equal
to ECsg. The values of the other variables can then be
deduced from the equilibrium point of system (1). Indeed,
if we set A = [A; Ay Az A4] where A; is the "' column of
A and setting Cefse = ECS5, it follows from (1) that, at
equilibrium:

[A2 A3 A4 B] [«Iel Te2 Te3 Uey + A1E050 = 0. (4)
Noting that the matrix [A; A3 A4 B] is non-singular, there
exists a unique solution satisfying the equation (4). We can
thus deduce the value of the state variables at equilibrium

a21 asi
Te1 = Ceffe‘/a Te2 = —Tel, Tez = —Te2
ai2 a3
and the value of the input for this equilibrium is given by

Ue = A11Tel

The equilibrium point actually depends on the patient
parameters. Then in the sequel we consider a mean equilib-
rium point corresponding to a nominal patient belonging
to the patient set.

2.4 Error model

From the system (1) and the target equilibrium point
e = [Ceffe Te1 Tea Te3]' that we seek to stabilize, by
a change of variable, Terr = Tan — Te aNd Uerr = Ugp — Ue,
the error model can be described as:

ierr = Axerr + Buerr (5)

with Zerr = [Ceff Terr1t Terr2 Terrs]’ and A defined in
equation (3).

The positivity constraints on ug,, and x4, can be viewed
as interval constraints on e, and ... Indeed, from the
definition of z..r and e,

Tan Z 0= Terr Z —Te

Uagn Z 0= Uerr Z —Ue
Moreover, it will also be taken into account an upper limit
on the amount of drugs that can be injected in the blood
over time.

2.5 Problem formulation

In general, the monitoring done by the anesthetist to bring
the patient to the desired anestheic state (BIS = 50) is
decomposed in two phases. The first one, called induction,
consists in administering bolus doses of drugs to quickly
bring the patient to unconsciousness and not too far from
the set point (Lemos et al. (2014)). The second one is the
maintenance phase. A constant injection rate (open loop)
close to the equilibrium input (knowing that it is patient-
dependent and therefore unknown) is selected. It is up to
the anesthetist, who does the controller job, to adjust the
input rate according to the output signal. In this work,
we focus on the second phase, i.e we propose a closed-loop
control strategy after the first injection by the anesthetist,
to keep then the patient in the desired target interval.
Furthermore, we aim at ensuring the robustness of this
strategy for some range of adult patients. The problem we
intend to solve can then be formulated as follows:

Problem 1. Find a saturated robust state feedback control
Uerr = Sat(K xery), for the uncertain system (5), in order
to bring the system output (the BIS) to its set-point and
maintain the trajectories confined in an invariant domain
including this target.

2.6 Multiplicity of dynamics

Furthermore, regardless of patient under consideration,
the dynamics of metabolism and circulation of propofol in
the central compartment and at the site effect is ten times
faster than in muscles, and even a hundred times faster
than in fat. Feedback designs for such systems suffer from
high dimensionality and ill-conditioning (Khalil (1987)).

One way to address this problem would be to consider
the system as a singularly perturbed system (Kokotovic
et al. (1986)). Many studies have addressed the synthesis
of controllers for singularly perturbed systems, and most
often considering the control of the slow dynamics as
the crucial problem. In our case, the control of the fast
dynamics is the most important because the regulation
of the BIS is a direct function of the concentration at
the effect site and thus of the fast dynamics on which the
administered drug directly acts. Thus, in the following,
we choose an alternative route to separate slow and
fast dynamics. The approach pursued is to synthesize
a controller for the fast dynamics, considering the slow
dynamics as a bounded perturbation of the system.

3. CONTROLLER SYNTHESIS

As mentioned before, the particular structure of the sys-
tem allows us to split it into two subsystems, namely a fast
subsystem (central compartment (blood), effect site), on
which acts the control input, and a slow subsystem (mus-
cles and fat compartments) whose dynamics is influenced
only by the state of the fast subsystem (Figure 3). The
slow subsystem is then considered as a simple disturbance
for the fast subsystem.



Table 1. Schnider Model

Parameter Estimation male, 53yr, 77kg, 177cm
a11(min-1)  0.443 + 0.0107x (weight-77)-0.0159x (LBM-59)+0.0062 x (height-177) _ 0.384
aiz2(min~1t)  0.302 - 0.0056 x (age-53) 0.375
aiz(min=t)  0.196 0.196
az1(min=1)  [1.29 - 0.024x (age-53)] /[18.9-0.391 x (age-53)] 0.067
aiz(min~1!)  0.0035 0.0035
Keo(min=1t)  0.456 0.456
—T3T]+T4(5 <0 (12)
— U X, then, the gain K = YW ™! is such that for any z, €
w | Fast > E(R71,0) = {zs € R™;2 . R 1z, < 671}, the trajectories
of the uncertain saturated system (6a)-(7) do not leave the
ellipsoid E(W 1, ) = {zf € R™; 2, W 1wy < n~1}. Also,
) the trajectories of the slow subsystem (6b) remain in the
Slow o, ellipsoid £(R™1,0) for any zy € EW ™1, n).

