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Comparison of deterministic and probabilistic
approaches to identify the dynamic moving load

and damages of a reinforced concrete beam
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julien.waeytens@ifsttar.fr
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Two classical civil engineering inverse problems are considered. The
first deals with the determination of dynamic moving loads applied to
a reinforced concrete beam. The second one corresponds to the moni-
toring and the damage assessment. The concrete damage due to over-
loading is modelled by a loss of the concrete Young’ modulus, whereas
the steel bar damage due to corrosion effects is modelled by a reduction
of the steel bar cross section. To identify the loading and damage pa-
rameters, deterministic and probabilistic model updating techniques are
applied and compared. In the deterministic approach, a gradient descent
technique based on adjoint framework is used to minimize the data mis-
fit functional with a Tikhonov regularization term. Regularization by
means of Bayes rule is considered in a probabilistic approach. The es-
timation is of the minimum variance type achieved with the help of the
transformed ensemble Kalman filter.

3

http://www.digibib.tu-bs.de/?docid=00057886 28/10/2014

mailto:wire@tu-bs.de?subject=Comparison of deterministic and probabilistic approaches to identify the dynamic moving load and damages of a reinforced concrete beam
mailto:wire@tu-bs.de?subject=Comparison of deterministic and probabilistic approaches to identify the dynamic moving load and damages of a reinforced concrete beam


4

http://www.digibib.tu-bs.de/?docid=00057886 28/10/2014



Contents

1 Introduction 6

2 Model problem 7
2.1 Study 1: Identification of the moving load . . . . . . . . . . . . . . 8
2.2 Study 2: Determination of the material parameters . . . . . . . . . . 8

3 Identification procedures 9
3.1 Deterministic approach . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Probabilistic approach . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Numerical result comparison 14
4.1 Study 1: Identification of the moving load . . . . . . . . . . . . . . 15

4.1.1 Load identification using simple mechanical framework . . 15
4.1.2 Load identification in 2D elastodynamics . . . . . . . . . . 17

4.2 Study 2: Determination of the material parameters . . . . . . . . . . 18

5 Conclusions 23

References 24

5

http://www.digibib.tu-bs.de/?docid=00057886 28/10/2014



1 Introduction

Structural Health Monitoring is particularly useful to detect and localize damages, to
reduce the maintenance cost of structures and to ensure the user safety. To prevent
early damages, smart systems have been developed to identify overloaded vehicles
on civil engineering structures such as bridges and viaducts. Particular example of
these is the Bridge Weigh-In-Motion (B-WIM) system that has been studied for the
last 30 years [16, 17, 8]. Concerning the damage identification, according to [21]
one may distinguish four categories: the detection of damage (level 1), localization
(level 2), quantification of the damage (level 3) and lifetime prediction update (level
4). Categories of level 1 and 2 can be achieved with the help of the data driven
methods, such as for example the vibration-based techniques. For this purpose one
can use modal-based [4, 3] or static based statistical approaches [18, 22]. To accom-
plish higher level categories, one requires model updating techniques. The parameter
(model) estimation from the noisy indirect sensor outputs is not an easy task. The
problem being generally ill-posed, requires certain kind of regularisation [25]. In
the deterministic sense, the regularisation is very often achieved by Tikhonov regu-
larization [26]. However, other possible techniques also exist such as for example
Error in the Constitutive Relation (ECR) regularization [10, 2, 1] previously studied
by author. On the other hand, the ill-posed problem can be regularised in a proba-
bilistic manner via Bayes rule by adding the prior expert knowledge on the parameter
(model) set next to the observation data. Most of these approaches are based on the
Monte Carlo kind of sampling procedures such as for instance Markov Chain Monte
Carlo techniques [9, 13]. In the recent years, another more simple kind of methods
appeared. These often assume linearity of the observation operator and Gaussian
noise—the linear Bayesian filters—such as the ensemble Kalman filter [6] and its
generalisation in the form of polynomial chaos based linear filter [19, 20]. In case of
nonlinearity these can be extended to more complex and accurate forms as presented
in [5, 11].

