
HAL Id: hal-01216310
https://hal.science/hal-01216310

Preprint submitted on 16 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Simple Library Implementation of Binary Sessions
Luca Padovani

To cite this version:

Luca Padovani. A Simple Library Implementation of Binary Sessions. 2015. �hal-01216310�

https://hal.science/hal-01216310
https://hal.archives-ouvertes.fr

A Simple Library Implementation of Binary Sessions

Luca Padovani – University of Torino, Italy

Abstract. We leverage on former foundational studies on binary sessions to re-
alize a session type system using only ordinary notions of generic types and of
type equality. The type system does not always prevent non-linear usages of ses-
sion endpoints, but linearity violations that may compromise safety are detected
at runtime. We demonstrate the approach implementing a simple, well-integrated
OCaml library for session communications. As a bonus, OCaml infers possibly re-
cursive, polymorphic session types and also supports a form of session subtyping.

1 Introduction

One major obstacle to the adoption and integration of session type systems into main-
stream programming languages is their reliance on sophisticated and peculiar features,
whose built-in support would require massive changes in both languages and their de-
velopment tools. In the case of binary sessions [15,16], for example, the compiler would
have to integrate features for (F.1) describing structured protocols as sequences of I/O
operations and internal/external choices, (F.2) checking the duality of the protocols as-
sociated with the endpoints of a session to make sure that they are used in complemen-
tary ways, (F.3) tracking the changes in the type of endpoints as these are used for I/O
operations, and (F.4) ensuring the linear usage of endpoints.

In this paper we show how to incorporate a form of session type checking into a
broad class of conventional programming languages, by recasting these fancy features
into ordinary ones. A step in this direction was taken by Gay and Vasconcelos [14], who
realized that (F.3) could be achieved by a clever typing of the communication primitives.
The technique is illustrated in program P below, written in an ML-like language:

let foo x0 =

let n, x1 = receive x0 in (* x0 : ?int.!bool.end *)

let x2 = send x1 (n = 0) in (* x1 : !bool.end *)

close x2 (* x2 : end *)

let bar y0 =

let y1 = send y0 42 in (* y0 : !int.?bool.end *)

let b, y2 = receive y1 in (* y1 : ?bool.end *)

close y2; print b (* y2 : end *)

According to [14], the primitives send and receive consume a session endpoint
and return the same endpoint with a possibly different session type. Take for example
the session type !int.?bool.end, which denotes an endpoint for sending an int and
receiving a bool, in this order, before being closed. Then send y0 42 in bar consumes
endpoint y0 of type !int.?bool.end, sends 42 on it, and returns the endpoint with
type ?bool.end, which is then bound to y1. Similarly, receive y1 consumes y1 of

2 Luca Padovani

type ?bool.end, waits for a message from it, and returns a pair with the received
message b of type bool and the endpoint with type end, which is bound to y2. As the
operational semantics in [14] clearly illustrates, the yi’s all actually refer to the same
endpoint; its subsequent rebindings allow the type checker to track the change in its
type without using any dedicated mechanism. Observe that foo has a complementary
behavior compared to bar. This is witnessed by the session type of x0, which is the dual
of that of y0: inputs have become outputs, and vice versa. If foo and bar are applied to
the two endpoints of a session, duality guarantees communication safety.

The given semantics and typing of the communication primitives are not the only
possible ones. An alternative semantics and a corresponding typing for the same prim-
itives emerges from the studies of Kobayashi [20], Demangeon and Honda [10], and
Dardha, Giachino and Sangiorgi [9]. These works show that an arbitrary sequence of
communications in a session can be encoded as a sequence of communications in a
chain of linear channels, each channel being used for one communication only. The
chain is realized by pairing the payload in each message with a continuation, that is
a fresh channel on which the next communication takes place. Let us re-interpret P
as the program Q below, which is syntactically the same as P, but uses this alternative
semantics and typing of the communication primitives:

let foo x0 =

let n, x1 = receive x0 in (* x0 : ?[int * ![bool * Ø[unit]]] *)

let x2 = send x1 (n = 0) in (* x1 : ![bool * Ø[unit]] *)

close x2 (* x2 : Ø[unit] *)

let bar y0 =

let y1 = send y0 42 in (* y0 : ![int * ![bool * Ø[unit]]] *)

let b, y2 = receive y1 in (* y1 : ?[bool * Ø[unit]] *)

close y2; print b (* y2 : Ø[unit] *)

Here xi and y j are linear channels and the communication primitives explicitly cre-
ate and exchange continuations. Channel types have the form κ[t], where κ ∈ {?,!,Ø}
is a capability denoting an input, an output, or the closing of a channel and t is the
type of messages exchanged on the channel. For instance, the type ![int * ![bool *

Ø[unit]]] indicates that y0 is a channel for sending a pair made of an int and another
channel of type ![bool * Ø[unit]]. Now the effect of send y0 42 is to create a fresh
channel, to pair 42 with one reference to such channel of type ![bool * Ø[unit]],
to send the pair, and to return another reference to the same fresh channel of type
?[bool * Ø[unit]]. Accordingly, the type of the first reference matches that of x1
in foo and the type of the second reference matches that of y1 in bar.

Two reasons make the alternative typing of communication primitives in program
Q relevant to our aims. First, program Q only uses ordinary types (channel types and
products). Even if the exact correspondence between the session types in P and the
types in Q is not entirely obvious, it is clear that both describe the same protocol, just
written in different ways. Second, the structurally complex duality relation between the
session types of xi and yi in P boils down to a much simpler duality relation between
the channel types of xi and yi in Q matching input ? with output ! capabilities, but only
in the topmost channel type constructor. This relation, as we will see, can be expressed
solely in terms of type equality, given an appropriate representation of channel types.

A Simple Library Implementation of Binary Sessions 3

In a nutshell, the communication primitives in program P have a natural semantics (not
creating or exchanging continuations) but require fancy types and related notions; the
communication primitives in program Q have an impractical semantics (creating and
exchanging continuations) but their types look and behave much like ordinary ones.

The key observation is that it is makes sense to consider a third, intermediate config-
uration in which the communication primitives do not create or exchange continuations
(as in program P) but are typed as if they did create and exchange continuations (as in
program Q). This mix-up can be justified as an optimized implementation of the com-
munication primitives in program Q: as the authors of [9] point out, there is no need to
actually create fresh continuations, for the already existing channel can be reused. We
take this optimization one step further: not only continuations need not be created, they
need not be exchanged either, precisely because the channel being reused is already
known by the interacting processes. In the end, we obtain a set of primitives whose se-
mantics matches exactly that for session communications, but whose typing allows us
to realize (F.1–3) in terms of standard notions of generic types and type equality. We do
not propose or adopt compile-time mechanisms for (F.4). Instead, we rely on the run-
time environment for detecting non-linear endpoint usages that may compromise safety.
We will see that the type system is nonetheless capable of identifying a fair number of
linearity violations, even if it is not intentionally designed to do so (Example 4).

Here is an account of our contributions:

1. We formalize a core functional language, called FuSe, that combines multithread-
ing and session-based communications in the style of [14] with a runtime mecha-
nism that detects endpoint linearity violations (Section 2).

2. We define an ordinary ML-style type language for FuSe and we adapt and extend the
encoding of session types [9] into FuSe types. A carefully chosen representation of
channel types allows us to express (encoded) session type duality solely in terms of
type equality and generic types (Section 3).

3. We equip FuSe with a standard ML-style type system and we type FuSe primitives
using encoded (as opposed to built-in) session types. Well-typed FuSe programs
are shown to enjoy all the usual properties of sessions (safety, fidelity, progress)
under the hypothesis that they use session endpoints linearly (Section 4).

4. To demonstrate the effectiveness of the approach, we detail the implementation of
FuSe primitives as a simple OCaml module [22]. The implementation integrates
well with OCaml, which is capable of inferring possibly recursive, polymorphic
session types and of supporting a form of session subtyping as well (Section 5).

We share motivations and objectives with Neubauer and Thiemann [24] and with
Pucella and Tov [29] although we adopt a different approach. In short: [24,29] hinge on
advanced features of the host language (Haskell) to represent and handle conventional
session types; we work with a representation of session types that makes them easy to
handle in conventional type systems. Compared to [24,29], our approach realizes (F.1–3)
with a substantially simpler machinery that better integrates with the host language and
is less onerous on the programmer. A more in-depth discussion is deferred to Section 6.

The OCaml implementation of FuSe communication primitives, described in full in
Section 5, can also be downloaded from the author’s home page. Proofs and supple-
mentary technical material are in Appendixes A and B, beyond the page limit.

4 Luca Padovani

Table 1. Syntax of FuSe expressions and processes.

Expression e ::= c (constant)
| u (name)
| fun x ↓- e (abstraction)
| e1e2 (application)
| (e1,e2) (pair construction)
| K e (sum injection)
| let x = e1 in e2 (let binding)
| let x,y = e1 in e2 (pair splitting)
| match e with {i xi ↓- ei}i=L,R (case analysis)

Process P,Q ::= 〈e〉 (thread)
| P|Q (composition)
| (νa)P (session)
| error (runtime error)

2 Syntax and Semantics of FuSe

We use infinite sets of variables x, y, . . . and sessions a, b, . . . ; an endpoint or channel
is a pair ap made of a session a and a polarity p,q ∈ {+,-,*}. Polarities + and - de-
note valid endpoints that can be used for I/O operations whereas the polarity * denotes
invalid endpoints that are not supposed to be used. We define a partial involution · on
polarities such that + = - and - = + and leave * undefined. We say that ap is the peer
of ap when p 6= *. We let u range over names, which are either variables or endpoints.

The syntax of expressions e and processes P, Q is given in Table 1. The symbol
c ranges over the constants (), fix, fork, create, close, send, receive, left,
right, branch, where () is the unitary value, fix the fixpoint combinator, and fork

the primitive that creates new threads. The remaining constants represent communica-
tion primitives whose semantics will be detailed shortly. Expressions are conventional
and include let bindings and introduction and elimination constructs for products and
sums. The symbol K ranges over the tags L and R that inject values into disjoint sums.
We use expressions to model threads – the sequential parts of programs – and processes
to model parallel threads communicating via sessions. A process is either a thread 〈e〉,
or the parallel composition P|Q of two processes P and Q, or a restriction (νa)P mod-
eling a session a with scope P, or a runtime error resulting from an attempt to use an
invalid endpoint. The notions of free and bound names are standard. We write fn(e) and
fn(P) respectively for the sets of free names of e and P and we identify terms modulo
alpha-renaming of bound names.

The operational semantics is defined in terms of a reduction relation for expressions,
a structural congruence and a labeled reduction relation for processes. We make use of
conventional notions of values v, w and of evaluation contexts E , defined thus:

v,w ::= c | ap | fun x ↓- e | (v,w) | K v | fork v | send v

E ::= [] | E e | vE | (E ,e) | (v,E) | K E | let x = E in e
| let x,y = E in e | match E with {i xi ↓- ei}i=L,R

A Simple Library Implementation of Binary Sessions 5

Table 2. Reduction of FuSe expressions and processes.

