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Abstract

This article uses a basic model of a reed in-
strument, known as the lossless Raman model,
to determine analytically the envelope of the
sound produced by the clarinet when the mouth
pressure is increased gradually to start a note
from silence. Using results from dynamic bifur-
cation theory, a prediction of the amplitude of
the sound as a function of time is given based
on a few parameters quantifying the time evo-
lution of mouth pressure. As in previous uses
of this model, the predictions are expected to
be qualitatively consistent with simulations us-
ing the Raman model, and observations of real
instruments. Model simulations for slowly vari-
able parameters require very high precisions of
computation. Similarly, any real system, even if
close to the model would be affected by noise.
In order to describe the influence of noise, a
modified model is developed that includes a
stochastic variation of the parameters. Both
ideal and stochastic models are shown to at-
tain a minimal amplitude at the static oscilla-
tion threshold. Beyond this point, the ampli-
tude of the oscillations increases exponentially,
although some time is required before the oscil-
lations can be observed at the “dynamic oscil-
lation threshold”. The effect of a sudden inter-
ruption of the growth of the mouth pressure is
also studied, showing that it usually triggers a
faster growth of the oscillations.

∗Corresponding author: andre.almeida@univ-lemans.fr

1 Introduction

One of the many skills involved in learning how to
play the clarinet is to control the attack of a new
note. Tonguing is an important aspect of a clear and
precise attack, but the evolution of the mouth pres-
sure during the first instants of the note is also seen
to affect the attack considerably. Moreover, in some
particular situations, tonguing may not be involved
in starting a new note. Hence there is both scientific
and practical interest in the question: what combina-
tions of tonguing and evolution of the blowing pres-
sure produces sharp and precise attacks?

As a self-sustained musical instrument, the clarinet
can be seen as a dynamic system in which the os-
cillation is controlled by input parameters from the
musician. Two of the most important [1, 2, 3] are
the blowing pressure and the lip force upon the reed.
Models predict the range of parameter values that al-
low for the production of a musical note [4]. Other
useful predictions are the dependence of amplitude of
oscillation on these two parameters, period doubling
bifurcation points [5, 6], or the parameter regions
where the reed touches the lay of the mouthpiece.
[7, 8].

More complex models exist that can simulate the
reed oscillation in time-domain [9] or harmonic bal-
ance methods [10]. They provide more accurate pre-
dictions but their complexity makes it hard to grasp
the causality relation between parameters and conse-
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quences in oscillatory behaviour.
In previous studies in which mouth pressure was

gradually increased at constant rates, oscillations ap-
peared at a much higher mouth pressure threshold
than that predicted assuming a constant mouth pres-
sure. High thresholds were observed in an artificially
blown clarinet [11] and even higher in numerical sim-
ulations [12].

Analytical reasoning [13] based on dynamic bifur-
cation theory [14, 15] predicts a delay in the threshold
of oscillation for a linearly increasing mouth pressure,
but the exact value of mouth pressure at which it oc-
curs is only valid for simulations performed with very
high precision. The threshold observed with normal
precision simulations can only be explained with a
modified theory [16] using stochastic perturbations
[14].

This article extends previous studies by the present
authors by switching the focus from the threshold of
oscillation to a complete description of the amplitude
of oscillation. A simplified model of a note attack is
a constant increase in the mouth pressure (as used in
previous articles) which ceases increasing and then
remains constant at a defined value. The effect of
ceasing the pressure increase is studied analytically
to develop a full recipe for estimating the envelope of
the attack. This recipe is then explored by comparing
to actual simulations of the Raman model.

In section 2, the model of the clarinet used in this
work is briefly presented, as well as some of its known
properties. The remaining of this section provides a
brief overview of the key concepts that are needed
for the present article (most of these concepts are
described with more details in two articles by the au-
thors [13, 16]). Section 3 describes the calculation
of the envelope of the oscillations relative to the in-
variant curve, firstly in an ideal case with infinite
precision, then with limited precision or noise (sec-
tion 3.3). To some extent, these methods were al-
ready employed in previous articles [13, 16] to deter-
mine a dynamic threshold of oscillation. Here they
are extended to calculate the envelope before this
threshold is reached. Section 4 presents a method to
take into account a discontinuity in the time deriva-
tive of the mouth pressure. In section 5, the models
are applied to particular examples and simulations,

analysing the consequences in terms of expected evo-
lution of the sound. A list of the symbols used in this
article is provided in Appendix A.

2 Elements of clarinet theory

2.1 The clarinet model

For an elementary analysis, the clarinet can be de-
scribed using a version of the lossless Raman model
[17], originally used for the bowed string. The sys-
tem is described by two state variables p and u,
made non-dimensional by dividing them respectively
by the minimum pressure that closes the reed in
steady-state, and the maximum flow allowed by the
reed valve. A non-linear function u = F (p) relates
the pressure difference between the mouth and the
mouthpiece (∆p = γ − p, where γ is the mouth pres-
sure) to the volume of air that flows past the reed (u).
The derivation of this formula is given for instance by
Chaigne and Kergomard [18].