The objective of this paper is to qualitatively and not quantitatively compare de-
terministic [28] and probabilistic [19] updating techniques. For this purpose the
Tikhonov regularisation and ensemble Kalman filter procedures are applied on two
important civil engineering applications: the identification of a moving load on a re-
inforced concrete beam and the detection of damages in the concrete and steel bar
of the beam. The identification is performed by using the full temporal data read by
strain sensors and structural dynamic model based on partial differential equation.

The article is organized as follows: Section 2 summarises the motivation behind of
this work and focuses on the description of two inverse civil engineering problems
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of huge practical importance. Section 3 lays out the mathematical dimension of the
numerical approaches used in this research, and Section 4 tuys up the numerical
findings of both deterministic and probabilistic computational approaches.

2 Model problem

A simplified model of a 2D concrete beam with a single horizontal steel bar is con-
sidered (see Fig. 1) in the time interval [0,T ]. The steel bar and the concrete are
supposed perfectly adherent. Under plain strain assumption, the mathematical for-
mulation of the beam consists of the dynamic equilibrium:∫

Ω

ρcü ·u∗dΩ+
∫

Γ

ρbSbü ·u∗dΓ+
∫

Ω

ε(u) : Kc : ε(u∗)dΩ+∫
Γ

EbSb(x)
∂ux

∂x
∂u∗x
∂x

dΓ−
∫

∂Ω f

Fd(χ, t) ·u∗∂Ω = 0, ∀u∗ ∈U0

(1)

with zero initial conditions and the kinematic conditions satisfying u ∈ U0 = {u∗ ∈
H1(Ω)\u∗ = 0 on ∂Ωi1, u∗ · y = 0 on ∂Ωi2}. In Eq. (1) ρc (resp. ρb) represents the

∂Ω
i1 ∂Ω

i2

г
H/4

H

L

strain sensor

d

Figure 1: Concrete beam of dimensions L = 30m and H = 1m with a steel bar
Γ instrumented with strain sensors. Fd is dynamic moving load , Sb j

( j ∈ {1, ...,5}) is steel bar cross section assumed piecewise constant on
each interval, Ec j ( j ∈ {1, ...,5}) is concrete Young’s modulus assumed
piecewise constant on each subdomain.

volumic mass of the concrete (resp. steel bar), Sb is the area of the steel bar cross-
section, Eb is the steel bar Young’s modulus, and Kc is the concrete Hooke’s tensor
which depends on the Young’s modulus Ec and the Poisson ratio νc. Lastly, Fd(χ, t)
represents the dynamic moving load applied to the top of the concrete beam.
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The beam is instrumented with fourteen strain sensors, seven on the upper and seven
on the bottom part of the beam, which can monitor the traffic-induced strain re-
sponses of the beam. The strain is measured over a period of time T = 5s, and
collected into the temporal data series, which further allow the determination of the
dynamic moving loading, and hence detection of the overloaded vehicles causing the
damage in the structure. To assess structural damages, the measurement data are also
used for the identification of the material parameters such as Young’s modulus and
steel bar cross section.

2.1 Study 1: Identification of the moving load

To reduce the number of unknowns to be determined by the inverse modelling tech-
nique, the dynamic moving load is modelled as

Fd(χ, t) =−Fd f (χ, lF)y , χ = x− cF t, (2)

and hence parametrized by three scalars: the loading amplitude Fd (N/m2), the load-
ing velocity cF (m/s) and the loading length lF (m), as shown in Fig. 1. The function
f (χ, lF) represents the time dependent loading profile applied to the top of the beam,
and here is assumed to follow a parabolic law.

For the further study the loading parameters (Fd ,cF , lF) are normalised to (F̄ , c̄F , l̄F)
with respect to their standard values (F0,c0

F , l
0
F) such that

Fd = F̄F0 , cF = c̄F c0
F , lF = l̄F l0

F (3)

hold. In this manner, the normalized parameters are assumed to be unknown, whereas
the standard loading parameters are used as an initial guess. The identification of
(F̄ , c̄F , l̄F) is performed by both techniques deterministic and probabilistic given the
data read by seven equidistantly distributed strain sensors S1−S7, which are placed
in the close vicinity to the top of the concrete beam. The sensors are distanced by
0.125L and lie on the same vertical 7H/8, in which L and H denote the length and
height of the beam, respectively.