Reduction of expressions e−→ e′

[R-BETA] (fun x ↓- e)v −→ e{v/x}
[R-LET] let x = v in e −→ e{v/x}
[R-FIX] fix v −→ v (fix v)
[R-SPLIT] let x,y = (v,w) in e −→ e{v,w/x,y}
[R-MATCH] match K v with {i xi ↓- ei}i∈{L,R} −→ eK{v/xK}

Reduction of processes P `−→ Q

[R-THREAD] 〈E [e]〉 τ−→ 〈E [e′]〉 if e−→ e′

[R-FORK] 〈E [fork v w]〉 τ−→ 〈E [()]〉| 〈vw〉
[R-CREATE] 〈E [create()]〉 τ−→ (νa)〈E [(a+,a-)]〉 a fresh
[R-CLOSE] 〈E [close ap]〉| 〈E ′[close ap]〉 ca−→ 〈Eca[()]〉| 〈E ′ca[()]〉
[R-COMM] 〈E [send ap v]〉| 〈E ′[receive ap]〉 map−→ 〈Emap[ap]〉| 〈E ′map[(vmap,ap)]〉
[R-LEFT] 〈E [left ap]〉| 〈E ′[branch ap]〉 map−→ 〈Emap[ap]〉| 〈E ′map[L ap]〉
[R-RIGHT] 〈E [right ap]〉| 〈E ′[branch ap]〉 map−→ 〈Emap[ap]〉| 〈E ′map[R ap]〉
[R-ERROR] 〈E [c a*]〉 τ−→ error

[R-PAR] P|R `−→ Q|R` if P `−→ Q
[R-NEW-1] (νa)P τ−→ (νa)Q if P map−→ Q or P ca−→ Q
[R-NEW-2] (νa)P `−→ (νa)Q if P `−→ Q and ap 6∈ fn(`)
[R-STRUCT] P `−→ Q if P≡ P′ `−→ Q′ ≡ Q

Note that fork v and send v are values because fork and send represent curried
binary functions. Evaluation contexts are standard for call-by-value; as usual, we write
E [e] for the result of replacing the hole [] in E with e. We also write X{v/u} for the
capture-avoiding substitution of v in place of the free occurrences of u in X , where X
stands for an expression, a process, or an evaluation context.

The reduction relations are defined in Table 2. Reduction of expressions, in the up-
per part of the table, is standard. The lower part of the table defines a labeled reduction
for processes where labels ` are either τ , denoting an internal action, or map, denoting
a message exchange from endpoint ap to endpoint ap in session a, or ca, indicating that
the session a has been closed. We define fn(τ)

def
= /0 and fn(map) = fn(ca) def

= {a+,a-}.
Labels allow us to observe the behavior of processes on the channels they use. This
information is necessary to show that well-typed processes respect protocols and also
to invalidate the endpoints that have been used in a reduction.

Notation. For every expression, process, context X , we write X` for X{a*/u}u∈fn(`).

Intuitively, X` invalidates all the endpoints ap in X by replacing them with a*, after
an `-labeled reduction. When `= τ , no (observable) endpoint is used so no endpoint is
invalidated. When `= map or `= ca, both a+ and a- are invalidated.

We now describe the reduction rules of processes. Rule [R-THREAD] simply lifts the
reduction of expressions to processes. Rule [R-FORK] spawns a new thread, represented as

6 Luca Padovani

a function v that needs an argument w. The thread is started by applying v to w in par-
allel with the process that forks the thread. Rule [R-CREATE] creates a new session a. The
expression create() reduces to a pair containing two valid endpoints of the session
with opposite polarities. Rule [R-CLOSE] models the closing of session a. The operation in-
validates every occurrence of a+ and a- in the program. In the formal development this
operation is synchronous for simplicity, but in the implementation each endpoint can
be closed independently of the other. Rule [R-COMM] models the communication between
two threads connected by a session a. The message v in the sender thread is transferred
to the receiving thread. Following the semantics of [14], the output operation reduces to
the endpoint ap used by the sender, while the input operation reduces to a pair contain-
ing the message and the endpoint ap used by the receiver. All other occurrences of ap

and ap, including those in the message v, are invalidated. Next are [R-LEFT] and [R-RIGHT]

modeling the selection of a particular branch in a structured conversation. They are akin
to [R-COMM], except that the endpoint used by the receiver is injected into a disjoint sum
with a tag K that represents the choice taken. Intuitively, the message being communi-
cated in these cases is just the tag K. Note that there is no explicit creation or passing
of continuations in [R-COMM], [R-LEFT], [R-RIGHT]: all that is transferred from one thread to
another is just the payload. Rule [R-ERROR] generates a runtime error if there is an attempt
to use an invalid endpoint, where “using an endpoint” means that the endpoint occurs as
the first argument of a primitive c. Rule [R-PAR] closes reductions under parallel compo-
sitions. The label that decorates the reduction relation is used to propagate the effects of
an invalidation to the entire program. Rules [R-NEW-1] and [R-NEW-2] close reductions under
restrictions. The labels map and ca turn into a τ when they cross the restriction on a, as
the session becomes unobservable. Finally, [R-STRUCT] closes reductions under the least
structural congruence defined by the rules below:

〈()〉|P≡ P P|Q≡ Q|P P| (Q|R)≡ (P|Q)|R

(νa)〈()〉 ≡ 〈()〉 (νa)(νb)P≡ (νb)(νa)P
a+,a-,a* 6∈ fn(Q)

(νa)P|Q≡ (νa)(P|Q)

Structural congruence is essentially the same of the π-calculus, except that the idle
process is written 〈()〉 and the last rule shrinks or extends the scope of a session only
when no valid or invalid endpoint is captured.

Example 1 (mathematical server). We write examples in a language slightly richer than
FuSe that includes numbers, booleans, if-then-else, and standard syntactic sugar for
possibly recursive let-bindings. The examples compile and run using OCaml [22] and
our implementation of the FuSe primitives, described in Section 5. Below is a simple
server for mathematical operations, similar to that of [13]:

let rec server x =

match branch x with (* wait for a request *)

‘L x ↓- close x (* close session *)

| ‘R x ↓- let n, x = receive x in (* receive first operand *)

let m, x = receive x in (* receive second operand *)

let x = send x (n + m) in (* send result *)

server x (* serve more requests *)

A Simple Library Implementation of Binary Sessions 7

The server is modeled as a function operating on an endpoint x. The function is recur-
sive, so that the server is able to process an arbitrary number of requests within a single
session. The server first waits for a request from the client, represented as a tag ‘L or
‘R (this is the OCaml syntax for polymorphic variant tags, see Section 5.3). If the client
selects ‘L, the session is closed. If the client selects ‘R, the server expects to receive
two integer numbers, it sends back their sum, and recurs.

A possible client, operating on an endpoint y, is shown below:

let client n y =

let rec aux acc n y = (* add n naturals *)

if n = 0 then begin

close (left y); acc (* close session and return *)

end else

let y = right y in (* select plus operation *)

let y = send y acc in (* send first operand *)

let y = send y n in (* send second operand *)

let res, y = receive y in (* receive result *)

aux res (n - 1) y (* possibly add more *)

in aux 0 n y

In this case, the client is computing the sum of the first n naturals by repeated
invocations of the server. If n is 0, the computation is over, the client closes the session
and returns the result. Otherwise, the client invokes the “plus” operation offered by
the server to compute a new partial result and recurs. Note how the endpoint y is used
differently in the two branches of the if-then-else.

The code to fire up client and server is the following

let a, b = create () in (* create the session *)

let _ = Thread.create server a in (* spawn the server *)

print_int (client 100 b) (* run the client *)

where Thread.create, a function provided by the standard OCaml library for multi-
threading, corresponds to the fork primitive in FuSe. �

3 Types

In this section we define the types for FuSe, we recall the encoding of [9] and extend
it to an isomorphism between session types and a suitable subset of FuSe types. This
gives us the basis for interpreting and understanding the type of FuSe communication
primitives.

Types for FuSe. We let α , β , . . . range over type variables. The syntax of (finite) types
and of type schemes is given in Table 3. Type schemes σ are conventional; we will often
abbreviate ∀α1 · · ·∀αn.t with ∀α1 · · ·αn.t. Types t, s are the regular trees generated by
the type constructors in Table 3 and include the unitary type unit, arrows, products,
and disjoint sums. In the examples we occasionally use other base types such as int
and bool. The types ◦ and • respectively denote the absence and presence of a certain
input/output capability in a channel type. They are not inhabited and are only used as

8 Luca Padovani

Table 3. Syntax of types, type schemes, and session types.

Type t,s ::= α (variable)
| ◦ (no cap.)
| • (one cap.)
| unit (unit)
| t ↓- s (arrow)
| t * s (product)
| t + s (sum)
| t t[t] (channel)

Type scheme σ ::= t (mono type)
| ∀α.σ (poly type)

Session type T,S ::= end (termination)
| ?T.S (input)
| !T.S (output)
| T &S (external choice)
| T ⊕S (internal choice)

phantom type parameters. A channel type tito[s] has three type parameters: ti and to
respectively represent the input and output capabilities of the channel and are always
either a type variable or ◦ or •; s is the type of the messages that can be sent on/received
from the channel. For example, ◦•[int] is a channel type without input capability (◦)
and with output capability (•), hence it denotes a channel for sending messages of type
int; the type •◦[int * ◦•[bool]] denotes a channel for receiving a pair whose first
component has type int and whose second component is another channel that can be
used for sending a bool. A channel with type ◦◦[t] bears no capabilities and cannot be
used for I/O operations. Channel types ••[t] have no role in FuSe.

Type equality corresponds to regular tree equality. Recall that each regular tree con-
sists of a finite number of distinct subtrees and admits finite representations as a system
of equations or using the traditional µ notation ([8] is the standard reference for reg-
ular trees and their finite representations). For example, the equation α = int ↓- α is
satisfied by the type t of the “ogre” function that eats infinitely many int arguments.
The shape of the equation, with α guarded by a type constructor on the right hand side,
effectively defines the unique type t such that t = int ↓- t (see [8, Theorem 4.3.1]). We
can use infinite types for describing arbitrarily long communication protocols, like the
one implemented by server and client in Example 1.

Duality relates the types of channels used in complementary ways:

Definition 1 (type duality). Let ⊥t be the least relation such that t1t2[s]⊥t
t2t1[s]. We

write t⊥ for the s such that t ⊥t s when t is a channel type; t⊥ is undefined otherwise.

The rationale for type duality is that if a process uses a channel according to some
type t, then we expect another process to use the same channel according to the dual
type t⊥. So for example, ◦•[int]⊥t

•◦[int] since the dual behavior of “send an int”
is “receive an int”. On the other hand, we have ◦◦[t] ⊥t

◦◦[t], since “do nothing” is
dual of itself. Type duality is a partial involution: when t⊥ is defined, we have t⊥⊥ = t.

Our representation of channel capabilities is a bit unusual. Most type systems with
channel types, from the seminal paper on channel subtyping [28] to those for the lin-
ear π-calculus [21] and binary sessions [9], use types of the form κ[t] or variants of
this, where κ ranges over a finite set of capabilities such as {?,!,Ø}. We have used
this notation also in Section 1, while discussing program Q. In these cases, capabilities
and types belong to different sorts and computing the dual of a channel type essentially
means defining a suitable dual operator for capabilities such that, for instance, ?⊥ = !.

A Simple Library Implementation of Binary Sessions 9

One shortcoming of this representation is that duality is easily defined only when ca-
pabilities are known. Dealing with unknown capabilities means introducing (possibly
dualized) capability variables, and this machinery quickly taints the whole type sys-
tem. Our approach departs from the aforementioned ones in two respects. First, we use
two slots for representing the absence or presence of a certain I/O capability, instead
of just one slot that contains either one or the other. This representation, which is also
convenient in type reconstruction algorithms for the π-calculus [19,26,27], allows us to
dualize a channel type by just swapping the content of the two slots. Second, we use
types to represent capabilities so that type variables can stand for unknown capabili-
ties. For example, the type t def

= αβ[γ] denotes a channel for which nothing is known.
Nonetheless, the dual of t can still be obtained by swapping α and β , that is t⊥= βα[γ].
Overall, the chosen representation makes it easy to relate a channel type and its dual
even when capabilities are not known.

In the following we will make extensive use of channel types with unknown capa-
bilities and unknown message types, so we reserve some convenient notation for them:

Notation (channel type variable). We say that a type of the form αβ[γ] is a channel
type variable. We let A, B, . . . range over channel type variables and we write ∀A.σ

instead of ∀αβγ.σ when A = αβ[γ].

Note that the dual A⊥ of a channel type variable A is always defined.

Session types. Even though our type system does not use built-in session types, the
typing of FuSe communication primitives follows from the encoding of session types
into ordinary types [9]. For this reason, in the remainder of this section we formalize the
relationship between session types and FuSe types, recalling the encoding and instanti-
ating it to our setting. Compared to [9], we use channel types with a slightly different
representation of I/O capabilities and we consider possibly infinite (session) types.