Fig. 3. The whole system with the fast subsystem per-
turbed by the slow dynamics

Thus, if we denote x; = [ceff Terr1] the fast states and
ZTs = [Terra Terrs)’ the slow states, the system (5) can be
written as follow:
Ty = Afl‘f + Afsxs + Bru
s = Agpxy + Asts

(6a)
(6b)

with uncertain matrices Ay, A, Afs and A,y defined using
the formalism of equation (3).

We seek to synthesize a state feedback controller for the
fast subsystem of the form:

u=sat(Kxy) = sign(Kxy)min{ug, |Kz |} (7)

considering that the slow states act as simple disturbances.
The synthesis of the state feedback controller and the
determination of the associated asymptotic stability do-
main are done by the following proposition, denoting ny,
ns and m the dimensions of the fast subsystem, the slow
subsystem and the controller.

Proposition 1. If there exist two symmetric positive def-
inite matrices W € R > R € R"*" a positive
diagonal matrix .S € R™*"™ two matrices Y € R"*"f 7 €
RMX"7 and six positive scalars 7,7, 73, T4, 7 and J
satisfying ! :

WA + AUW + By + Y'B + W+«

SB/f _ 7 —25 *% <0
RAI 0 —mR
(8)
i=1,..,N
RAW 4+ AR 4 g A W
s T S[i]’ +73 sf <0z=1,...N (9)
WAL —muW
WY -7
[ o a>] >0, j=1,..m  (10)
Y5y =2y mugg
_7-16—|—7'277 < 0 (11>

I In symmetric matrices of the proposition, the notation % corre-
sponds to symmetric blocks.

Proof: The proposition extends the results published in
Tarbouriech et al. (2011) to the case of the system (6)
with decoupled fast and slow dynamics. Thus, one has to
prove, at the same time, that the trajectories of the fast
subsystem under control remain confined in (W=, n) for

all trajectories of the slow subsystem themselves confined
in £(R71,9).

Consider for the fast subsystem the quadratic Lyapunov
function V(zy) = «,W~zy, W = W’ > 0. One has
to prove that V(zf) < 0 for any x; such that z; ¢
int(E(W=1,n), and any z5 € E(R71,6). In other words,
we have to verify by using the S-procedure the following
inequality:

V(wg)+m (@i W tep—n ) +7a(6 =2 R a,) <0 (13)
Moreover, we use the modified sector condition (Tar-
bouriech et al. (2011)), which expresses that for any x;
belonging to the polyhedron S(|K — G|, up) defined by :

S(IK — G, up) = {zy € R —ug < (K — G)zy < uo}
the sector condition

$(Kyp)'S™H(d(Kuy) + Gay) <0

is verified, with ¢(Kxzs) = sat(Kzy) — Kzy, and S a
positive diagonal matrix.

Thus, a sufficient condition to verify (13) is that
Vizy) + mayW ey — mal, R g

—20(Kap)' S~ (0(Kay) + Gap) <0 Y

and

—T1’I7_1 + 7—25_1 <0 (15)
as long as E(W~1,n) C S(|K — G|, ug), which is ensured
by satisfying the inequality (10). By denoting Z = GW
and Y = KW, the inequality (14) can be written as (16)
(given at the top of next page). Thanks to the polytopic
representation of the uncertain matrix A (and subsystems
Ap, Ags, As, Agy), (16) is satisfied if the inequality (8)
holds at each vertex i. The satisfaction of (8), (10) and
(11) guarantees the invariance of the ellipsoid &(W =1, 7)
for the uncertain fast system, for any =, € E(R™1,9).

Similarly, the satisfaction of relations (9) et (12) ensures
the invariance of the ellipsoid £(R™!,§) for the uncertain
slow system, for any z; € E(W™1,n).
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Furthermore, the satisfaction of the relation (8) implies
that the matrix Ay + By K is Hurwitz.

4. NUMERICAL EXAMPLE

For a wide range of adult patients, male and female, whose
age varies between 20 and 70, weight between 50 and 100
kg and height between 140 and 200 cm, the uncertain
parameter intervals, calculated with the Schnider model,
are given in Table 2 and used to define the eight vertices
of the polytope.