2.2 Study 2: Determination of the material parameters

According to the classical damage theory [14], the concrete damage is modelled by
a loss of the concrete Young’s modulus, and the corrosion effects are described by

8
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a reduction of the steel bar cross section. These material parameters are described
by decomposing both the steel bar and the concrete zone into five sections. In each
section j, the steel bar is represented by a constant value of cross-section Sb j and
the concrete zone by a constant Young’s modulus Ec j . Note that a loss of Young’s
modulus in the concrete is only considered in a possible damaged area named Ωc,
which corresponds to the bottom part of the 2D concrete beam. Similarly to before,
the material parameters are normalised such that

Sb(x) =
nb

∑
j=1

S̄b j Sbud φ
s
j (x) , Ec(x) =

nc

∑
j=1

Ēc j Ecud φ
c
j (x) (4)

hold. Here,

• Sbud (resp. Ecud ) corresponds to the undamaged cross-section of the steel (resp.
the undamaged Young modulus of the concrete);

• S̄b j (resp. Ēc j ) represents the jth normalized cross-section of the steel (resp.
normalized Young modulus of the concrete) associated to the area Γ j (resp.
Ωc j ) where φ b

j (x) (resp. φ c
j (x)) is non-zero.

• φ b
j (x) and φ c

j (x) are basis functions on a coarse mesh grid (H), chosen differ-
ently than the fine mesh grid (h) used in the finite element solver. The basis
functions are a priori known. In practice, φ b

j (x) (resp. φ c
j (x)) is a constant

basis function equal to 1 in the area Γ j (resp. in the subdomain Ωc j ) and zero
otherwise.

Furthermore, only the material parameters S̄b j and Ēc j are assumed to be unknown.
They are estimated with the help of deterministic and probabilistic approaches by
using the data read by seven equidistantly distributed strain sensors S8−S14 separated
by the distance L/8 and located in the bottom part of the concrete beam on the height
H/8.

3 Identification procedures

The problem of estimating either the moving loads or material characteristics corre-
sponds to the reconstruction of a quantity from the noisy indirect observations. This
mathematically coincides with the inversion of an operator, which is considered to be
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ill-posed problem in a sense of Hadamard. To resolve this issue many different pro-
cedures are advised in literature [27]. However, two of them have gained increased
popularity in last few decades: the deterministic and probabilistic approaches. The
deterministic regularisation procedures are trying to solve the issue of ill-posedness
by approximating the inverse of the observation operator by a family of stable oper-
ators which depend on some regularisation parameter. An example is the Tikhonov
regularisation procedure [26] further considered in this paper. On the other side, the
probabilistic approach employs the Bayes rule [25] to assimilate the measurement
data with the a priori chosen distribution—the regularisation parameter.

To show differences between these two phenomenological approaches, the problems
described in the case study 1 and case study 2 are analysed and obtained results
are compared. However, note that these methods cannot be really compared as they
do not rely on the same assumptions and regularisation parameters. Therefore, the
analysis further performed has for the main aim to illustrate and show applicability
of both identification procedures.

3.1 Deterministic approach

By means of the optimal control theory, one aims at determining normalized scalars
(F̄ , c̄F , l̄F ,(Ēci)

nb
i=1,(S̄b j)

nc
j=1), further generally denoted by q, by minimizing the data

misfit functional

J(u;q) =
1
2

ns

∑
i=1

∫ T

0

[∫
Ω

εxx(u;x, t)ψi(x− xi)dΩ− (εmes
xx )i(t)

]2

dt + ||q|| (5)

in which the displacement field u satisfies the kinematic conditions defined in U0 and
the dynamic equilibrium in Eq. (1). Note that the Tikhonov regularization term ||q||
corresponds to

Study 1: ||q||= ε
reg
1

αn3

2
(
F̄2 + c̄2

F + l̄2
F
)
,

Study 2: ||q||= ε
reg
2

αn1

2

∫
Γ

[
Sb(x)
Sbud

−1
]2

dΓ+ ε
reg
2

αn2

2

∫
Ω

[
Ec(x)
Ecud

−1
]2

dΩ.
(6)