The syntax of session types T , S is given in Table 3. The session type end denotes
a channel on which no further communication is allowed. The session types ?T.S and
!T.S denote channels to be used respectively for one input and one output of a message
of type T and according to S afterwards. The session types T &S and T ⊕S respectively
denote external and internal choices in a protocol. A process using a channel of type T ⊕

S decides whether to behave according to the “left” protocol T or the “right” protocol S.
A process using a channel of type T &S accepts the decision of the process using the peer
endpoint. As we have seen in Table 2, the choice is effectively encoded and transmitted
as an appropriate message, hence ⊕ corresponds to an output and & to an input operation.
As for types, we do not devise a concrete syntax for recursive session types and use
regular trees in this case as well. For example, the (unique) session type T that satisfies
the equality T = !T1.!T1.?T2.T denotes a channel for sending two messages of type
T1, receiving one message of type T2, and then according to the same protocol, over and
over again. The given syntax of session types disallows the description of polymorphic
protocols and protocols for exchanging messages other than channels. These limitations
are immaterial for we introduce session types for illustrative purposes only. All the
results in this section extend to more general forms of session types.

Just like channel types, session types too support a notion of duality that relates
complementary behaviors. It is defined thus:

10 Luca Padovani

Definition 2 (session type duality). Session type duality is the largest relation ⊥st

between session types that satisfies the rules

end⊥st end
S1 ⊥st S2

?T.S1 ⊥st !T.S2

Ti ⊥st Si
(i=1,2)

T1 &T2 ⊥st S1 ⊕S2

and the symmetric ones, omitted. Observe that ⊥st is an endofunction on session types.
We write T⊥ for the session type S such that T ⊥st S and say that S is the dual of T .

Duality relates inputs with outputs carrying the same message type and end with
itself. For example, ?T.!S.end ⊥st !T.?S.end and if T is the session type such that
T = !T1.!T1.?T2.T then T⊥ is the session type S such that S = ?T1.?T1.!T2.S. It is
easy to establish that duality is an involution also for session types (T⊥⊥ = T).

We now formalize the claim made in Section 1 that “session types and their encod-
ing describe the same protocol, written in different ways” as an isomorphism between
the set S of session types and a suitable subset P of FuSe types which we call protocol
types (such essentially syntactic isomorphism between types is supported by a semantic
correspondence between processes, see [9]). The set P is defined thus:

Definition 3. We write P for the largest subset of types such that t ∈ P implies either
t = ◦◦[unit] or t = s1s2[t1� t2] and � ∈ {*,+} and {s1,s2}= {◦,•} and t1, t2 ∈ P.

The morphism from S to P is given by the encoding of session types into ordinary
types [9] and rests on the idea that multiple communications on one channel can be
modeled as a sequence of one-shot communications on a chain of different channels.
The chain is realized by sending, at each communication, a fresh continuation channel
along with the communication payload. For example, the session type !T.S describes
a channel used for sending a message of type T first and according to S afterwards. It is
encoded as the channel type ◦•[t * s] where t is the encoding of T and s is the encoding
of S⊥. The reason why the type s of the continuation is the encoding of S⊥ and not
the encoding of S is because the tail S in !T.S describes the behavior of the sender
after it has sent a message of type T , while in the encoding the type of the continuation
describes the behavior of the receiver of the continuation. Clearly, the sender will also
use the same continuation, but according to the type s⊥. In general we have:

Definition 4 (encoder). The encoder function J·K : S→ P is coinductively defined by:

JendK = ◦◦[unit]
J?T.SK = •◦[JT K * JSK]
J!T.SK = ◦•[JT K * JS⊥K]

JT &SK = •◦[JT K + JSK]
JT ⊕SK = ◦•[JT⊥K + JS⊥K]

As an example, if we consider again T = !T1.!T1.?T2.T , then we derive:

JT K = ◦•[t1 * J?T1.!T2.T⊥K] where t1 = JT1K
= ◦•[t1 * •◦[t1 * J!T2.T⊥K]]
= ◦•[t1 * •◦[t1 * ◦•[t2 * JT⊥⊥K]]] where t2 = JT2K
= ◦•[t1 * •◦[t1 * ◦•[t2 * JT K]]]

If we consider instead the session type S such that S = ?T1.?T1.!T2.S, which is
in fact T⊥, then JSK = •◦[t1 * •◦[t1 * ◦•[t2 * JT K]]]. The choice of ◦◦[unit] as the
encoding of end is almost arbitrary. We could have used any type in place of unit.

A Simple Library Implementation of Binary Sessions 11

The morphism from P to S reconstructs a session type T by interpreting the type of
continuation channels as the tail(s) of T :

Definition 5 (decoder). The decoder function 〈〈·〉〉 : P→ S is coinductively defined by:

〈〈◦◦[unit]〉〉 = end
〈〈•◦[t * s]〉〉 = ?〈〈t〉〉.〈〈s〉〉
〈〈◦•[t * s]〉〉 = !〈〈t〉〉.〈〈s⊥〉〉

〈〈•◦[t + s]〉〉 = 〈〈t〉〉& 〈〈s〉〉
〈〈◦•[t + s]〉〉 = 〈〈t⊥〉〉⊕ 〈〈s⊥〉〉

It is not immediate to see that 〈〈·〉〉= J·K−1, because the two morphisms use different
notions of duality, for session types and for channel types respectively. However, as
observed in [9] and formally stated below, J·K commutes with duality (and so does 〈〈·〉〉).
This property is key to prove that J·K and 〈〈·〉〉 are indeed one the inverse of the other.

Theorem 1 (commuting duality). ⊥t ◦ J·K = J·K◦⊥st.

The existence of an isomorphism between S and P shows that using protocol types
instead of built-in session types results in no loss of expressiveness (there is an encoding
for every session type) and no loss in precision (every session type can be reconstructed
from its encoding). Most importantly, Theorem 1 combined with our representation of
channel types provides a straightforward method for checking whether T ⊥st S holds.
Suppose for example that JT K = tito[t] and JSK = siso[s]. Using Theorem 1 we deduce

T ⊥st S ⇐⇒ JT K⊥t JSK ⇐⇒ ti = so∧ to = si∧ t = s

thereby turning the verification of a complex relation T ⊥st S, which implies matching
input with output capabilities across the whole structure of T and S, into three plain type
equalities. In prospect of integrating a session type system into an existing type system,
this is a major advantage of using encoded (as opposed to built-in) session types.

4 Type System

We present the type system for FuSe and state its properties. The type system is essen-
tially standard for ML-like languages, in particular it has no baked-in features specifi-
cally targeted to session type checking. Compared to the type system in [14], the main
differences concern the typing of communication primitives and the fact that the type
system is not substructural.

Table 4 gives the typing rules. We let Γ range over type environments which are
finite maps from names to type schemes written u1 : σ1, . . . ,un : σn that keep track of
the type of the free names of expressions and processes. We write /0 for the empty type
environment, dom(Γ) for the domain of Γ , and Γ ,Γ ′ for the union of Γ and Γ ′ when
dom(Γ)∩ dom(Γ ′) = /0. The rules for processes derive judgments of the form Γ ` P,
stating that P is well typed in Γ . Rules [T-THREAD] and [T-PAR] are standard. Rule [T-NEW]

introduces in the type environment three endpoints of a session: two of them are valid
and typed with dual types (the fact that one of them is typed by t⊥ implicitly means
that t is a channel type); the third one is invalid and typed with ∀A.A. This way, distinct
occurrences of an invalid endpoint can appear anywhere a channel is expected and need
not be typed in the same way (see Remark 1). There is no typing rule for error.

12 Luca Padovani

Table 4. Typing rules for expressions and processes.

Expressions Γ ` e : t

[T-CONST]

TypeOf(c)� t

Γ ` c : t

[T-NAME]

σ � t

Γ ,u : σ ` u : t

[T-ARROW]

Γ ,x : t ` e : s

Γ ` fun x ↓- e : t ↓- s

[T-LET]

Γ ` e1 : t1 Γ ,x : Close(t1,Γ) ` e2 : t2
Γ ` let x = e1 in e2 : t2

[T-APP]

Γ ` e1 : t ↓- s Γ ` e2 : t

Γ ` e1e2 : s

[T-PAIR]

Γ ` ei : ti (i=1,2)

Γ ` (e1,e2) : t1 * t2

[T-SPLIT]

Γ ` e1 : t1 * t2 Γ ,x : t1,y : t2 ` e2 : t

Γ ` let x,y = e1 in e2 : t

[T-LEFT]

Γ ` e : t

Γ ` L e : t + s

[T-RIGHT]

Γ ` e : s

Γ ` R e : t + s

[T-MATCH]

Γ ` e : t1 + t2 Γ ,xi : ti ` ei : t (i=L,R)

Γ ` match e with {i xi ↓- ei}i=L,R : t

Processes Γ ` P

[T-THREAD]

Γ ` e : unit
Γ ` 〈e〉

[T-PAR]

Γ ` P Γ ` Q

Γ ` P|Q

[T-NEW]

Γ ,a+ : t,a- : t⊥,a* : ∀A.A ` P

Γ ` (νa)P

The rules for expressions derive judgments of the form Γ ` e : t and are formu-
lated using the same notation of Wright and Felleisen [32]. Since the rules are mostly
standard, we just focus on a few details. Rules [T-CONST] and [T-NAME] respectively type
constants and names by instantiating their type scheme. The type scheme of constants
is retrieved by a global function TypeOf(·), to be detailed shortly, while that of names
is obtained from the type environment. Following [32], the relation σ � t is defined by

t � t
σ � t

∀α.σ � t{s/α}

and instantiates a type scheme into a type. Rule [T-LET] generalizes the type of the let-
bound variable by means of the function Close(·), which is defined as in [32] by

Close(t,Γ) def
= ∀α1 · · ·αn.t where {α1, . . . ,αn}= ftv(t)\ ftv(Γ)

where ftv collects the free type variables of types and type environments. Rule [T-LET]

is well known for being unsound in impure languages, the best-known counterexample
being that of polymorphic references (again, see [32]). However, the counterexample
relies crucially on the fact that the same reference is used twice, in such a way that
its type scheme can be instantiated with incompatible types in different parts of the
program. [T-LET] is sound if we know that x is used linearly. Since the impure fragment

A Simple Library Implementation of Binary Sessions 13

Table 5. Type schemes of FuSe constants.

() : unit
fix : ∀α.(α ↓- α) ↓- α

fork : ∀α.(α ↓- unit) ↓- α ↓- unit

create : ∀A.unit ↓- A * A⊥

close : ◦◦[unit] ↓- unit

send : ∀αA.◦•[α * A] ↓- α ↓- A⊥

receive : ∀αA.•◦[α * A] ↓- α * A
left : ∀AB.◦•[A + B] ↓- A⊥

right : ∀AB.◦•[A + B] ↓- B⊥

branch : ∀AB.•◦[A + B] ↓- A + B

of FuSe concerns only sessions and we are interested in stating the soundness of FuSe
type system under the assumption that channels are indeed used linearly, we can live
with just one typing rule for let and not impose the value restriction even if e1 has side
effects (Appendix B.1 details why the counterexample in [32] does not apply).

The function TypeOf is given in Table 5 as a set of associations c : TypeOf(c). The
types of () and fix are standard. The type of fork has been chosen to match more
closely the one of Thread.create in the OCaml multithreading module. According to
the operational semantics, fork accepts a function representing the thread to be created
and the argument of type α it needs to start executing. The type of createmakes it clear
that the primitive returns a pair of endpoints with dual types. Recall that a channel type
variable like A is just syntactic sugar for a channel type of the form αβ[γ]. Therefore,
the desugared type scheme of create is ∀αβγ.unit ↓- αβ[γ] * βα[γ]. The ability to
express channel types with unknown message types and capabilities gives create the
most general type. The type of close is unremarkable. The type of send follows from
the encoding of outputs (Definition 4): send takes a channel for sending messages of
type α * A, the payload of type α , and returns a channel of type A⊥. According to its
type, send should in principle communicate both the payload and the continuation. In
reality, as the operational semantics illustrates, only the payload is sent. The type A of
the continuation is used to correlate the future behaviors of sender and receiver after this
interaction. The type of receive follows from the encoding of inputs: in this case the
type of the continuation describes how the channel will be used by the receiver process,
once the message has arrived. The types of left and right are analogous to that of
send, and the type of branch is analogous to that of receive.