F (p) =


ζ (∆p− 1)

√
−∆p if ∆p < 0; (1a)

ζ (1−∆p)
√

∆p if ∆p ∈ [0, 1]; (1b)
0 if ∆p > 1. (1c)

The control parameters of the system are the
mouth pressure γ and the embouchre parameter ζ =
ρc
Sres

S
√

2PM

ρ
1
PM

. ζ is related the lip force via the
opening area of the reed at rest S and is propor-
tional to the characteristic impedance at the res-
onator input ρc

Sres
. Three examples of the function

F (Fig. 1(a)) show that smaller values of ζ bring
the characteristic function closer to that of a stopped
pipe (u = 0). Increasing γ shifts the curve along the
p-axis.

The reed-mouthpiece system drives the resonator.
It is linked to it by the acoustic variables p and u
found in Eq. (1). For a time-domain description
it is usually simpler to describe the resonator using
two non-dimensional traveling wave variables x and
y, respectively the outgoing and incoming pressure
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waves:

p(t) = x(t) + y(t),

u(t) = x(t)− y(t). (2)

The incoming wave y(t) at the bore input is the oppo-
site of the delayed outgoing wave −x(t− τ), since no
losses in the propagation or reflection are considered1.
In practice, only one value of x(t) is calculated in each
round-trip of the wave, with a duration of τ = 2l/c,
where l is the resonator length and c the speed of
sound. All the variables can thus be discretized, xn
meaning the value of a variable x at time nτ .

The behaviour of the whole instrument then can
be described in a single iterative equation:

xn = G (xn−1, γ) . (3)

Function G can be obtained by replacing p(t) and
u(t) in function F with Eq. (2). An explicit formula-
tion forG is given by Taillard et al. [6], for ζ < 1. Fig.
1(b) shows that the change from coordinates (p, u) to
(x, y) can be performed graphically as a mirror about
the axis p = 0 and a 45◦ rotation about the origin.
Like F , G also depends on the control parameters γ
and ζ. To keep the notation simple, the parameters
will be omitted when constant. γ will be included as
an argument to the function when it varies with time.

In most works on the clarinet, functions F and
G are studied in a static-parameter regime, referring
to a case where the instrument is blown at a con-
stant pressure with a constant force applied on the
lip. This article focuses on a case where the mouth
pressure γ varies over time, a situation is referred to
hereafter as dynamic-parameter regime, or simply dy-
namic regime. The graphics of Fig. 1(b) thus change
over time.

2.2 Invariant manifolds and non-
oscillating solutions

In a static-parameter regime, there is a value of
γ = γst establishing the transition between non-
oscillating and oscillating solutions. This is called

1x and y are usually written respectively as p+ and p−.
The latter form is used in this article for conciseness.
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Figure 1: Non-linear characteristics in u = F (p) rep-
resentation (a) and x = G(y) representation (b) for
3 different parameter values

the static oscillation threshold. Above this value, the
clarinet system can oscillate, and will indeed oscillate
for most initial values x0. However, for particular sets
of initial conditions (in the scope of this paper sets
of γ0 and x0), the solution is non-oscillating. These
sets correspond to the “invariant manifolds”. If γ does
not vary with time, the invariant manifold is called
a fixed point, as the variable x will remain constant
(x = x0). The fixed point x∗ can be found by solving:

x∗ = G (x∗) . (4)
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x∗ is a function of γ, x∗ = x∗(γ).
When γ varies with time, the invariant manifold

cannot correspond to a single fixed point, but is
also time-dependent, corresponding to an “invariant
curve”. Perhaps surprisingly, it is not the set of val-
ues x∗(γn). The invariant curve is defined as the set
of values (x, γ) such that during the planned time-
variation of γ, this set of values will always be fol-
lowed, independently of the particular value the sys-
tem is initiated in. The following equation is a defin-
ing condition for this curve:

φε(γ) = G (φε(γ − ε), γ) . (5)

A method for calculating the invariant curve for
the clarinet system is given in a previous article [13].
In appendix B simpler expressions for the invariant
curve are given by using the characteristic curve ex-
pressed as u = F (p) instead of function G. The in-
variant curve depends on how the parameter γ varies
in time, i. e., it is different for different rates of vari-
ation of γ (different ε values).

2.3 Local stability of non-oscillating
solutions

In both static and dynamic cases, the non-oscillating
solutions can be either stable or unstable, depending
on the behaviour of the system initialized close to the
invariant manifold.

If initialized with a value x0 close to a stable in-
variant manifold, the state variable x will approach
it exponentially. Conversely, the state variable is re-
pelled exponentially by an unstable manifold while in
its vicinity. The distance to a fixed point (in a static-
parameter case and while xn is sufficiently close to
the fixed point) is an exponential function of time
(expressed as iteration number n) [18]:

xn − x∗ ≈ (x0 − x∗) [G′ (x∗)]
n
. (6)

where G′ (x∗) is the derivative of the iterative func-
tion at the fixed point. When this value exceeds 1,
the fixed point is unstable and the oscillation grows.
Due to the non-linear nature of the system, the oscil-
lation cannot grow forever, of course, and it stabilises
in a periodic solution.