Here, αni , i ∈ {1,2,3} ensures the physical homogeneity of the terms in J and
ε

reg
j , j ∈ {1,2} is the regularization parameter determined using the discrepancy

principle due to Morozov [15].
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To solve the minimization problem at a low computation cost, the gradient method
with the steepest descent direction obtained by the adjoint approach is utilised. This
methodological procedure is taken due to equivalency of adjoint problems in case
of loading and material parameter study. The process of solving the adjoint prob-
lem corresponds to a backward elastodynamics problem whose final conditions van-
ish. The goal is to search for the adjoint displacement ũ ∈U0 = {u∗ ∈ H1(Ω)\u∗ =
0 on ∂Ωi} such that:∫

Ω

ρc ¨̃u.u∗dΩ+
∫

Γ

ρbSb ¨̃u.u∗dΓ+
∫

Ω

ε(ũ) : Kcε(u∗)dΩ

+
∫

Γ

EbSb
∂ ũx

∂x
∂u∗x
∂x

dΓ−
ns

∑
i=1

∫
Ω

(σ̃0xx)i
∂u∗x
∂x

dΩdt = 0, ∀u∗ ∈U0

(7)

holds, where (σ̃0xx)i(x, t) =
[
(εsim

xx )i(t)− (εmes
xx )i(t)

]
ψi(x− xi), i ∈ {1, ..,ns}.

Once the direct and the adjoint states are evaluated, the gradient of the functional can
be estimated at a low computation cost by means of the following formulas

∂J
∂ F̄

= −F0

∫ T

0

∫
∂Ω f

f (χ, lF)ũy∂Ωdt,

∂J
∂ c̄F

= −F
∫ T

0

∫
∂Ω f

∂ f (χ, lF)
∂ c̄F

ũy∂Ωdt, (8)

∂J
∂ l̄F

= −F
∫ T

0

∫
∂Ω f

∂ f (χ, lF)
∂ l̄F

ũy∂Ωdt.

for the identification of loads, and

∂J
∂ S̄b j

= −
∫ T

0

∫
Γ

EbSbud φ
b
j (x)

∂ux

∂x
∂ ũx

∂x
dΓdt−

∫ T

0

∫
Γ

ρbSbud φ
b
j (x)ü · ũdΓdt

+ε
reg
1 αn1

∫
Γ

(
Sb(x)
Sbud

−1
)

φ
b
j (x)dΓ, (9)

∂J
∂ Ēc j

= −
∫ T

0

∫
Ω

dλDPφ
c
j (x)div(u)div(ũ)dΩdt (10)

−
∫ T

0

∫
Ω

2dµDPφ
c
j (x)ε(u) : ε(ũ)dΩdt

+ε
reg
1 αn2

∫
Ω

(
Ec(x)
Ecud

−1
)

φ
c
j (x)dΩ (11)

for the identification of material parameters. Here,

dλDP =
Ecud νc

(1+νc)(1−νc)
, dµDP =

Ecud

2(1+νc)
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are Lame constants.

To summarise the deterministic model updating strategy, at each iteration the direct
and adjoint problems are solved by taking the control parameters from the previous
iteration. Given the direct and adjoint states, the functional gradient is computed.
Lastly, the control parameters are updated.

3.2 Probabilistic approach

The deterministic strategy described in the previous section offers the best-guess es-
timates for the set of parameters q without taking into account their uncertainty. To
mitigate this, the probabilistic methods consider the unknown parameters as uncer-
tain and provide solutions in terms of probability distributions. The distributions
involve more information than deterministic estimates as they provide confidence
intervals for the quantity being considered.

The level of parametric uncertainty depends upon their nature as well as expert
knowledge gained through the subsequent practice and experience. For example,
the Young’s modulus Ec is known to be positive definite quantity. According to the
maximum entropy law, this makes the lognormal distribution the most suitable can-
didate for the description of this material constant.