Observe that all the types of FuSe primitives can be expressed in any type system
with generic types, once channel type variables have been desugared (Notation 3).

Example 2. Below we propose again the code of server in Example 1 in which we
have indicated the type si of the (free) occurrence of x on line i:

1 let rec server x =

2 match branch x with (* s2 =
•◦[s3 + s4] *)

3 ‘L x ↓- close x (* s3 =
◦◦[unit] *)

4 | ‘R x ↓- let n, x = receive x in (* s4 =
•◦[int * s5] *)

5 let m, x = receive x in (* s5 =
•◦[int * s6] *)

6 let x = send x (n + m) in (* s6 =
◦•[int * s7] *)

7 server x (* s7 = s⊥2 *)

The output on line 6 indicates that server sends a payload of type int and a
(virtual) continuation of type s7 to client. Therefore, s7 describes the behavior of

14 Luca Padovani

client on the continuation channel, whereas server will use the same channel ac-
cording to the type s2, which is the dual of s7. Overall, the argument x of server

has type s = •◦[◦◦[unit] + •◦[int * •◦[int * ◦•[int * s⊥]]]] therefore we have
server : s ↓- unit. It is then easy to derive client : int ↓- s⊥ ↓- int, confirming that
client and server can interact flawlessly. �

We now investigate the relationship between well-typed programs and the three
standard properties of sessions: every message sent in a session has the expected type
(communication safety); the sequence of interactions in a session follows the prescribed
protocol (protocol fidelity); if the interaction in a session stops, there are no pending I/O
operations (progress). Obviously, well typing alone is not enough to guarantee these
properties, for two reasons: first, the FuSe type system does not enforce the linear us-
age of endpoints, therefore there exist well-typed programs that try to use endpoints
non-linearly causing runtime errors; second, the FuSe type system does not prevent
deadlocks, which jeopardize progress and may occur even if endpoint linearity is re-
spected. To take these facts into account, we must weaken the statements of our results
with additional hypotheses: that endpoints are used linearly, and that no deadlocks oc-
cur. Note that these properties are undecidable in general.

The semantics of our communication primitives allows for a simple definition of
linear endpoint usage. Recall that each communication primitive applied to an end-
point ap invalidates every other occurrence of ap before (possibly) returning ap itself.
Therefore, any attempt to use an invalid endpoint means that another occurrence of the
same endpoint has already been used in the past. It is not enough to check endpoint
validity at one particular point in time, for instance in the initial program state, for an
endpoint might be duplicated as the program executes. We resort to a coinductive defi-
nition that requires linear endpoint usage to be preserved across all possible executions
of a process.

Definition 6 (affine and linear endpoint usage). Let EA and EL be the largest predi-
cates on processes that are closed by reductions and such that:

– If EA(P) or EL(P) and P≡ (νa1) · · ·(νan)(〈E [c ap]〉|Q), then p ∈ {+,-}.
– If EL(P) and P≡ (νa)Q and ap ∈ fn(Q) where p ∈ {+,-}, then ap ∈ fn(Q).

In words, EA is the set of endpoint affine processes, which never try to use the same
endpoint twice, while EL is the set of endpoint linear processes which, in addition,
never discard a valid endpoint if its peer is being used. Note that EL⊆ EA and that EL
is coarser than the property enforced by linear type systems. In particular, duplications
of an endpoint are allowed provided that only valid endpoints are actually used. For
example, the expression

send (let x, y = (a, a) in x)

temporarily duplicates the endpoint a but may occur in a process that satisfies EL. The
same expression is ill typed according to the type system in [14].

In order to state subject reduction we have to consider that, like in many other
behavioral type systems, the type associated with endpoints may change as the result of
interactions occurring on such endpoints. To express this change, we define a suitable
reduction relation for type environments mimicking that of processes (Table 2).

A Simple Library Implementation of Binary Sessions 15

Definition 7. Let `−→ be the least relation between type environments such that:

Γ
τ−→ Γ

Γ ,ap : ◦•[t * s],ap : •◦[t * s] map−→ Γ ,ap : s⊥,ap : s
Γ ,ap : ◦•[t1 + t2],ap : •◦[t1 + t2]

map−→ Γ ,ap : t⊥i ,ap : ti i ∈ {1,2}
Γ ,ap : ◦◦[unit],ap : ◦◦[unit] ca−→ Γ

We write Γ
`−→ if there exists Γ ′ such that Γ `−→ Γ ′ and Γ X `−→ if not Γ `−→.

Observe that Γ map−→ implies Γ Xmap−→ and Γ X ca−→. That is, if communication from ap to
ap is allowed at some point of an interaction in session a, communication in the opposite
direction is forbidden, as is closing a, at the same point. Similarly, Γ ca−→ implies Γ Xma+−→
and Γ Xma-−→ (in a closing session a no communication is allowed) and Γ

ca−→ `−→ implies
a+,a- 6∈ fn(`) (once session a has been closed, no more actions are allowed).

The last ingredient we need to state subject reduction is that of balanced type envi-
ronment: Γ balanced if, whenever there is an association for some valid endpoint ap in
Γ , then there are associations also for its peer ap and for a* as well, with the requirement
that peer endpoints must have dual types and invalid ones have type ∀A.A. Formally:

Definition 8 (balanced type environment). We say that Γ is balanced if:

1. ap ∈ dom(Γ) with p ∈ {+,-} implies ap,a* ∈ dom(Γ) and Γ(ap)⊥t Γ(ap);
2. a* ∈ dom(Γ) implies Γ(a*) = ∀A.A.

Remark 1. To appreciate the relevance of condition (2) in Definition 8 consider

P def
=
〈close (send a+ 42)〉| 〈let _,x = receive a- in close x〉

| 〈close (send (if true then c+ else a+) 31)〉

and the environment Γ def
= a+,c+ : t,a-,c- : t⊥,a*,c* : ∀A.A where t def

= ◦•[int * ◦◦[unit]].
Observe that P is well typed in Γ and that EA(P) holds despite P contains two occur-
rences of a+, because a+ is never actually used twice. We have

P ma+−→ 〈close a+〉| 〈let _,x = (42,a-) in close x〉
| 〈close (send (if true then c+ else a*) 31)〉

where one occurrence of a+ has been invalidated and

Γ
ma+−→ a+,a- : ◦◦[unit],c+ : t,c- : t⊥,a*,c* : ∀A.A def

= Γ ′

Note that a+ and c+ have the same type in Γ and incompatible types in Γ ′. If the type
of a* could not be instantiated with an arbitrary channel type (t in this case), then the
residual process would be ill typed in Γ ′. �

Theorem 2 (subject reduction). If Γ ` P where Γ is balanced and EA(P) and P `−→Q,
then there exists Γ ′ such that Γ `−→ Γ ′ and Γ ′ ` Q.

Protocol fidelity follows immediately from Theorem 2 and the observations below
Definition 7: if an `-labeled reduction cannot be performed by a type environment Γ ,
then it cannot be performed by an endpoint affine process that is well-typed in Γ . Com-
munication safety is a straightforward consequence of typing and is formalized below.
Note that endpoint affinity suffices for proving both safety and fidelity.

16 Luca Padovani

Proposition 1 (safety). Let Γ ` P and EA(P). Then:

1. if P≡ 〈E [send u v]〉|Q, then Γ(u) = ◦•[t * s] and Γ ` v : t;
2. if P≡ 〈E [c u]〉|Q and c ∈ {left,right}, then Γ(u) = ◦•[t + s].

Concerning progress, we first give a syntactic characterization of deadlock:

Definition 9 (deadlock). We say that P is deadlocked if

P≡ (νa1) · · ·(νan)∏i∈I〈Ei[ci cpi
i]〉

where I 6= /0 and for every i ∈ I there exists j ∈ I such that cpi
i ∈ fn(E j) and ci ∈

{close,send,receive,left,right,branch}.

Intuitively, in a deadlocked process all threads are blocked on input/output opera-
tions and the peer of the (valid) endpoint in each of such operations occurs guarded
by another blocked operation. A well-typed, endpoint linear process P enjoys a partial
form of progress: if P cannot reduce anymore and is not deadlocked, then P has no
pending I/O operations on open sessions.

Theorem 3 (partial progress). If /0 ` P and EL(P), then either there exists Q such that
P τ−→ Q or P≡ 〈()〉 or P is deadlocked.

We conclude the section discussing a representative range of errors that go unde-
tected by the type system.

Example 3 (deadlocks). Below are some typical examples of endpoint linear programs
that eventually deadlock.

let program_A =

let worker x y =

let z, x = receive x in

let y = send y z in

close x; close y in

let a, b = create () in

let c, d = create () in

fork (worker a) d;

fork (worker c) b

let program_B =

let a, b = create () in

let n, a = receive a in

let b = send n in

close a; close b

let program_C =

let a, b = create () in

close (send a b)

In program_A we have two threads connected by two distinct sessions, each thread
waits to receive a message from the other one before sending its own. In program_B

one thread attempts to use the same session for receiving and sending a message sequen-
tially. Finally, in program_C a thread is sending on channel a its peer b. This example
is typeable by giving to b the infinite type t = •◦[t * ◦◦[unit]] and to a its dual t⊥.

In all these cases, static detection of the eventual deadlock requires stronger typing
disciplines that either prevent the creation of cyclic network topologies [6,31,23] or rely
on non-trivial extensions of session types [3,4,25]. �

A Simple Library Implementation of Binary Sessions 17

Example 4 (linearity violations). The condition EA(P)∧¬EL(P) indicates that P re-
spects endpoint affinity but discards valid endpoints that may be necessary in order to
have progress. For example, the following well-typed program

let a, b = create () in close (send a 42)

discards b and reduces to a stuck configuration which is not a deadlock. A compiler
might give notice of unused value declarations like b in this example, but it would
likely stay quiet if b is replaced by an anonymous pattern _ (OCaml behaves like this).

The condition ¬EA(P) indicates that P attempts to use an invalid endpoint. This
happens if the endpoint is used more than once, in a way that disrespects the explicit
threading of continuations required by the communication primitives. Two instances of
this event, which we call overlap, are illustrated below:

let foo x =

let _ = send x 42 in

let x = send x 43 in (* *)

close x

let bar y =

let _ = send y 42 in

let _, y = receive y in (* *)

close y

The function foo can be typed giving x type ◦•[int * ◦◦[unit]], even though the
second send overlaps with the first. A similar problem occurs in bar, where receive
overlaps with send. However, the overlap in bar is detected by the type system, because
attempting to send and receive a message using the same y requires y to have incom-
patible capability annotations (◦• for send, •◦ for receive). All the overlaps of send
and left/right or of receive and branch are also detected because the * constructor
in the types of send and receive is incompatible with the + constructor in the types
of left/right. Overall, the only overlaps that can go undetected are those concerning
multiple uses of the same communication primitive with the same message types. Un-
detected overlaps are subtle, though, since their effects are generally unpredictable. In
Section 5.2 we will discuss how overlaps can be detected at runtime. �

5 Implementation

We describe the OCaml module that implements the FuSe primitives for session com-
munication. We start with a basic version of the module (Section 5.1) which we then
extend with runtime detection of invalid endpoint usage (Section 5.2) and generalized
choices (Section 5.3). The extensions are easy for shared-memory processes. We also
discuss whether and how they scale to a distributed setting.