0 20 40 60 80 100 120 140

−0.2
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0.2

w0 = 10−2 w0 = 10−5 w0 = 10−10

n

x

Figure 2: Time evolution of the outgoing pressure x,
solution of Eq. (3) for different values of its initial
value x0 = x∗ + w0. From left to right: w0 = 0.01
(—–), w0 = 10−5 (—–) and w0 = 10−10 (—–).
(- - -) Exponential envelope deduced from the func-
tion (6). The following parameters are used: γ = 0.42
(constant) and ζ = 0.5.

In a static-parameter context, the oscillation would
eventually stabilise in an oscillatory regime between
values given by the 2-branch part of the static bifur-
cation diagram (an extensive discussion is given by
Taillard et al. [6]).

For time-varying parameters, the evolution of the
system can be interpreted as a dynamic bifurcation
diagram. In this case, it is observed that the system
still follows closely the invariant curve φε even after
it becomes unstable (see for instance Fig. 3). Eventu-
ally an oscillation appears at a value of mouth pres-
sure much higher than the static oscillation thresh-
old, so that we speak of a bifurcation delay. The new
threshold is called the dynamic oscillation threshold.
Above this threshold, a periodic regime is established
whose amplitude is given approximately by the 2-
branch part of the static bifurcation diagram.

The article focuses on providing the necessary ele-
ments to calculate the amplitude envelopes in differ-
ent conditions, including when the time-variation of
a parameter abruptly changes rate.
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2.4 Similarities and differences be-
tween static and dynamic param-
eter cases

The duration of the transient is mainly characterized
by two aspects:

• The time constant of the exponential approach
or departure from the invariant manifold, which
is proportional to log (G′(x∗)), as shown by
Eq. (6)

• the value of the initial condition of x, or how far
it is from the invariant curve or the fixed point.

Figure 2 illustrates how, for a similar exponential
time constant (and parameters that are constant in
time), it is possible to obtain very different transient
times by changing the value of the initial conditions.

These are important results for understanding the
behaviour of the system in a situation where the pa-
rameters change. The differences in dynamic param-
eter contexts are:

• If the parameter starts increasing at a value be-
low the static oscillation threshold, the system
will first undergo an approach to the invariant
curve, and only beyond this value will it start
the departure phase. In fact the approach can
be so dramatic that a visible oscillation is only
observed far beyond the static threshold.

• The exponential time-constant varies through-
out the growth of the parameter, but it is not
simply given by log (G′(x∗(t))) at each time t.

In realistic experimental situations, however,
stochastic fluctuations prevent the system from com-
ing too close to the invariant curve in the approach
phase, and this can reduce the bifurcation delay.

3 Envelopes for dynamic-
parameter regimes

This section provides a method to describe the oscil-
lation amplitude in the particular case of a clarinet

model system in which the blowing pressure param-
eter increases with time at a small constant nondi-
mensional rate ε� 1:

{
xn = G (xn−1, γn) (7a)
γn = εn+ γ0. (7b)

3.1 Unlimited precision (noiseless)
First, the case with an arbitrarily high precision is
analysed. xn is the state variable of the system de-
scribed in section 2.1. With the knowledge of xn and
its previous value xn−1 all remaining variables of the
system can be calculated. In [13] it is shown that
during a significant part of a slow transient, xn is
close to the invariant curve φε(γ) described above.

As seen in the previous section, for a constant pa-
rameter, the envelope is well described by an expo-
nential envelope (Eq. (6)), as long as the state vari-
able x remains sufficiently close to the fixed point x∗
so that function G is well approximated by its tan-
gent line.

Figure 3: (black points) Numerical simulation of the
system (7). (dashed black line) Invariant curve φε(γ).
(blue line) Curve of fixed points x∗(γ). ζ = 0.5, ε =
10−3 and γ0 = 0.

Fig. 3 suggests that when the parameter γ varies
over time, xn follows more closely the invariant curve
than the curve of fixed points (x∗(γ)). Instead of

5



following the distance to the fixed point as in Eq. (6),
a new variable wn is therefore defined:

wn = xn − φε(γn). (8)

Note that, when the parameter is constant, the def-
inition (8) reverts to x − x∗ of Eq. (6), as can be
verified by substituting ε = 0 in the perturbation ap-
proximation to φε (see Appendix B, Eq. (30)).

For small amplitudes wn, the functionG in Eq. (7a)
can be expanded as a first-order Taylor series around
the invariant curve. The advantage of switching to
this description is that future values of the oscillation
amplitude |wn| can be approximated using a simple
function w(γ) relating to an initial iteration w0:

|wn| = w(γn) ≈

|w0| exp

(
1

ε

∫ γn+ε

γ0+ε

ln |G′ (φε(γ′ − ε), γ′)| dγ′︸ ︷︷ ︸
I(γn+ε)−I(γ0+ε)

)
.

(9)

Eq. (9) is the equivalent to Eq. (6) for variable
parameters (see [13] for details). Function I is defined
by:

I(γ) =

∫ γ

γst

ln |G′ (φε(γ′ − ε), γ′)| dγ′. (10)

In the applications shown in this article, I is al-
ways used as a definite integral. As a consequence
the integration constant, or one of the bounds of the
integral I can be defined arbitrarily. γst is used in this
article as a reference point close to the minimum am-
plitude, although for ε 6= 0 the minimum is attained
at a slightly lower pressure.