By gathering all available prior information via elicitation techniques, the a priori
probabilistic description of unknown quantities q can be achieved. Mathematically,
this corresponds to the modelling of q with the help of the finite variance Q-valued
random variables (random fields) living in a probability space denoted by triplet
(Ω,P,B), in which Ω stands for the set of all events ω , P is the probability mea-
sure and B is the Borel σ algebra. In this space the random variable q(ω), or a prior,
is defined as a mapping q(ω) : Ω→Q and associated with the expectation operator
representing the high dimensional integral:

E(q) =
∫

Ω

q(ω)P(dω). (12)

By collecting the measurement data εmes
xx , the prior knowledge about q can be further

updated (sharpened) with the help of Bayes rule:

p(q|εmes
xx ) = p(q)

p(εmes
xx |q)

p(εmes
xx )

, (13)
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in which the description of parameter q is conditioned on εmes
xx . Here, p(q|εmes

xx )
denotes the posterior conditional density of q over εmes

xx , p(εmes
xx |q) describes how

likely are the data εmes
xx given the prior q, and p(q) is the prior density. Note that the

data are related to the true value of parameter qt by

ε
mes
xx = Y (qt)+ ε, (14)

in which Y is a nonlinear operator, and ε is the additive sum of measurement and
model errors. This further means that the posterior density is conditioned by the
measurement operator Y , i.e.

p(q|εmes
xx ) = p(q|Y (q)). (15)

By not restricting oneself on only one piece of measurement, but defining Eq. (15)
for all sub-σ -algebras, the previous relation can be transformed to the Kolmogorov
conditional expectation equivalent to the orthogonal projection onto the space Qn :=
Q⊗ L2(Ω,P,σ(Y )), as shown in [19]. The last one further leads to the quadratic
minimisation problem

qa(ω) := arg min
η∈Qn

‖q−η‖2
L2
, (16)

in which the unique solution can be expressed as qa(ω) = ψ(Y ), where ψ ∈
L0(Y ,Q). By focusing only on the subset of linear continuous maps L (Y ,Q) ⊂
L0(Y ,Q), the minimisation in Eq. (16) results in a generalisation of Gauss-Markov
theorem [12]:

qa(ω) = q f (ω)+K(εmes
xx (ω)− ε

sim
xx (ω)), (17)

in which εsim
xx (ω) is the forecasted measurement, εmes

xx (ω) is the sensor output and K
is the Kalman gain. The gain is obtained as product of corresponding covariances
functions (here denoted by C)

K =Cq f ,εsim
xx

(
Cεsim

xx ,εsim
xx

+Cε,ε

)−1
. (18)

The numerical realisation of the previous algorithm can be performed in many dis-
tinct ways as summarised in [19, 20]. The simplest one—the ensemble Kalman filter
(EnKF) [6] —includes the representation of random variables via set of samples (so-
called ensemble) such that:

qa = q f +K(emes
xx − esim

xx ) (19)

holds. Here, qa = [...,qa(ωi), ...]
T denotes the ensemble of posterior samples,

whereas q f , emes
xx and esim

xx are the ensembles of prior, the measurement and forecasted
measurement, respectively. Note that the Kalman gain K is estimated directly from

13
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the ensemble, and hence represents only approximation of the Kalman gain given in
Eq. (18).

The filter as presented in Eq. (17) is optimal when linearity and Gaussianity are as-
sumed. In the nonlinear and non-Gaussian case, as considered in this paper, the filter
delivers only sub-optimal solutions because only a piece of the available information
is actually used in the assimilation process. Therefore, to allow for Gaussianity, all
quantities of consideration are mapped from the non-Gaussian model to the Gaussian
assimilation space by means of Gaussian anamorphosis [24, 23]. The anamorphosis
denotes the nonlinear bijective transformations of the random variables q and εxx

q̂ = Tq(q), ε̂ = Tε(εxx) (20)

to the standard Gaussians q̂ and ε̂ , respectively. The transformation implies

Ŷ = Tε ◦Y ◦T −1
q , (21)

and results in a new EnKF estimate

q̂a = Tq(q f )+ K̂(Tε(emes
xx )−Tε(esim

xx )) (22)

which may be interpreted as some version of a pseudo-linearisation technique. Note
that the quantity q̂a lives in assimilation space, and hence has to be transformed back
to the model space by means of inverse transformation:

qa = T −1
q (q̂a). (23)

The transformation can be performed in an analytical or numerical way depending
on the type of the distributions q and εxx follow. For more information the reader is
referred to [23].