5.1 The Basics

The OCaml module that realizes the FuSe communication primitives is shown in full in
Figure 1. The interface exports the abstract types ◦ and • (lines 1–2) and an abstract
channel type (line 3). In OCaml, the channel type tito[s] is written (ti,to,s) t and the
sum type t + s becomes the polymorphic variant type [‘L of t | ‘R of s]. We use
polymorphic variants [12] because they easily generalize sums to arbitrary tags and

18 Luca Padovani

Interface� �
1 type ◦ (* absent I/O capability *)

2 type • (* present I/O capability *)

3 type (α,β,ϕ) t (* channel type *)

4 val create : unit ↓- (α,β,ϕ) t * (β,α,ϕ) t

5 val close : (◦,◦,unit) t ↓- unit

6 val send : (◦,•,ϕ * (α,β,ψ) t) t ↓- ϕ ↓- (β,α,ψ) t

7 val receive : (•,◦,ϕ * (α,β,ψ) t) t ↓- ϕ * (α,β,ψ) t

8 val left : (◦,•,[‘L of (α,β,ϕ) t | ‘R of (γ,δ,ψ) t]) t ↓- (β,α,ϕ) t

9 val right : (◦,•,[‘L of (α,β,ϕ) t | ‘R of (γ,δ,ψ) t]) t ↓- (δ,γ,ψ) t

10 val branch : (•,◦,[‘L of (α,β,ϕ) t | ‘R of (γ,δ,ψ) t] as ε) t ↓- ε� �
Implementation� �

11 type ◦ (* no representation *)

12 type • (* no representation *)

13 type (α,β,ϕ) t = ϕ Event.channel

14 let create () = let u = Event.new_channel () in (u, u)

15 let close _ = ()

16 let send u x = Event.sync (Event.send u (Obj.magic x)); Obj.magic u

17 let receive u = Obj.magic (Event.sync (Event.receive u), u)

18 let left u = Event.sync (Event.send u (Obj.magic ‘L)); Obj.magic u

19 let right u = Event.sync (Event.send u (Obj.magic ‘R)); Obj.magic u

20 let branch u = Obj.magic (Event.sync (Event.receive u), u)� �
Fig. 1. Interface and implementation of the OCaml module for session communications.

support a form of subtyping that is consistent with subtyping for session types [13]. We
will see these features at work in Section 5.3.

The types of the primitives (lines 4–10) are essentially syntactic variations of those
shown in Table 5, so we only make a couple of remarks. First, as in FuSe types, we
can switch from one channel type to its dual by the mere flipping of its first two type
parameters (see e.g. the type of create on line 4). Second, in the type of branch

(line 10), the type expression t as ε denotes the same type as t and creates an alias ε

that stands for t itself. Such construction has several uses: here, it is handy to refer to the
same variant type in the codomain of branch without rewriting the whole type. Since
t as ε binds ε also within t, the same construction is also used in OCaml for creating
recursive types. We will see an instance of this feature at work in Example 5.

We have based the implementation of the primitives on the Eventmodule in OCaml’s
standard library, which provides an API for communication and synchronization in the
style of Concurrent ML [30]. The Event module has been chosen out of mere conve-
nience; our primitives can be built on top of any minimal API for message passing.
In the Event module, the type t Event.channel denotes a channel for exchanging
messages of type t and the functions Event.send and Event.receive, instead of per-
forming communications directly, construct communication events. In order for com-

A Simple Library Implementation of Binary Sessions 19

munication to actually take place, both the sender and the receiver must synchronize by
applying Event.sync to such events.

The representation of a channel type (α,β,ϕ) t is a ϕ Event.channel (line 13),
namely channels in FuSe are Event.channels in OCaml. Note that α and β play no
role in the representation of channel types; they are meant to be instantiated with ◦ and
• which have no data constructors (lines 11–12). Polarities are not represented either,
they are an artifact of the formal model so that peer endpoints can be typed differently.

The implementation of create (line 14) and close (line 15) is dull: the first creates
an Event channel and returns a pair with two references (with dual types) to it; the sec-
ond does nothing (OCaml’s garbage collector automatically reclaims unused channels).

Concerning the implementation of send (line 16), we have to keep in mind that the
Event.channel underlying our endpoints expects messages that, in principle, contain
both the payload x as well as the continuation endpoint u, but we only communicate
the payload x. For this reason, we cast x using Obj.magic so that x appears to the type
checker as having the type of the pair (x, u). This cast cannot compromise the cor-
rect functioning of the Event module: since the Event.channel type is parametric in
the type of messages, Event functions cannot make any assumption on their concrete
representation. The value returned by send is the same reference u used for the com-
munication, except that its type is cast to the dual type of the continuation. The trickery
in send forces a corresponding implementation of receive (line 17): OCaml believes
that the event created by Event.receive yields a pair consisting of a payload and a
continuation, whereas only the former is actually received. We explicitly pair the end-
point u (which is known to the receiver) to the payload, and we perform another cast so
that the pair is typed correctly.

The implementation of left, right, and branch (lines 18–20) follows the same
lines. In these cases, only a tag ‘L or ‘R is communicated, instead of the continuation
channel u injected through one of such tags as the type of left and right suggests.
The injection is performed on the receiver’s side and resorts to one last magic: since the
internal OCaml representation of ‘K u – that is channel u injected through the K tag – is
the same as that of the pair (‘K, u), we create such a pair and cast its type to that of
the injected channel. This trick spares us one pattern matching on the tag and scales to
arbitrary tag sets (see Section 5.3).

Example 5 (session type inference and duality). Below are the types of server and
client from Example 1 that OCaml infers automatically when these functions are
linked against the module that implements FuSe primitives:

val server :

(•,◦,[‘R of (•,◦,int * (•,◦,int * (◦,•,int * (◦,•,α) t) t) t) t

| ‘L of (◦,◦,unit) t] as α) t ↓- unit

val client :

int ↓-

(◦,•,[‘R of (•,◦,int * (•,◦,int * (◦,•,int * (◦,•,α) t) t) t) t

| ‘L of (◦,◦,unit) t] as α) t ↓- int

These two types correspond exactly to those we have guessed in Example 2. Since
the channel type in the type of server is dual of the channel type in the type of client,

20 Luca Padovani� �
1 exception InvalidEndpoint

2 type ◦ (* no representation *)

3 type • (* no representation *)

4 type (α,β,ϕ) t = ϕ Event.channel * bool ref

5 let check v = if not (compare_and_swap v true false) then

6 raise InvalidEndpoint

7 let fresh u = (u, ref true)

8 let create () = let u = Event.new_channel () in (fresh u, fresh u)

9 let close (_, v) = check v

10 let send (u, v) x = check v; ...; Obj.magic (fresh u)

11 let receive (u, v) = check v; Obj.magic (..., fresh u)

12 let left (u, v) = check v; ...; Obj.magic (fresh u)

13 let right (u, v) = check v; ...; Obj.magic (fresh u)

14 let branch (u, v) = check v; Obj.magic (..., fresh u)� �
Fig. 2. Implementation of session communications with invalid endpoint detection.

the program of Example 1 is well typed and client and server interact safely. Con-
sider now the following variation of client

let client’ n u =

let rec aux acc n u = (* acc : float *)

... (* same code as in client *)

in aux 0.0 n u (* 0.0 : float *)

where the initial value for the partial result acc is 0.0 instead of 0, therefore turning
acc’s type from int to float. Taken in isolation, client’ is well typed and OCaml

infers the following type for it:

val client’ :

int ↓-

(◦,•,[‘R of (•,◦,float * (•,◦,int * (◦,•,float * (◦,•,α) t) t) t) t

| ‘L of (◦,◦,unit) t] as α) t ↓- float

However, the channel types of client’ and server are not dual of each other (the
corresponding message types are not unifiable). OCaml detects this problem and fails to
compile a program that connects client’ and server with a session. �

5.2 Runtime Detection of Invalid Endpoint Usages

Figure 2 extends our module with the endpoint invalidation semantics of FuSe so that
an exception (declared on line 1) is raised whenever an invalid endpoint is used. Note
that invalidation in the formal model is a rather powerful mechanism that acts atomi-
cally on all the occurrences of an endpoint in a possibly distributed program. The code
in Figure 2 implements the invalidation semantics assuming that processes have ac-
cess to a shared memory. The idea is to represent endpoints as pairs consisting of an
Event.channel and a mutable flag indicating whether the endpoint is valid or not
(line 4). The flag effectively approximates the endpoint polarity, with the difference

A Simple Library Implementation of Binary Sessions 21

that it only distinguishes between valid and invalid endpoints. Whenever a thread at-
tempts to use an endpoint, the flag in the pair is checked first: if the flag is true, then
the endpoint is valid and can be used; if the flag is false, then the endpoint has al-
ready been used and an exception is raised. The auxiliary function check (lines 5–6)
implements this behavior. Checking that the flag is true and setting it to false must
be performed atomically, for concurrent threads may attempt to use the same endpoint
simultaneously. Therefore, we realize check using a conventional compare_and_swap
operation, whose implementation is undetailed.

Ideally, when a communication primitive returns a continuation endpoint, the flag
associated with the endpoint should be restored to true, but doing so on the existing
pair might induce other users of the endpoint into thinking that the reference they own
is valid, while in fact it is not. The idea is that communication primitives return a fresh
pair that contains the same Event.channel in the old pair with a fresh flag reset to
true. This refreshing of pairs is implemented by the auxiliary function fresh (line 7).
In essence, the cost we pay for detecting the usage of invalid endpoints is the allocation
of a new pair and a bool reference at each invocation of a communication primitive.

With this setup, the communication primitives can be implemented by prefixing
them with a call to check and wrapping the returned Event.channel(s) with fresh

(lines 8–14). In Figure 2 we have elided with ... the unchanged code fragments from
Figure 1. Observe that check and refresh remain confined within the module, which
exports the same interface it had before, plus the InvalidEndpoint exception.

The naive generalization of this mechanism to a distributed setting requires main-
tining the consistency of the flag associated with each endpoint across different loca-
tions and is clearly unfeasible (recall that endpoints can be communicated in messages).
Nonetheless, the mechanism can be adapted to a distributed setting if we assume that
communicated endpoints are always meant to be used by the receiver. Otherwise, an
endpoint could be sent in a message and simultaneously retained and used by the sender,
making it unusable by the receiver. The idea is that an endpoint being sent in a message
is invalidated in the sender, electing the receiver as the only owner of a valid reference
to the endpoint. As a result, across the whole distributed system, there is always at most
one location containing valid references to the roaming endpoint, and linearity viola-
tions within such location can be efficiently detected using the code shown in Figure 2.
This mechanism can be implemented either by runtime inspection of exchanged mes-
sages, or by means of a dedicated primitive for sending endpoints (like throw in [16]).
Both possibilities are very reasonable, given that the communication of endpoints in a
distributed environment is likely to require some special handling anyway.

5.3 Generalized Choices

Although binary choices suffice to model protocols with an arbitrary branching struc-
ture, being able to use multiple tags, with possibly meaningful names, is desirable. The
main challenge with generalizing choices to arbitrary tags is that the tags appear explic-
itly in the types of left, right, and branch, whereas we would like the interface of
our library to be as general as possible. One solution is to replace left and right with
a generic selection primitive select and revise branch so that select and branch

have these types:

22 Luca Padovani

val select : (◦,•,[>] as ϕ) t ↓- ((α,β,ψ) t ↓- ϕ) ↓- (β,α,ψ) t

val branch : (•,◦,[>] as ϕ) t ↓- ϕ

The semantics of branch is simply to receive a message of type ϕ . The semantics
of select is similar to that of send, except that send takes a message ready to be
sent, whereas select takes a function of type (α,β,ψ) t ↓- ϕ which produces the
message, of type ϕ , when applied to a continuation endpoint of type (α,β,ψ) t.
Typically, such function will be the η-expansion of a tag

fun x ↓- ‘Tag x

that injects a continuation channel into a polymorphic variant type.
The type expression [>] as ϕ in the types of select and branch indicates that

ϕ can only be instantiated with a polymorphic variant type. This constraint is crucial
for the safety of the library: leaving ϕ unconstrained would make the type (α,β,ϕ) t

unifiable with the type (α,β,ψ * (γ,δ,ε) t) t and an ordinary message sent with
send could be received with branch as if it were a label, or a label selected with
select could be received with receive as if it were an ordinary message.