The discrete equivalent of Eq. (9) is:

|wn| = |w0| exp

(
n∑
i=1

ln |∂xG (φ(γi − ε), γi)|
)
,

= |w0|
n∏
i=1

|∂xG (φ(γi − ε), γi)| . (11)

The "product form" (11) highlights that when the
magnitude of G′ is smaller than 1 in modulus, which
happens before the static threshold γst is reached, xn
approaches the invariant curve. Beyond this thresh-
old, xn moves away from the invariant curve, but
initially at a very slow pace, because the logarithm
remains close to 0.

Although I(γ) is not easy to calculate analytically,
for small values of the increase rate ε, the derivative
G′ (φε(γ′ − ε), γ′) can be approximated by its value at
the fixed point G′ (x∗(γ′), γ′), and the integral I(γ)
written in the form:

Ĩ(γ) =

∫ γ

γst

ln |G′ (x∗(γ′), γ′)| dγ′. (12)

The error in I(γ) committed in this approximation is
observed to be smaller than ε (the difference between
I(γ) and Ĩ(γ) in Fig. 4 is much smaller than ε).

For the clarinet model, the expressions involved in
the calculation of the derivative G′ are too compli-
cated if function G is used in its explicit form. How-
ever, they can be obtained in a simple form (see Ap-
pendix B, Eq. (38)) from the definition of F in co-
ordinates (p, u), providing simpler expressions for a
numerical calculation of the integral. In the rest of
this paper we use the approximate form (12).

�st =
1

3

�
�dt�0

w0

I
(�

),
Ĩ
(�

)

I(�)

Ĩ(�)

Figure 4: Integral I(γ) calculated using Eq. (10)
(dashed line) and approximately using Eq. (12) (solid
line). ζ = 1/2, ε = 1/20.

The predicted amplitude w̃(γ) is calculated as a
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distance to the invariant curve:

w̃(γ) = |w0| exp

(
Ĩ(γ + ε)− Ĩ(γ0 + ε)

ε

)
. (13)

At iteration n, |wn| ≈ w̃(γn). The graphic in Fig. 4
can be used to predict the qualitative behavior of
the system: starting at a value γ0, the distance to
the invariant curve is a monotonic function of Ĩ(γ +
ε). Whenever Ĩ(γ + ε) < Ĩ(γ0 + ε), the amplitude
is smaller than the starting value. Conversely, when
Ĩ(γ + ε) > Ĩ(γ0 + ε) the amplitude is higher. Ĩ(γ +
ε) = Ĩ(γ0 + ε) corresponds to the dynamic oscillation
threshold, as defined in [13].

The curve described by Eq. (13) is often a good
approximation of the envelope for most of the range
of the growth parameter, except for large values of
wn, which typically arise in 2 situations:

• In the beginning of the transient, where the it-
erate x0 can be far from the invariant curve, de-
pending on the initial conditions. Note that the
invariant curve usually diverges for small values
of γ, so that even for reasonable values of x0,
the amplitude w0 can be very large. The region
where this curve diverges depends on ζ, but is
usually well below the static threshold γst (see
Appendix B.3).

• At the end of the transient, where xn finally es-
capes from the invariant curve.

In practice these two situations can be avoided by
carefully choosing the time interval of interest. For
example, a few initial iterations may be calculated ex-
actly using the recursive relation xn = G(xn−1) until
they become sufficiently close to the invariant curve.
In the end of the transient the envelope would not be
valid for other reasons, in particular because the lin-
ear approximation in Eq. (13) is not valid (otherwise
the envelope would grow indefinitely). The prediction
w̃n is valid until a few (3 or 4) iterations before the
envelope starts stabilising in the oscillating branch of
the bifurcation diagram.

3.2 Remarks on very low amplitudes
The curve w̃(γ) in Eq. (13) often reaches very small
values if the value of ε is sufficiently small. As a
quick example of application, consider a simulation
started at a value of γ close to 0. For this case,
Fig. 4 shows that the value of the amplitude at
γst is w̃(γst) ' |w0| exp

(
− 0.3

ε

)
. In this simulation,

0.3 is the difference between the minimum of I (at
γ ' γst = 1/3) and the starting value of I. For
ε = 1/100, this means that the minimum amplitude
will be exp(−30) ' 10−13. Reducing the increase
rate by a factor of ten (ε = 1/1000) brings the mini-
mum amplitude down to the suprisingly low value of
exp(−300) ' 5 × 10−131. In general, the minimum
amplitude reached by the system can be roughly cal-
culated with:

wmin = |w0| exp

(
Ĩ(γst)− Ĩ(γ0)

ε

)
(14)

A few remarks are suggested by these extremely
low values.