4 Numerical result comparison

As reference, the numerical solution obtained with the finite element code Freefem++
[7] and the reference parameters:

Fex = 104N, lex
F = 3.75m, cex

F = 10m/s, tex
F = 0,1875s

Sex
b1
= Sex

b2
= Sex

b4
= Sex

b5
= 0,04 &Sex

b3
= 0,03

Eex
c1
= Eex

c2
= Eex

c4
= Eex

c5
= 40 GPa &Eex

c3
= 30 GPa

(24)

14

http://www.digibib.tu-bs.de/?docid=00057886 28/10/2014



'xx' strain 'xx' strain

Time (s) Time (s)

Figure 2: Corrupted sensor outputs εmes
xx with Gaussian noise N (0,σ = 5.10−7)

is considered. Note that the concrete subdomain 3 and the steel bar interval 3 are
damaged. Herein, the corruputed sensor outputs εmes

xx are obtained from the perturba-
tion of the reference numerical strain with a white noise N (0,σ). The time evolution
of the corrupted sensor outputs for σ = 5.10−7 can be seen in Fig. 2.

4.1 Study 1: Identification of the moving load

4.1.1 Load identification using simple mechanical framework

To get a better understanding of the load identification problem, the simple one di-
mensional and quasi-static mechanical model (see Fig. 3) is considered. In such a
case one may easily get an analytical expression of the strain in quasi-static condi-

strain sensor

d

x

Figure 3: Simple mechanical model of the beam in quasi-static conditions
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tions:

εxx(x,y)=



lF FdEI
(

1− xF

L

)
xy, x ∈ [0,xF − lF/2[

Fd

2EI

[
2lF
(

1− xF

L

)
xy−

(
x− xF +

lF
2

)2

y

]
, x ∈ [xF − lF/2,xF + lF/2[

lF Fd

EI
xF

L
(L− x)y, x ∈ [,xF + lF/2,L]

(25)
where xF = cF t. Note that at the initial time the abscissa xF associated with the
loading is located at the left beam support.

Let us remark that except in the loading zone [xF − lF/2,xF + lF/2[, the strain only
depends on the total force obtained as product lF Fd . In Fig. 4 are plotted isovalues
of the data misfit functional for seven equidistributed sensors using the analytical ex-
pression in Eq. (25). From the graph above one may observe the lowest values of the
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Figure 4: Data misfit functional J(Fd , lF) =
1
2

7

∑
i=1

∫ T

0
[εxx(Fd , lF ;xi, t)− (εmes

xx )i(t)]
2 dt

without regularization term (εreg
1 = 0)

functional in the close vicinity of the curve Fd lF = Fex
d lex

F . Thereby, one may confirm
that the data misfit functional strongly depends on the total force. This leads to the
conclusion that the total force can be properly identified, whereas the lineic force Fd
and the length force lF not. In fact, when the data misfit functional reaches the value
2.10−13 (see Fig. 4), the identification errors of Fd and lF reach 10%, whereas the
identification error of the total force Fd lF amounts 1%.
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4.1.2 Load identification in 2D elastodynamics

The initial values for the load identification are adopted to correspond to the dynamic
loading due to the moving of a standard truck on the bridge (and thus on the beam).
These values are used directly in the deterministic procedure, whereas the proba-
bilistic approach uses the starting values in a form of a lognormal distribution with
the mean equal to the starting values of the deterministic approach and the variance
equal to 10% of the mean. These information is then assimilated with the measure-
ment data obtained from sensors S1−S7 via the Tikhonov or ensemble Kalman filter
procedure with 100 samples. The EnKF assimilation is performed in the transformed
Gaussian space as described in the previous section. The anamorphosis function be-
ing employed is of the empirical kind and can be seen in Fig. 5 on the example of
lineic force.
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Figure 5: Anamorphosis function for the lineic force