Param a1l ai2 a1
[0.2497, 0.8982] [0.2066, 0.4876] [0.0655, 0.0720]
Table 2. Uncertain parameters intervals

interval

Proposition 1 then allows us to synthesize a saturated state
feedback controller and characterize invariant sets for both
the slow and the fast uncertain subsystems. Moreover,
We are seeking to maintain the BIS in the range [40,
60] which corresponds to impose limits on the effect site
concentration:

Cemin < Ceff < Cepas (17)
with ce,,., = —cCenan = 0.5.
These constraints can be written as follows:
P={z,eR®:|afz, <1, k=1,....q,}
and the LMI condition,
ayWar <n, k=1,..,q. (18)

ensures that £(W 1, 1) C P (Boyd et al. (1994)). The pur-
pose of the synthesis is to maximize the invariant domain
for the fast subsystem up to the BIS limit associated to
(17) and the admissible set of the fast system disturbances
(i.e. the invariant set of the slow system), eventually to
include the initial state zes = [—Zea — T3] of the slow
system. In practice, it is not necessary to include this initial
slow state as soon as thanks to a first injection in the blood,
the drug accumulates in the other compartments and we
are just aiming at including a percentage of the initial
condition through the constraint below:

!/

méxel] >0

)
Lahel R (19)

with & € [0, 1].

Finally, an LMI condition is added in order to limit || K2
by /o (see Appendix):
[a[ Y

Y oW — I (20)

E

A solution to Problem 1 is given by the following optimiza-
tion problem:

min — Trace(W) + 7

sous (8) — (12), (18) — (20)

W(Af JrBfK)IJr (Af +BfK)W+T1W BfS* A Afs
/ J—

Wﬁle
—25 0 | [S'¢(Kxp)| <0
0 —TQR Ts

(16)

By setting i = 0.5, = 0.5,73 = 0.0021, 74, = 0.002,
the fast system invariant set associated to the uncertain
system with parameters bounds given in Table 2 is plotted
in dashed lines in Figure 4. It may be compared to the
solution obtained with an average male patient (53 years,
77 kg, 177 cm), plotted in solid line in Figure 4.

To evaluate the source of the gap between the two sets, we
also solve the problem by considering a small interval for
one patient characteristics (height, weight or age) and the
full uncertainty for the other ones. The results exhibit that
the range of weight and size, or the sex of the patient have
not much influence on the size of the fast system invariant
sets (see Figure 4 for the case where a small interval of
75-80 kg is considered (dash-dotted line)). On the other
hand, the age seems to have a strong influence on the size
of the ellipsoid (see Figure 4, range of 50-55 year in o-
dotted line).

Similar results are obtained for invariant sets of the slow
system (not shown here).

Fast system

average patient

= = =all patients
‘== 75-80 kg
@ 50-55 yr

60000 0‘o‘o‘o‘o‘o‘orc:.‘c,“.,,‘,_,‘u0
0.0 o
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0°° 05
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_______________________
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©o,
000600600000

Fig. 4. The invariant set of the fast system &(W =1, ).

To be fair, it is important to point out that the size of the
invariant sets for a single patient is mainly correlated with
the age of patient. Indeed, the younger is the patient the
smaller are the sets.

To illustrate the whole strategy of control, Figure 5 gives
the BIS response for bolus injection of 1.5 mg/kg adminis-
tered during the 30 first seconds, followed by the state
feedback control synthesized above. It may be checked
that this controller ensures that all patients BIS response
converge to 50 and stay in the target interval [40, 60].

5. CONCLUSION

In this paper, we presented a state feedback controller syn-
thesis approach for a decoupled model for anesthesia. The
decomposition of the model into a fast and a slow systems
allows to focus the control design on the fast subsystem,
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Fig. 5. The BIS score for different adult patients.

whereas the slow one is considered as a disturbance. The
results express the strong influence of the age of the patient
on the size of the invariance sets, and suggest to consider
smaller sets of patient characteristics to adapt the control
gain to each set of patients.

The next step will be to extend the approach to the
output dynamic feedback design, in order to better cope
with the real-life case. Moreover, the synthesized controller
guarantees to keep the BIS in the range [40,60] but does
not address the induction phase corresponding to the first
drug injection produced by the anesthetist. To finalize the
automation of the entire process, the next step will be to
propose a switched control law inspired by the practice.
From a theoretical point of view we seek to ensure a priori
the stability and performance of such a control system.
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Her majesty’s

APPENDIX

To bound the norm || K|, by y/o, on can write:

K'K=W"'Y'YW™! <oI (21)
sl -WY'YW™ >0 (22)
By using Schur complement, (22) can be expressed :
1Y
F/, Wz} >0 (23)

Otherwise, by using the perfect square condition:
W-DHW-1)=0
SsW?2>2W -1

24)
25)

~—~ o~

We then obtain that (20) is a sufficient condition for (23)
and therefore satisfy the condition on the norm 2 of K.