The implementation of select and branch is similar to that of send and receive,
with the difference that select transfers the function over the channel, camouflaging
the function as if it were the message produced by the function:

let select u f = Event.sync (Event.send u (Obj.magic f)); Obj.magic u

let branch u = Obj.magic (Event.sync (Event.receive u)) u

This handling of arbitrary tags does not scale well to a distributed setting, because
sending a function over a channel assumes that sender and receiver share the same
address space and trust each other. It is not clear, however, if a really general solution
exists in this case. After all, the tags occurring in a protocol are domain-specific, and it
might be reasonable for applications to provide specialized versions of select and/or
branch that involve the transfer of only the tag, as we have done for left and right.

Example 6. Below is a revised and extended version of Example 1 where the mathe-
matical server supports three operations identified by the tags ‘Quit, ‘Plus, and ‘Eq

and the client uses select to choose the appropriate ones.

let rec server x =

match branch x with

‘Quit x ↓- close s

| ‘Plus x ↓-

let n, x = receive x in

let m, x = receive x in

let x = send x (n + m) in

server s

| ‘Eq x ↓-

let n, x = receive x in

let m, x = receive x in

let x = send x (n = m) in

server s

let client n y =

let rec aux acc n y =

if n = 0 then begin

let y =

select y (fun x ↓- ‘Quit x)

in close u; acc

end else

let y =

select y (fun x ↓- ‘Plus x)

in let y = send y acc in

let y = send y n in

let res, y = receive y in

aux res (n - 1) u

in aux 0 n u

A Simple Library Implementation of Binary Sessions 23

It is instructive to look at the types inferred by OCaml for these two functions:

val server :

(•,◦,[< ‘Eq of (•,◦,β * (•,◦,β * (◦,•,bool * (◦,•,α) t) t) t) t

| ‘Plus of (•,◦,int * (•,◦,int * (◦,•,int * (◦,•,α) t) t) t) t

| ‘Quit of (◦,◦,unit) t] as α) t ↓- unit

val client :

int ↓- ((◦,•,[> ‘Plus of (•,◦,int * (•,◦,int * (◦,•,int * α) t) t) t

| ‘Quit of (◦,◦,unit) t]) t as α) ↓- int

Notice that server is parametric in the type β of the operands of the ‘Eq operation,
as a consequence of the fact that equality is polymorphic in OCaml. Also, the type of
x is not exactly the dual of the type of y, because the choice in one type has three
tags ‘Eq, ‘Plus, and ‘Quit while the other one has only two. The question then is
whether OCaml is able to infer that client and server interact successfully, despite
this mismatch in the types of the endpoints they use. This is indeed the case, and the
reason lies in the < and > symbols that decorate variant types. The < symbol indicates
a closed variant type, one for which the set of tags constitutes an upper bound: the
match in the server body handles three tags ‘Eq, ‘Plus, ‘Quit, but not others. The
> symbol indicates an open variant type, one for which the set of tags constitutes a
lower bound: the ‘Plus and ‘Quit tags may be produced by client, but this variant
type is unifiable with others providing a superset of tags, like the one in the type of
x. In conclusion, the rules governing variant types allow OCaml to infer that client
and server interact successfully because client needs only a subset of the operations
provided by server. If client attempted to use a ‘Mult operation, OCaml would
signal an error at the point where client and server are connected through a session.

The fact that the revised server interacts correctly with client, despite the type of
x is not exactly dual to that of y, is formally explained in terms of subtyping for session
types [13]: the dual of the type of x is a subtype of the type of y, meaning that client
uses fewer features than those offered by server. We exploit once more the encoding
of session types into ordinary types to lift OCaml’s built-in subtyping of variant types at
the level of channel (and therefore protocol) types. �

6 Concluding Remarks

Inspired by the encoding of session types into (linear) channel types [9], we have shown
how to realize some key features of a session type system in terms of ordinary features
of any type system with generic types. The choice of OCaml for our proof-of-concept
implementation allowed us to showcase the full potential of the approach in exchange
for the least effort. Nonetheless, the approach is applicable to a broad range of program-
ming languages, albeit with varying degrees of integration and/or convenience.

Substructural type systems are becoming increasingly popular in theoretical models
of programming languages, but they are (still) rare in practice. This fact motivated our
quest for an alternative handling of linearity violations that could be easily implemented
as part of our library for session communications. The typing discipline resulting from
our approach is nonetheless able to detect a number of linearity violations (Example 4)

24 Luca Padovani

and, if the host language supports affine/linear types, the typing of the communication
primitives can be easily refined to statically enforce affine/linear endpoint usage.

The choice of synchronous communication in both the formal model and the imple-
mentation was motivated by convenience. Asynchronous communication can be mod-
eled like in [14] using explicit queues, adjusting the formal semantics so that the peers
of a session are invalidated independently, and basing the implementation on a suitable
asynchronous API. The use of a single primitive create to open new sessions has been
inspired by Singularity OS [18,3]. Most session calculi and languages provide a pair of
accept/request primitives to establish sessions via shared channels [16,14]. Shared
channels, accept, and request do not pose particular challenges and the implementa-
tion (available online) features them already.

A more substantial extension concerns multiparty sessions [17], those involving an
arbitrary, possibly fixed number of participants. It has been shown that some classes
of multiparty sessions can be realized in terms of binary sessions connecting pairs of
participants (see [25, extended version] and [5]). As it stands, our approach could deal
with each binary session in isolation, but would be unable to recognize the sessions as
part of a single multiparty session. Whether the approach can be extended to model
“true” multiparty sessions remains an open question.

Related work. Our work aims at the same objectives as [24,29], but follows a substan-
tially different approach. We focus the comparison on linearity and type representation.

The typing disciplines proposed in [24,29] rely on monads to simultaneously track
the changes in the types of endpoints (F.3) and enforce their linear usage (F.4). We realize
(F.3) using the same technique as [14] and rely on the runtime system to detect those
linearity violations that may compromise safety. The monadic approach gives stronger
static guarantees concerning linearity, but has a cost in terms of either expressiveness
or usability: in [24], monadic computations can involve a single channel only; in [29],
channels (or, better, their capabilities) are encapsulated and stacked in the monad, and
the programmer must write explicit monadic actions that literally dig into the stack to
reach the channel/capability to be used. The provided linearity guarantees weaken to
affinity in presence of exceptions, which are a known challenge for substructural type
systems. We give up on static detection of (all) linearity violations in favor of a lighter
and more open-ended API. Not committing to a specific mechanism, our approach can
immediately benefit from native support for affine/linear typing from the host language,
if available, or can be complemented by a monadic API in the style of [29], if desired.

Both [24] and [29] propose a faithful modeling of session types as sequences of
I/O actions and internal/external choices, whereas we work with session types encoded
into ordinary types [9]. Our approach improves the results of [24,29] in various respects.
Duality is not addressed in [24] and is expressed in [29] using rather sophisticated mech-
anisms, such as multiparameter type classes and functional dependencies or explicitly
provided duality proofs. We have shown that none of these mechanisms is necessary:
duality for encoded session types can be expressed in terms of type equality in any type
system with generic types. In general, the encoding favors a smoother integration of
(encoded) session types within built-in features of the host language. This is clear by
looking at the handling of choices and recursion. In Section 5 we have used OCaml poly-
morphic variants to model choices, but we could have used plain algebraic data types as

A Simple Library Implementation of Binary Sessions 25

well. In Scala it might be reasonable to use case classes, and in languages like Java or
C++ one could rely on specific class hierarchies. In summary, encoded internal/external
choices can be modeled using idiomatic features of the host language, favoring the inte-
gration with native notions of subtyping when available (Example 6). We can make sim-
ilar observations concerning recursion. In [29], recursive session types are represented
using de Brujin indexes and type-level Peano numerals and require the programmer to
write explicit monadic actions for entering/invoking recursions. We have shown that
none of these mechanisms is necessary if the host language features recursive types:
the encoding lifts native recursive types to recursive session types transparently (Ex-
ample 5) and allows the programmer to write recursive/iterative code according to the
language style (Example 1).

We conclude observing that the runtime detection of linearity violations is some-
how related to the runtime monitoring of session communications [7,2,11,1]. Runtime
monitoring is achieved either by a service [7,2,11] or by an active communication mid-
dleware [1] that compares the observable behavior of processes against the declared
contracts/session types and possibly issues notifications when violations are detected.
Like monitoring, our runtime mechanism is meant to ensure communication safety and
protocol fidelity. Unlike monitoring, our mechanism is internal to processes and only
detects linearity violations, which would not necessarily imply corresponding protocol
violations in their observable behavior.

References

1. Massimo Bartoletti, Tiziana Cimoli, Maurizio Murgia, Alessandro Sebastian Podda, and
Livio Pompianu. Compliance and subtyping in timed session types. In Proceedings of
FORTE’15, LNCS 9039, pages 161–177. Springer, 2015.

2. Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.
Monitoring networks through multiparty session types. In Proceedings of FMOODS/-
FORTE’13, LNCS 7892, pages 50–65. Springer, 2013.

3. Viviana Bono and Luca Padovani. Typing Copyless Message Passing. Logical Methods in
Computer Science, 8:1–50, 2012.

4. Viviana Bono, Luca Padovani, and Andrea Tosatto. Polymorphic Types for Leak Detection
in a Session-Oriented Functional Language. In Proceedings of FORTE’13, LNCS 7892,
pages 83–98. Springer, 2013.

5. Luı́s Caires and Jorge A. Pérez. A typeful characterization of multiparty structured conver-
sations based on binary sessions. Technical report, 2014. Available at http://arxiv.org/
abs/1407.4242.

6. Luı́s Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In Pro-
ceedings of CONCUR’10, LNCS 6269, pages 222–236. Springer, 2010.

7. Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and Nobuko Yoshida.
Asynchronous distributed monitoring for multiparty session enforcement. In Proceedings of
TGC’11, LNCS 7173, pages 25–45. Springer, 2011.

8. Bruno Courcelle. Fundamental properties of infinite trees. Theor. Comp. Sci., 25:95–169,
1983.

9. Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In Proceed-
ings of PPDP’12, pages 139–150. ACM, 2012.

10. Romain Demangeon and Kohei Honda. Full abstraction in a subtyped pi-calculus with linear
types. In Proceedings of CONCUR’11, LNCS 6901, pages 280–296. Springer, 2011.

http://arxiv.org/abs/1407.4242
http://arxiv.org/abs/1407.4242

26 Luca Padovani

11. Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: distributed dynamic verification with multiparty session
types and python. Formal Methods in System Design, 46(3):197–225, 2015.

12. Jacques Garrigue. Programming with polymorphic variants. In Informal proceedings of
ACM SIGPLAN Workshop on ML, 1998.

13. Simon Gay and Malcolm Hole. Subtyping for Session Types in the π-calculus. Acta Infor-
matica, 42(2-3):191–225, 2005.

14. Simon J. Gay and Vasco Thudichum Vasconcelos. Linear type theory for asynchronous
session types. J. Funct. Program., 20(1):19–50, 2010.

15. Kohei Honda. Types for dyadic interaction. In Proceedings of CONCUR’93, LNCS 715,
pages 509–523. Springer, 1993.

16. Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type dis-
ciplines for structured communication-based programming. In Proceedings of ESOP’98,
LNCS 1381, pages 122–138. Springer, 1998.

17. Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In Proceedings of POPL’08, pages 273–284. ACM, 2008.

18. Galen Hunt, James R. Larus, Martı́n Abadi, Mark Aiken, Paul Barham, Manuel Fähndrich,
Chris Hawblitzel, Orion Hodson, Steven Levi, Nick Murphy, Bjarne Steensgaard, David
Tarditi, Ted Wobber, and Brian Zill. An Overview of the Singularity Project. Technical
Report MSR-TR-2005-135, Microsoft Research, 2005.

19. Atsushi Igarashi and Naoki Kobayashi. Type Reconstruction for Linear π-Calculus with I/O
Subtyping. Inf. and Comp., 161(1):1–44, 2000.