After assimilation of data, and mapping of the posterior to the model space, the EnKF
procedure results in a posterior estimate similar to the one obtained by deterministic
approach. For comparison purposes the mode of posterior is chosen to illustrate the
EnKF result. In both probabilistic and deterministic procedures the lineic force and
the length force are not properly estimated as already predicted in Section 4.1.1 on
the simple 1D quasi-static mechanical model. Namely, the first one is underestimated
18% by EnKF (see Fig. 6) and 15% by Tikhonov regularisation procedure (see Fig. 7)
. Comparably, the length force is overstimated 20% by probabilistic and 15% by
deterministic algorithm. In contrast to this, as depicted in Fig. 8, the total force
obtained as a product of the lineic and length force is properly calibrated even when
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Figure 6: Probabilistic identification of the load amplitude Fd and length force lF

the measurement error is high, i.e. σ = 10−6. Similarly, the velocity is identified
within 2% of the error in both approaches.

Note that the probabilistic and deterministic estimates do not have the same meaning.
The probabilistic is not only a point estimate, but a probability distribution as can
be seen in Fig. 6 and Fig. 8. Thus, one also has to speak about the reduction of
uncertainty going from prior to the posterior distribution. The reduction can be seen
as a sort of measure of information gain. The stronger reduction the more information
one gains from the data. This can be observed in Fig. 8b). However, note that the
variance is underestimated due to nonlinearity of measurements. On the other side,
when the reduction is not so strong such as for example in case of the steel bar cross
section as described in Study 2, the posterior distribution is close to prior, and hence
the information gain is small. This means that the measurement is not sensitive on
the cross section or nonlinearity is too strong such that available information is not
completely used in the process of updating. It is therefore likely that the minimisation
error remains larger.

4.2 Study 2: Determination of the material parameters

In this study, the dynamic loading is considered known. As explained in Section 2.2,
the concrete Young modulus Ec (resp. the steel bar cross section Sb) is assumed
constant on each of five subdomains (resp. on each of five intervals) (see Fig. 1).
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Similarly to the previous study, the starting values for the deterministic approach are
taken to be the values characterising undamaged material. In the probabilistic frame-
work, the identification of material parameters is done by assuming all of unknown
quantities to be positive definite lognormal distributions with the mean equal to the
deterministic values, and variance of 4% of the mean. The estimation is performed
with the help of the Tikhonov regularisation/EnKF with 100 samples and whole time
series of seven measurements read by S8−S14 sensors. Before the EnKF identifica-
tion procedure, the parameter and the measurement are transformed to the standard
Gaussians with the help of the anamorphosis function, see Fig. 9. The transformation
is done locally for each unknown parameter and for each measurement point.
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Figure 9: Identification of material parameters in section 3 by probabilistic approach

After assimilation, the posterior distributions of the material parameters are obtained.
To compare these results with the deterministic approach, the mode is selected as rep-
resentative. According to results shown in Tab. (1), both of approaches are able to
detect and localize the concrete damage in the subdomain 3. The Young’s modulus
is estimated with an error of 8% in the deterministic case and 3% in the probabilis-
tic approach. The probabilistic estimates do not fluctuate strongly with the increase
of the measurement error, and hence the probabilistic approach seems to be more
stable. Concerning the steel bar, Tab. (2) shows that both of approaches do not suc-
ceed in properly identifying the reduction of the cross section in the interval 3. In
Fig. 10, the posterior distributions of Young modulus Ec3 and steel bar cross section
Sb3 are compared for different values of the measurement noise σ . As depicted, the
posterior variances of both of parameters are smaller than the prior ones—the prior
uncertainty is reduced. The reduction is not so much influenced by a measurement
noise. However, the uncertainty reduction of Young’s modulus is stronger than the
corresponding one for the steel bar cross section. The reason is more than obvious.
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σ = 10−7 σ = 5.10−7 σ = 10−6

Parameter D P D P D P
Ec1/(Ec1)ex 0.96 1.02 1. 1.08 0.99 1.07
Ec2/(Ec2)ex 1. 1.06 1. 1.06 1. 0.94
EEEc3///(((EEEc3)))ex 0.92 0.97 0.85 0.97 1.16 0.98
Ec4/(Ec4)ex 1. 1. 0.95 1.0 1. 1.01
Ec5/(Ec5)ex 0.97 1. 1. 1.09 0.99 1.11