Firstly, extremely low values cannot be computed
using ordinary machine precision. In this article,
the calculations are performed with a Python library
(MPMath) that simulates arbitrary precision in an
ordinary machine. Fig. 5 shows how three differ-
ent values of the precision produce very different en-
velopes. For certain values of γ the errors are many
orders of magnitude higher than the precision of the
calculations. Beyond a certain value of the precision,
the envelope is not greatly affected, only producing
“microscopic” errors, which are of the same magni-
tude as the precision. In practice, the precision a re-
quired to simulate the system should be higher than
the minimum amplitude wmin reached by the system.
This ensures that the difference between the simula-
tion and the exact system never exceeds a, otherwise
larger differences are expected because of the change
in dynamic threshold.

Second, even if the simulations are performed using
correct precision, the amplitudes w can only be seen
relative to an accurately calculated invariant curve φ.
The estimation of φε requires a precision aIC < wmin
so that it can be used as an accurate reference for
determining the amplitudes w.
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a = 10-12
a = 10-45 a = 10-200

Figure 5: Static and dynamic bifurcation for ζ = 0.5.
Dynamic diagram is obtained with ε = 10−3 and γ0 =
0, from numerical simulations performed with three
different numerical precisions: a = 10−12,a = 10−45

and a = 10−200.

In this paper, the invariant curve is calculated
approximately using a perturbation series (see Ap-
pendix B), whose precision depends on the number
of perturbation terms. Assuming that the perturba-
tion terms φi(γ) all have the same magnitude (which
as shown in Fig. 10 is true for γ > 1/10), the biggest
influence in precision comes from the powers of ε that
multiply each term in Eq. (30). Using this simple
reasoning, a number of terms n is required for an
invariant curve with precision aIC:

εn ≈ aIC ⇐⇒ n ≈ log10(aIC)

log10(ε)
. (15)

Returning to the previous example, for ε = 1/100,
n = 7 perturbation terms are required to observe cor-
rectly the envelope w at very low amplitudes, whereas
for ε = 1/1000 the number of terms is n = 65.
However, even though the invariant curve requires
a lengthy calculation in order to serve as a reference
for the observation of w, a direct estimation w̃ can
be obtained with a much cruder approximation of the
invariant curve, as shown below.

Note that the previous argument is typically valid
for high values of γ. For low values, some of the
perturbation terms can reach values higher than 1,

especially for high values of ζ. The argument seems
valid in general above the static threshold (see ap-
pendix B.3 and Fig. 10).

In real systems, the problem of precision does not
apply. However, experimental systems are very often
affected by noise from different sources. The major
source of noise in the clarinet is turbulence, which
cannot be avoided even with a very precise control
of the pressure. Noisy situations, as well as finite
precision situations, can be analysed introducing a
stochastic variable in the iterative system (Eq. (7))

3.3 Trajectory of the system affected
by noise

If numerical simulations are run with a precision
coarser than the wmin calculated through Eq. (14),
the previous formulæ must be extended. The lim-
ited precision (i.e. below wmin) used in simulations
is modelled as a stochastic variable (with a standard
deviation of σ = a) in the system. This case is stud-
ied in [16]. A “squared average” trajectory < w2

n > is
described by:

< w2
n > ≈ w̃(γn)2︸ ︷︷ ︸

A(γn)

+
σ2

ε

∫ γn+ε

γ0+ε

(
w̃(γn)

w̃(γ′)

)2

dγ′︸ ︷︷ ︸
B(γn)

.

(16)

The two terms of the right-hand side of Eq. (16) are
functions of the parameter γ. The term labeled A(γ)
corresponds to the approximation of the trajectory in
the absence of noise, the same as in Eq. (9). B(γ) is
the expected value of the additional distance to the
invariant curve due to the presence of noise. In prac-
tice, when the noise level is sufficiently high or the
precision low (relative to the estimation of Eq. (15)),
only the term B(γ) is relevant, i.e. the trajectory of
the system is described by:

√
< w2

n > ≈
√
B(γn)

with

B(γ) =
σ2

ε

∫ γ+ε

γ0+ε

(
w(γ)

w(γ′)

)2

dγ′. (17)
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For ε sufficiently small, since Ĩ > 0 by definition
and considering Eq. (13), it can be deduced that
w̃(γ) � w̃(γ′) for γ′ close to γst (keeping in mind
that w̃ depends exponentially on Ĩ/ε with ε small, in
this article, and the minimum of I and w are close
to γst) and w is negligible for all remaining values of
γ′. This allows a simplification of the expression for
B(γ) as described below.

According to the shape of Ĩ(γ) (see Fig. 4), a
second-order Taylor expansion of Ĩ(γ) around the
static oscillation threshold γst is used to simplify its
expression (for details, see Appendix C):

Ĩ(γ) ≈ 3
√

3
ζ

2
(γ − γst)2. (18)

Using approximation (18), the expression of B(γ)
can be simplified to:

B(γ) = σ2

√
π

3
√

3ζε
exp

(
2
Ĩ(γ + ε)

ε

)
. (19)

Details of the calculations of the simplified expres-
sion (19) are given in Appendix D. This amplitude
B(γ) does not depend on the starting amplitude w0,
and is also independent of the starting value of γ.