20. Naoki Kobayashi. Type systems for concurrent programs. In 10th Anniversary Colloquium
of UNU/IIST, LNCS 2757, pages 439–453. Springer, 2002. Extended version at http:
//www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf.

21. Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus.
ACM Trans. Program. Lang. Syst., 21(5):914–947, 1999.

22. Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme
Vouillon. The Objective Caml system, release 4.02 - Documentation and user’s manual,
2014. Available at http://caml.inria.fr/pub/docs/manual-ocaml/.

23. Sam Lindley and J. Garrett Morris. A semantics for propositions as sessions. In Proceedings
of ESOP’15, LNCS 9032, pages 560–584. Springer, 2015.

24. Matthias Neubauer and Peter Thiemann. An implementation of session types. In Proceedings
of PADL’04, LNCS 3057, pages 56–70. Springer, 2004.

25. Luca Padovani. Deadlock and Lock Freedom in the Linear π-Calculus. In Proceedings of
CSL-LICS’14, pages 72:1–72:10. ACM, 2014. Extended version available at http://hal.
archives-ouvertes.fr/hal-00932356v2/document.

26. Luca Padovani. Type reconstruction for the linear π-calculus with composite and equi-
recursive types. In Proceedings of FoSSaCS’14, LNCS 8412, pages 88–102. Springer, 2014.

27. Luca Padovani, Tzu-Chun Chen, and Andrea Tosatto. Type Reconstruction Algorithms for
Deadlock-Free and Lock-Free Linear π-Calculi. In Proceedings of COORDINATION’15,
volume 9037 of LNCS, pages 83–98. Springer, 2015.

28. Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.
Mathematical Structures in Computer Science, 6(5):409–453, 1996.

29. Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no class. In Pro-
ceedings of HASKELL’08, pages 25–36, New York, NY, USA, 2008. ACM.

30. John H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.
31. Philip Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014.
32. Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Inf. and

Comput., 115(1):38–94, 1994.

http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://caml.inria.fr/pub/docs/manual-ocaml/
http://hal.archives-ouvertes.fr/hal-00932356v2/document
http://hal.archives-ouvertes.fr/hal-00932356v2/document

A Simple Library Implementation of Binary Sessions 27

A Supplement to Section 3

In order to clarify what we mean by “coinductively defined function” we flesh out a
more rigorous definition of the encoder function.

Definition 10 (encoder). Let C be the largest relation between session types and types
such that T C t implies either:

– T = end and t = ◦◦[unit], or
– T = ?T1.T2 and t = •◦[t1 * t2] and Ti C ti for every i = 1,2, or
– T = !T1.T2 and t = ◦•[t1 * t2] and T1 C t1 and T⊥2 C t2, or
– T = T1 &T2 and t = •◦[t1 + t2] and Ti C ti for every i = 1,2, or
– T = T1 ⊕T2 and t = ◦•[t1 + t2] and T⊥i C ti for every i = 1,2.

Observe that C is a function from session types to types, for T C t1 and T C t2 implies
t1 = t2. Let J·K def

= C and observe that J·K satisfies the relations in Definition 4.

Theorem 1. ⊥t ◦ J·K = J·K◦⊥st.

Proof. We show that JT K⊥ = JT⊥K by case analysis on the shape of T . We consider two
representative cases, the others being similar or trivial.

T = ?T1.T2 We derive:

JT K⊥ = J?T1.T2K⊥ by definition of T
= •◦[JT1K * JT2K]⊥ by definition of J·K
= ◦•[JT1K * JT2K] by definition of duality on channel types
= ◦•[JT1K * JT⊥2

⊥K] because duality is an involution
= J!T1.T⊥2 K by definition of J·K
= JT⊥K by definition of duality on session types

T = T1 ⊕T2 We derive:

JT K⊥ = JT1 ⊕T2K⊥ by definition of T
= ◦•[JT⊥1 K + JT⊥2 K]⊥ by definition of J·K
= •◦[JT⊥1 K + JT⊥2 K] by definition of duality on channel types
= JT⊥1 &T⊥2 K by definition of J·K
= JT⊥K by definition of duality on session types

Theorem 4. 〈〈·〉〉= J·K−1.

Proof. We show that 〈〈·〉〉 ◦ J·K = idS where idS is the identity on S. It suffices to show
that R

def
= {(〈〈JT K〉〉,T) | T ∈ S} coincides with idS. We prove the two inclusions R ⊆ idS

and idS ⊆R in this order.
Concerning the relation R ⊆ idS, take S R T . Then S = 〈〈JT K〉〉. We proceed reason-

ing by cases on the shape of T . We consider only the case T = !T1.T2, the others being

28 Luca Padovani

analogous. We have to show that there exist S1 and S2 such that S = !S1.S2 and Si R Ti
for every i = 1,2. We derive:

S = 〈〈JT K〉〉 = 〈〈J!T1.T2K〉〉 by definition of T
= 〈〈◦•[JT1K * JT⊥2 K]〉〉 by definition of J·K
= !〈〈JT1K〉〉.〈〈JT⊥2 K⊥〉〉 by definition of 〈〈·〉〉
= !〈〈JT1K〉〉.〈〈JT⊥2

⊥K〉〉 by Theorem 1
= !〈〈JT1K〉〉.〈〈JT2K〉〉 because duality is an involution

and we conclude by taking Si
def
= 〈〈JTiK〉〉 and observing that Si R Ti by definition of R

for every i = 1,2.
Concerning the relation idS⊆R, take (S,T)∈ idS, meaning S= T . We have to show

that S R T . By definition of R we have 〈〈JT K〉〉R T and from the relation R ⊆ idS we
deduce 〈〈JT K〉〉= T = S. We conclude by definition of R.

B Supplement to Section 4

B.1 Polymorphic References

Here we show why the standard example that motivates the value restriction in the
typing rule for let [32] is not a counterexample for the soundness of our type system,
despite our rule for let generalizes type variables even when the bound expression
is not a value. To begin with, we define an OCaml module Ref that models mutable
references using sessions:

module Ref =

struct

let ref v0 =

let rec aux v x =

match branch x with

‘Delete x ↓- close x

| ‘Set x ↓- let v, x = receive x in aux v x

| ‘Get x ↓- let x = send x v in aux v x

in

let a, b = create () in

let _ = Thread.create (aux v0) a in b

let delete r = close (select r (fun x ↓- ‘Delete x))

let set r = send (select r (fun x ↓- ‘Set x))

let get r = receive (select r (fun x ↓- ‘Get x))

end

The module exports four functions ref, delete, set, and get. The first two func-
tions respectively create and destroy a mutable reference, while set and get respec-
tively set and retrieve the content of a reference. According to ref, a mutable reference
is a thread whose body is represented as a recursive function aux parameterized on
the current value v0 stored in the reference and an endpoint x on which the reference
listens for three kinds of operations, identified by the tags Delete, Set, and Get. The
functions delete, set, and get simply select the corresponding operation and possibly
perform the required I/O. OCaml infers the following signature for Ref:

A Simple Library Implementation of Binary Sessions 29

module Ref :

sig

val ref :

α ↓- (◦,•,[< ‘Delete of (◦,◦,unit) t

| ‘Get of (◦,•,α * (◦,•,β) t) t

| ‘Set of (•,◦,α * (•,◦, b) t) t] as β) t

val delete : (◦,•,[> ‘Delete of (◦,◦,unit) t]) t ↓- unit

val set : (◦,•,[> ‘Set of (•,◦,α * (β,γ,δ) t) t]) t ↓- α ↓- (γ,β,δ) t

val get : (◦,•,[> ‘Get of (◦,•,α * (β,γ,δ) t) t]) t ↓- α * (β,γ,δ) t

end

Now we try to use this implementation of mutable references to reproduce the coun-
terexample in [32]. The first attempt is based on the program below, which respects the
threading in the use of r as required by our EL predicate:

1 let r = Ref.ref (fun x ↓- x) in (* r : ∀α.(α ↓- α) ref *)

2 let r = Ref.set r (fun x ↓- x + 1) in (* r : (int ↓- int) ref *)

3 let f, r = Ref.get r in (* f : int ↓- int, r : (int ↓- int) ref *)

4 f true (* type error *)

On each line we show the type of each binding. Note that the type of r is general-
ized on line 1 according to our rule [T-LET], but it is subsequently instantiated on line 2.
Therefore, by the time an attempt is made to apply the function stored in r to true, the
type of r correctly records the fact that the type of the function is int ↓- int (line 3)
and its application to true is flagged as ill typed (line 4).

The second attempt is based on a program that disrespects the threading of the use
of r, so that its polymorphic type can be instantiated multiple times:

1 let r = Ref.ref (fun x ↓- x) in (* r : ∀α.(α ↓- α) ref *)

2 let _ = Ref.set r (fun x ↓- x + 1) in

3 let f, _ = Ref.get r in (* runtime error *)

4 f true

This program is well typed thanks to our rule [T-LET], which generalizes the type
variables in the type of r (line 1). However, by the time the reference r is accessed for
the get operation (line 3), it has been invalidated by the previous set operation (line 2),
therefore the program results in a runtime error. In general, all the programs in which
rule [T-LET] yields dangerous generalizations either are ill typed or they violate the EA
predicate. Therefore, the premises of Theorem 2 suffice to establish subject reduction.

B.2 Subject Reduction for Expressions

We just recall the key type preservation result from [32], whose proof only requires
minor adaptations concerning the set of values in FuSe.

Lemma 1 (subject reduction for expressions). If Γ ` e : t and e−→ e′, then Γ ` e′ : t.

Proof. This is a straightforward adaptation of [32, Lemma 4.3], where the values in-
clude a few more cases.

30 Luca Padovani

B.3 Subject reduction for processes

The next proposition establishes a few properties of the reduction relation on type en-
vironments.

Proposition 2. If Γ `−→ Γ ′, then the following properties hold:

1. dom(Γ ′)⊆ dom(Γ);
2. if Γ is balanced, then so is Γ ′;
3. Γ ′(u) = Γ(u) for every u ∈ dom(Γ)\ fn(`).

Proof. Straightforward from the definition of type environment reduction.

A reduction may invalidate endpoints occurring in an expression or in a process,
even if there is no redex in such terms. The following result shows that typing is pre-
served when invalidations occur. This is a consequence of the fact that the type ∀A.A
of invalid endpoints allows them to be typed with any instance of a channel type.

Lemma 2 (invalidation). Let Γ `−→ Γ ′ where Γ is balanced. Then Γ ` e : t implies
Γ ′ ` e` : t, and Γ ` P implies Γ ′ ` P̀ .

Proof. A simple induction on the typing derivation.

The following two lemmas allow us to reason on the typing of terms occurring in
the hole of an evaluation context. In the statements of these results, by “sub-derivation
of D” we mean a sub-tree of D . Note that the replacement lemma differs from the one
in [32] since the expression e′ is replaced not in the original evaluation context E , but
in the context E` where some endpoints may have been invalidated.

Lemma 3 (typability of subterms). If D be a derivation for Γ ` E [e] : t, then there
exists a sub-derivation D ′ of D that concludes Γ ` e : s.

Proof. By induction on E , observing that the [] of an evaluation context is never found
within the scope of a binder.

Lemma 4 (replacement). If

1. Γ
`−→ Γ ′ where Γ is balanced,

2. D is a derivation concluding Γ ` E [e] : t,
3. D ′ is a sub-derivation of D concluding Γ ` e : s,
4. the position of D ′ in D corresponds to that of [] in E , and
5. Γ ′ ` e′ : s,

then Γ ′ ` E`[e′] : t.

Proof. By induction on E .

The type system is not substructural, so it enjoys a standard form of weakening.

Lemma 5 (weakening). The following properties hold:

A Simple Library Implementation of Binary Sessions 31

1. If Γ ` e : t, then Γ ,Γ ′ ` e : t;
2. If Γ ` P, then Γ ,Γ ′ ` P.

Proof. Standard properties of any non-substructural type system.

Structural congruence alters the basic arrangement of processes without affecting
typing.