Table 1: Updating of the concrete Young modulus - comparison of deterministic (D)
and probabilistic (P) approaches

Parameter D P D P D P
Sb1/(Sb1)ex 0.98 1.00 1. 1.02 0.99 1.01
Sb2/(Sb2)ex 1. 0.88 1. 1.03 1. 1.02
SSSb3///(((SSSb3)))ex 1.25 0.97 1.33 0.95 1.27 1.1
Sb4/(Sb4)ex 1. 1.05 0.99 1. 1. 1.02
Sb5/(Sb5)ex 0.99 1.08 1. 1.01 0.99 1.01

Table 2: Updating of the steel bar cross sections - comparison of deterministic (D)
and probabilistic (P) approaches
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Figure 10: Probabilistic identification of material parameters in section 3
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Figure 11: Probabilistic identification of material parameters in section 3

Namely, the relation between the measurement and the cross section has higher de-
gree of nonlinearity than the one for the Young’s modulus. Hence, the difficulity in
updating as previously observed by author in [20] on a heat diffusion example.

Finally, the prior assumption on the uncertainty of the cross section is not very much
appropriate since the normalised version is bounded on both sides compared to the
exact solution. Therefore, another, non-informative version of the prior is also inves-
tigated. By assuming the unknown parameters to follow the uniform distribution one
obtains similar results as before, see Fig. 11. Only, this time the Young’s modulus is
slightly overestimated and the cross section is underestimated within 5% error. Note
that assimilation with the help of all available measurements S1− S14 gives better
estimates than the one when only sensors S8−S14 are included.

The estimation of material parameters is not optimal by EnKF because the assump-
tions of the linearity of the measurement operator and its Gaussianity fail. To be more
close to these assumptions, the product of the Young’s modulus and cross section (the
axial rigidity of the bar) are assimilated with the measurement data. As expected, the
assimilation results greatly improve. According to Fig. 12, the product is identified
with very slight overestimation (≤ 5%) in both cases. Note that this further can be
improved by linearising the measurement as previously reported in [20] for the dif-
fusion example.

Lastly, a comparison of the deterministic and the probabilistic approaches in terms
of computation cost is performed. Having in mind that the process of solving the
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Figure 12: The estimation of the product of Young modulus and cross section

elastodynamics problem is the most expensive part of both identification algorithms,
the cost is is given in terms of the number of elastodynamics solves. Let us note that
in the deterministic approach, this total number includes direct and adjoint elastody-
namics solves. Finaly both procedures require similar computation time. Indeed, to
identify the loading parameters (resp. the material parameters), one needs about 100
solves.

5 Conclusions

The purpose of this paper was to study the qualitative differences between the proba-
bilistic and deterministic approaches to determine load and material parameters con-
sidering corrupted sensor outputs. In the deterministic strategy, the inverse problem
is solved by virtue of Tikhonov regularisation procedure, whereas in the probabilistic
approach the Bayesian framework of regularisation is used. The results of this inves-
tigation show that for the same computation time both approaches can identify the
loading velocity and the total force but not the individual loading characteristics, i.e.
the loading amplitude and the surfacic force. The identification procedures are able
to localise the concrete damage in the beam and to quantify it within an error of 15%
even for highly noisy data. Nevertheless, the steel bar cross section area describing
the corrosion effects remains difficult to identify. The reasons for this can be sev-
eral: the measurement data are nonlinearly related to the unknown parameters and
strain outputs may be less sensitive to the steel bar cross section. Even though both
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of approaches result in the same conclusion, there exist principal difference between
them. The deterministic method is offering a single value estimate of the parameters,
whereas the probabilistic method produces the probability estimate in a form of dis-
tribution. Hence, in the Bayesian framework a confidence interval on the updating
parameters is obtained. Finally, note that both procedures rely on a regularisation
parameter which is more or less subjectively chosen. To improve the existing esti-
mates, the next step in the following research is to improve the model. Namely, the
concrete is heterogeneous material which can be modelled as a random field or in
a multiscale manner, and the loading is a stochastic process dependent on time. In
addition to this, due to existing nonlinearities another kind of estimation procedure
will be investigated such as for example the sequential or the nonlinear filter.
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