It is interesting to notice that according to (13),
expression (19) can also be written:

B(γ) = σ2

√
π

3
√

3ζε

× exp

(
2
Ĩ(γ0 + ε)

ε

)(
w(γ)

w0

)2

. (20)

In this form, Eq. (20) shows that, in the presence
of noise and far beyond the static threshold, the en-
velope followed by the system has the same shape as
without noise, but with a different amplitude, i.e in
this case we have:√

< w2
n > ≈

√
B(γn) ≈ K w(γn), (21)

where K is a constant deduced from Eq. (20).
As a remark, a different calculation with similar

objectives is made in a previous article [16] to de-
termine the dynamic thresholds in presence of noise.

The approximation (18) was used formally to inte-
grate Ĩ(γn + ε) in Eq. (19). The result is an explicit
expression for B(γ), and therefore of the dynamic os-
cillation threshold. Here, Ĩ(γn + ε) is numerically
integrated, keeping its precise expression given by
Eq. (12). This leads to a better estimation of the
envelope, but that envelope does not have an ana-
lytic expression.

4 Interrupted variation of the
mouth pressure parameter

This section describes the behaviour of the system
for an example profile consisting of a limited linear
growth of the parameter at a constant rate ε followed
by a constant value γM for an indefinite period of
time. The parameter is therefore formally defined as:

γn =

{
εn+ γ0 if n ≤M (22a)
γM if n > M. (22b)

Due to the change in increase rate at n = M the
growth phase and the static phase are studied in-
dependently. An amplitude envelope w̃−(γ) is com-
puted for the growth phase and another w̃+(γ) for
the static phase. The two envelopes are connected
at n = M since the initial value w̃+(γM ) is deduced
from w̃−(γM ). The method is described in the next
sections and summarised in Fig. 6.

4.1 Amplitude envelope of the grow-
ing phase: w−

As explained in section 3, the first few (Nlin) iter-
ations must usually be performed manually. These
correspond to an “approach phase” that brings the
system close enough to the invariant curve so that
the assumption of linearity is valid.

At iteration Nlin the state of the system is given

9



Min. amplitude

Low prec. or noise?

Nlin

Ref. ampli-
tude wNlin

Calculate
remaining
env. |w−
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|x∗(γM ) − φǫ(γM )|?
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Calculate
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tude wγst

w+
M =

φǫ(γM ) − x∗(γM )

Eq. (14)

Eq. (23)
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Eq. (26)

no

no
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yes

Figure 6: Algorithm for determination of the enve-
lope.

by:

n = Nlin

xNlin = GNlin (x0) = G ◦G ◦ . . . ◦G︸ ︷︷ ︸
Nlintimes

(x0)

γNlin = γ0 +Nlinε

w+
Nlin

= xNlin − φε(γNlin) (23)

The number of iterations required for the approach
phase depends on the starting value of γ and the
increase rate ε. In practice the state of the system
is simulated iteratively until it reaches an amplitude
wn < ε.

A complication to this view arises when γ
goes through a superstable point γss defined by

G′ (x∗(γss), γss) = 0. At this point the iterations can
approach arbitrarily the invariant curve. Although
this situation can be analysed under some simplify-
ing assumptions, this is not done in this article, and
the reader is referred to Baesens [14] for a detailed
description of this case or to Bergeot [19] in the con-
text of the clarinet. A simple way of circumventing
this problem is to force Nlin to bring γ beyond the
super-stable point.

A few explicit iterations (usually less than 5) allow
the calculation of the amplitude w(γNlin). Iteration
n = Nlin is used as a safe starting point for the ana-
lytic determination of the envelope.

w̃−(γ) =
∣∣w−Nlin

∣∣
× exp

(
Ĩ(γ + ε)− Ĩ(γNlin + ε)

ε

)
. (24)

When the simulations are performed with a lower
precision than that required for simulating the exact
system (see Eq. (15)), the initial value γ0 does not
affect the growth of oscillations. In this case, an av-
erage squared amplitude is given by Eq. (19) starting
from γst. Therefore, the envelope is given by:

w̃−(γ) = σ

(
π

3
√

3ζε

)1/4

exp

(
Ĩ(γ + ε)

ε

)
. (25)

This approximation is valid for γ > γst, which is
the usual region of interest. Below γst the oscillations
are mostly random, with an average level that re-
mains close to the standard deviation of the stochas-
tic perturbation σ.

4.2 Amplitude envelope of the static
phase: w+

At n = M , γ becomes constant and the oscilla-
tion undergoes an exponential growth (provided that
γM > γst), given by Eq. (6) where the initial value
w0 is replaced by the value w+

M deduced from the
previous study of the growing phase:

w̃+
n =

∣∣∣w+
M [G′(x∗(γM ), γM )]

(n−M)
∣∣∣ . (26)

10



The starting amplitude w+
M for the static phase is

given by continuity of x:

w+
M = w̃−(γM ) + φε(γM )− x∗(γM ). (27)

due to the change in invariant manifold from the in-
variant curve φε(γ) to x∗(γM ).