Lemma 6 (congruence preserves typing). If Γ ` P and P≡ Q, then Γ ` Q.

Below is the statement of subject reduction of processes (Section 4) with its full
proof. The result is essentially standard, except for the fact that endpoints may be in-
validated in the reduct. The hypothesis EA(P) suffices to exclude the possibility that
error occurs in the reduct.

Theorem 2 (subject reduction for processes). If Γ ` P and Γ is balanced and EA(P) and
P `−→ Q, then there exist Γ ′ such that Γ `−→ Γ ′ and Γ ′ ` Q.

Proof. By induction on the derivation of P `−→ Q and by cases on the last rule applied.

[R-FORK] Then P = 〈E [fork v w]〉 and Q = 〈E [()]〉 | 〈vw〉 and ` = τ . From [T-THREAD]

we deduce Γ ` E [fork v w] : unit. From Lemma 3 and TypeOf(fork) we deduce that
Γ ` fork v w : unit and Γ ` v : t ↓- unit and Γ ` w : t. From Lemma 4 we deduce Γ `
E [()] : unit. From [T-APP] we deduce Γ ` vw : unit. We conclude with two applications
of [T-THREAD] and one application of [T-PAR] by taking Γ ′ = Γ .

[R-CREATE] Then P = 〈E [create()]〉 and Q = (νa)〈E [(a+,a-)]〉 where a is fresh and
`= τ . From [T-THREAD] we deduce Γ `E [create()] : unit. From Lemma 3 and TypeOf(create)
we deduce Γ ` create() : t * t⊥. Since a is fresh we have a+,a-,a* 6∈ dom(Γ). From
Lemma 4 we deduce Γ ,a+ : t,a- : t⊥,a* : ∀A.A ` E [(a+,a-)] : unit. We conclude with
one application of [T-THREAD] and one application of [T-NEW] by taking Γ ′ = Γ .

[R-CLOSE] Then P = 〈E [close ap]〉| 〈E ′[close ap]〉] and Q = 〈E`[()]〉| 〈E ′` [()]〉 and
`= ca. From [T-PAR] and [T-THREAD] we deduce Γ `E [close ap] : unit and Γ `E ′[close ap] :
unit. From Lemma 3 and TypeOf(close) we deduce Γ(ap) = Γ(ap) = ◦◦[unit] and
Γ ` close ap : unit and Γ ` close ap : unit. Therefore, Γ = Γ ′,ap : ◦◦[unit],ap :
◦◦[unit] for some Γ ′ such that Γ `−→ Γ ′. From Lemma 4 we deduce Γ ′ ` E`[()] : unit
and Γ ′ ` E ′` [()] : unit. We conclude with two applications of [T-THREAD] and one appli-
cation of [T-PAR].

[R-COMM] Then P= 〈E [send ap v]〉|〈E ′[receive ap]〉 and Q= 〈E`[ap]〉|〈E ′` [(v,ap)]〉
and ` = map. From the hypothesis Γ ` P and rules [T-PAR] and [T-THREAD] we deduce
that Γ ` E [send ap v] : unit and Γ ` E ′[receive ap] : unit. From Lemma 3 and
TypeOf(send) and the hypothesis that Γ is balanced we deduce that there exists Γ ′′

such that Γ = Γ ′′,ap : ◦•[t * s],ap : •◦[t * s] and Γ ` send ap v : s⊥ and Γ ` v : t.
From Lemma 3 and TypeOf(receive) we deduce that and Γ ` receive ap : t * s. Let
Γ ′

def
= Γ ′′,ap : s⊥,ap : s and observe that Γ `−→ Γ ′. From Lemma 4 we derive Γ ′ ` E`[ap] :

unit. From one application of [T-PAIR] and Lemma 4 we derive Γ ′ ` E ′` [(v,ap)] : unit.
We conclude with two applications of [T-THREAD] and one application of [T-PAR].

32 Luca Padovani

[R-LEFT] Then P = 〈E [left ap]〉| 〈E ′[branch ap]〉 and Q = 〈E`[ap]〉| 〈E ′` [L ap]〉 and
` = map. From the hypothesis Γ ` P and rules [T-PAR] and [T-THREAD] we deduce that Γ `
E [left ap] : unit and Γ ` E ′[branch ap] : unit. From Lemma 3 and TypeOf(left)
and the hypothesis that Γ is balanced we deduce that there exists Γ ′′ such that Γ = Γ ′′,ap :
◦•[t + s],ap : •◦[t + s] and Γ ` left ap : t⊥. From Lemma 3 and TypeOf(branch) we
deduce that Γ ` branch ap : t + s. Let Γ ′ def

= Γ ′′,ap : t⊥,ap : t and observe that Γ `−→
Γ ′. From Lemma 4 we derive Γ ′ ` E`[ap] : unit. From one application of [T-LEFT] and
Lemma 4 we derive Γ ′ ` E ′` [L ap] : unit. We conclude with two applications of [T-THREAD]

and one application of [T-PAR].

[R-RIGHT] Symmetric of the previous case.

[R-ERROR] Then P = 〈E [c a*]〉 and Q = error and `= τ . This case is impossible for it
contradicts the hypothesis EA(P).

[R-PAR] Then P = P′ |R and P′ `−→ Q′ and Q = Q′ |R`. From [T-PAR] we deduce Γ ` P′

and Γ ` R. By induction hypothesis we deduce Γ ′ ` Q′ for some Γ ′ such that Γ `−→ Γ ′.
From Lemma 2 we deduce that Γ ′ ` R`. We conclude with an application of [T-PAR].

[R-NEW-1] Then P = (νa)P′ and P′ `′−→ Q′ and Q = (νa)Q′ and ` = τ and `′ is either
map or ca. From [T-NEW] we deduce Γ ,a+ : t,a- : t⊥,a* : ∀A.A ` P′. Observe that Γ ,a+ :
t,a- : t⊥,a* : ∀A.A is balanced if so is Γ . We distinguish two subcases, depending on
the shape of `′.

– If `′ = ca, then by induction hypothesis we deduce Γ ,a* : ∀A.A `Q′. By Lemma 5,
we deduce Γ ,a+ : t,a- : t⊥,a* : ∀A.A ` Q′ and we conclude by taking Γ ′ = Γ and
one application of [T-NEW].

– If `′ = map, then by induction hypothesis we deduce that there exists s such that
Γ ,a+ : t,a- : t⊥,a* : ∀A.A map−→ Γ ,a+ : s,a- : s⊥,a* : ∀A.A and Γ ,a+ : s,a- : s⊥,a* :
∀A.A ` Q′. We conclude by taking Γ ′ = Γ and one application of [T-NEW].

[R-NEW-2] Then P = (νa)P′ and P′ `−→Q′ and Q = (νa)Q′ and ap 6∈ fn(`). From [T-NEW]

we deduce Γ ,a+ : t,a- : t⊥,a* : ∀A.A ` P′. Observe that Γ ,a+ : t,a- : t⊥,a* : ∀A.A is
balanced if so is Γ . By induction hypothesis we deduce Γ ′,a+ : t,a- : t⊥,a* : ∀A.A ` Q′

for some Γ ′ such that Γ `−→ Γ ′. We conclude with an application of [T-NEW].

[R-STRUCT] A simple induction using Lemma 6.

B.4 Soundness

This section contains the proof of partial progress (Theorem 3). The first auxiliary re-
sult provides a syntactic characterization of those expressions that are unable to reduce
further. These are not necessarily values, for expressions may contain instances of the
communication primitives that reduce only at the level of processes.

Lemma 7. Let Γ ground and Γ ` e : t and e X−→. Then either e is a value or there exist
E , c, and v such that e = E [c v] where c 6∈ {(),fix}.

A Simple Library Implementation of Binary Sessions 33

Proof. If e is a value there is nothing left to prove, so we assume that e is not a value
and proceed by induction on the structure of e and by cases on its shape, excluding the
case when e is a variable. We only discuss the case when e = e1e2, the others being
simpler or similar.

– If e1 is not a value, then from the hypothesis e X−→ we deduce e1 X−→. From the
hypothesis Γ ` e : t we deduce Γ ` e1 : s ↓- t. By induction hypothesis we deduce that
there exist E ′, c, and v such that e1 = E ′[c v] where c 6∈ {(),fix}. We conclude
by taking E = E ′e2.

– If e1 is a value but e2 is not, then from the hypothesis e X−→we deduce e2 X−→. From
the hypothesis Γ ` e : t we deduce Γ ` e2 : s for some s. By induction hypothesis we
deduce that there exist E ′, c, and v such that e2 = E ′[c v] where c 6∈ {(),fix}. We
conclude by taking E = e1E

′.
– If both e1 and e2 are values, then from the hypothesis e X−→ we can exclude the

possibility that e1 is an abstraction or fix, for in these cases e always reduces. From
the hypothesis Γ ` e : t we deduce that Γ ` e1 : s ↓- t. By inspecting the syntax of
values and looking at Table 5, there are two possibile values other than abstractions
and fix that can have arrow type. Either e1 is a constant c 6∈ {(),fix}, in which
case we conclude by taking E = [] and v = e2, or e1 has the form c v where
c ∈ {fork,send}, in which case we conclude by taking E = []e2.

Theorem 3 (partial progress). If /0 ` P and EL(P), then either there exists Q such that
P τ−→ Q or P≡ 〈()〉 or P is deadlocked.

Proof. Observe that P `−→ implies `= τ , because P is typed in an empty environment
and so is a closed process. Suppose that P X τ−→ and P 6≡ 〈()〉, for otherwise there is
nothing left to prove. Using structural congruence, we can always derive

P≡ (νa1) · · ·(νan)∏i∈I〈ei〉

where I 6= /0.
From the hypothesis P X τ−→we deduce ei X−→ for every i∈ I and from the hypothesis

/0 ` P we know that each ei is well typed and has type unit. Hence, from Lemma 7
we deduce that for every i ∈ I either ei is a value or there exist Ei, ci, and vi such
that ei = Ei[ci vi] where ci 6∈ {(),fix}. Since the only value of type unit is (), we
can assume that none of the ei is (), for such threads could be removed by structural
congruence. From the hypothesis P X τ−→ we also deduce that none of the ci is create
or fork, for otherwise P would be able to reduce according to the rules in Table 2. In
summary, we can derive

P≡ (νa1) · · ·(νan)∏i∈I〈Ei[ci vi]〉

where ci 6∈ {(),fix,fork,create} for every i ∈ I.
From the hypothesis /0 ` P we deduce that for all i ∈ I there exist ci and pi such

that vi = cpi
i . Therefore we derive P ≡ (νa1) · · ·(νan)Q where Q = ∏i∈I〈Ei[ci cpi

i]〉.
We observe that if ci = send, then Ei 6= [] because the partial application send vi
cannot have type unit. Therefore, all the applications of send are saturated and ready to

34 Luca Padovani

synchronize with the corresponding receive, if this occurred in an evaluation context.
From the hypothesis EL(P), we also know that pi ∈ {+,-} for every i ∈ I.

Now, from the hypotheses /0 ` P and [T-NEW], we know that there exists Γ balanced
such that Γ ` Q. Consider i ∈ I. From the hypothesis EL(P) we deduce that cpi

i must
occur somewhere in P. We reason by cases on ci, and discuss only one case, when
ci = send, the others being analogous. Then, there exist t and s such that Γ ` cpi

i :
◦•[t * s] and Γ ` cpi

i : •◦[t * s]. Suppose that cpi
i = c

p j
j for some j ∈ I. It cannot

be the case that c j = receive, for otherwise P would be able to reduce, therefore
c j ∈ {send,left,right,branch}. But this is impossible too, either because the ca-
pability annotation in the type of the endpoint is incompatible with •◦ (when c j ∈
{send,left,right}, or because the message type has a topmost + type constructor,
while it should have a topmost * type constructor (when c j = branch). In conclusion,
we deduce that cpi

i cannot be any of the c
p j
j for j ∈ I. Therefore, it must be the case that

cpi
i ∈ fn(E j) for some j ∈ I.

	A Simple Library Implementation of Binary Sessions