As a remark, when the amplitude w̃−(γM ) is suf-
ficiently small (i. e. w̃−(γM )� |x∗(γM )− φε(γM )|),
the starting amplitude can be given simply by the
difference between the invariant curve and the curve
of fixed points:

w+
M = φε(γM )− x∗(γM ). (28)

In such a situation, the transient time is roughly
given by the time until the slope discontinuity in
the blowing pressure profile, plus a delay correspond-
ing to the time needed for the oscillations to grow
from w+

M (independently of w−M ) to the final ampli-
tude. Since the starting amplitude and the exponen-
tial coefficient (G′(x∗) in Eq. (6)) are independent of
the slope of the growth phase, so is the duration of
the transient resulting from the interruption in the
growth. This matches observations on real instru-
ments blown artificially [11].

In any case, the oscillation usually starts very close
to the fixed point x∗(γM ). This ensures that the lin-
ear approximation is valid on a large part of the tran-
sient (see Fig. 2).

5 Examples

A few examples of simulations are presented in this
section, together with predictions based on the pre-
vious sections, and their limitations. The “actual en-
velopes” corresponding to the absolute distance be-
tween the iterated values and the invariant curve are
plotted together with the estimation of the envelopes
(Eq. (16)). In examples presented in sections 5.1 and
5.2 the numerical precision is higher than the min-
imum amplitude reached by the system (Eq. (14)).
The effect of introducing a stochastic variable in the
system, which plays a similar role as performing sim-
ulations with low precision [16], is shown in the ex-
ample of section 5.3.

5.1 Interruption below dynamic oscil-
lation threshold

In Fig. 7, the increase in mouth pressure γ is stopped
at a relatively small value of the parameter. In conse-
quence, the amplitude of the oscillations is consider-
ably smaller when the increase is interrupted. A jump
in the relative amplitude is observed when γ = γM , in
a logarithmic plot (see Fig. 7(b)). This jump arises
because w is the distance to the invariant curve φε
before γM and to the fixed point x∗ after.

In this example, 6 iterations (Nlin) are used
to reach the linear approximation. Moreover
w̃−(γM ) � |x∗(γM ) − φε(γM )|, so that the starting
amplitude for the constant parameter phase (w+

M )
is deduced from Eq. (28). The envelope is then
computed following the method described above (see
Fig. 6).

Fig. 7(b) also shows that the prediction is slightly
in advance relative to the actual envelope. The reason
is that Ĩ(γ) is calculated using a severe approximation
φε(γ−ε) ≈ x∗(γ) (see Eq. (12)). For small values of ε
the approximation is satisfactory. The advantage of
using this approximation is that a single curve Ĩ(γ)
can be used for any small value of the growth rate.

5.2 Interruption near the dynamic os-
cillation threshold

In Fig. 8, γ reaches a higher stable value. This results
in higher values of amplitude wn when the parameter
stops increasing.

The envelopes during the growing phase are esti-
mated using the same method as in the previous ex-
ample. At iteration M , since the system is estimated
to have an amplitude that is higher than the differ-
ence |φ(γ) − x∗(γM )|, the new amplitude w+

M is the
distance to the invariant curve of the growing phase
w̃−(γM ). The remaining envelope is the exponential
w+
M exp |G′(x∗(γM ), γM )|, as in the example above.
The biggest difficulty in estimating the amplitude

of the static phase arises when the amplitude w̃−(γM )
is similar to |φ(γ) − x∗(γM )|. In this case, the iter-
ate at n = M can be either very close to the fixed
point curve or at twice the distance between the two

11
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Figure 7: Simulation of the system in Eq. (5) with
unlimited precision. The invariant curve (Eq. (29))
is calculated with 8 perturbation terms and envelope
predictions given by Eq. (13). ε = 0.01, ζ = 1/2,
γM = 0.6, γ0 = 1/10000, x0 = 0.5.

reference curves, which will imply very different am-
plitudes for the static phase.

Finally, in Fig. 8(b), the jump in relative amplitude
at the beginning of the static phase exists but it is not
clearly visible because the amplitude of the oscillation
at γ = γn is large compared with the case shown in
the previous example (see Fig. 7(b)).

The disagreement between the iterates and the pre-
diction for 10 < n < 130 may appear to suggest that
the prediction is not good here, whereas in fact it is
the “actual envelope” that is incorrect. This is due to
an inaccurate determination of the invariant curve.
In fact, the number of terms needed for the invariant
curve (Eq. (15)) makes its analytical computation
too complicated. This situation is thus different from
the numerical precision problem outlined in Fig. 5,
where the iterates are in some cases very different
from those of the ideal system simulated with infinite
precision due to the shift in dynamic threshold. The
prediction is valid for most of the simulation between
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Figure 8: Simulation of the system in Eq. (5) with
unlimited precision. The invariant curve (Eq. (29))
is calculated with 8 perturbation terms and envelope
predictions given by Eq. (13). ε = .005, ζ = 1/2,
γM = 0.9, x0 = 0.5, γ0 = 1/10000.

n = 4 and n = 160, and it matches the envelope
whenever the invariant curve is valid (in particular
above n = 130). This shows that the envelope and
the dynamic threshold can be fairly well predicted,
even with an inaccurate approximation.

5.3 Simulations with noise

In the example of Fig. 9, the simulation is performed
adding a stochastic variable to γn with a uniform
probability distribution having a standard deviation
σ = 10−4. This is roughly equivalent to a simulation
without noise but with a numerical precision fixed to
4 significant digits (i.e. a = 10−4) [16].

The sequence B(γn) (Eq. (19)) is calculated based
on this value of σ, and its square-root plotted as the
envelope prediction. The prediction is valid for γ >
γst = 1/3, where B(γn) reaches its minimum value.
The departure of the oscillations occurs earlier when
compared to the case without noise. When γ < γst
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Figure 9: Simulation of the system in Eq. (3) with
linearly increasing γ and added noise. Invariant curve
(Eq. (29)) and envelope predictions given by Eq. (21).
Unlimited precision, ε = .01, ζ = 1/2, x0 = 0.5,
γ0 = 1/10, σ = 10−4.

the amplitude is roughly that of the noise, because
the noise is added at each new iteration to a value
smaller that of the non-linear function applied to the
previous iteration.

Because of the reduction in the bifurcation delay,
the oscillations are seen to depart much earlier than
the cessation of the increase of the parameter γ. After
the end of the exponential increase in amplitude, the
envelope increases with the parameter, following the
two-state oscillation given by the static bifurcation
diagram.

A discontinuity similar to that observed in figure 7
can arise also in noisy conditions. However, because
the envelope curve w(γ) multiplies a bigger value at
γst, the discontinuity is seen only for smaller values
of γM .

Due to the random nature of the system, the pre-
diction should not be interpreted as an approxima-
tion to the exact envelope, but rather as the enve-

lope followed on average by a series of runs of the
simulation. In fact, in this case, for a series of runs
with different noise samples, the actual envelope was
seen to shift towards the right or the left by about 4
iterations.

6 Discussion

The method can in principle be extended to include
frequency independent losses [8], although this may
be hard to acheive analitically. The invariant curve
cannot be calculated directly from the simple expres-
sion of F , as in Appendix B, requiring the use of
the much more complicated expressions of G and its
derivatives. More complex models of clarinets with
frequency dependent losses are known to give rise to
long attack transients with similar envelope shapes
[12], and the envelope estimation used in the present
article may be similar in models with small dispersion
in the reflection function [20].

When the mouth pressure grows linearly over time,
the logarithm of the amplitude is proportional to a
predetermined curve, which we call I(γ). The propor-
tionality factor depends on the inverse of the growth
rate ε, whereas the offset depends on one of these two
factors:

• the initial amplitude (starting distance to the in-
variant curve), when the precision is high enough
(see Eq. (13)) or

• the stochastic level σ when the simulation is im-
precise or the system is noisy (Eq. (21)).

A stop in the linear growth of the mouth pressure
may occur while the system is still oscillating with
low amplitude. In this case, when the pressure stops
increasing, the oscillation resumes exponentially from
a higher amplitude, which is given by the distance be-
tween the invariant curve and the fixed point at the
particular value of the mouth pressure. A discontinu-
ity in the amplitude envelope is observed if before the
mouth pressure stops increasing while the amplitude
was still at a value lower than the distance between
the invariant curve and the fixed point.
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Bifurcation delay has also been observed in a real
instrument. So far it has been hard to relate the am-
plitude envelope to the value of the mouth pressure.
In interrupted ramps of the mouth pressure however,
the oscillations seem to be triggered close to the in-
flection point of the blowing pressure [11]. In this
case, an exponential amplitude growth then resumes.
This is as expected for low values of γM , as shown in
the example in section 5.1.

The values of γ at the start of the oscillation de-
pend on the rate of growth of the mouth pressure,
an indication that the system is determined by the
stochastic fluctuations in the mouth pressure.

For a constantly increasing parameter, the dynamic
oscillation threshold γdt [13, 16] gives the approx-
imate value of the mouth pressure parameter for
which an audible sound appears, or in other terms,
the distance from the invariant w curve becomes
“macroscopic”. When the linear growth of the mouth
pressure is suddenly stopped at n = M and then
kept constant at a value γM , two situations must be
distinguished:

• γM < γdt: a growing exponential envelope starts
at γ = γM with a fixed starting amplitude, which
only depends on the value of γM (see section 5.1).
Audible sound occurs at a fixed time interval from
the stop in pressure increase;

• γM > γdt: the audible (“macroscopic”) sound be-
gins at γ = γdt (see sections 5.2 and 5.3).

In most practical cases the latter situation is more
common: because of the limited precision or noise,
γdt is effectively reduced to values that are much
closer to the static threshold.

7 Conclusion
This work shows that the amplitude envelope pro-
duced with a regular increase of blowing pressure in
a simplified clarinet system can be described reason-
ably well by the use of a single function I(γ) that
is a characteristic of the system. This function can
be used in exact and “noisy” cases to describe the
envelope beyond the static threshold γst.

When the pressure increase is interrupted, the ex-
ponential envelope corresponding to the transient of
a static-parameter case can be matched with the one
corresponding to growing pressures. In many practi-
cal cases, when the interruption occurs at sufficiently
low values of the blowing pressure, this corresponds
to a fixed starting amplitude so that the transient
time measured from the interruption is roughly inde-
pendent of the previous history of the system.

These conclusions show some dramatic effects of
the stabilisation of the mouth pressure that are due
to the discontinuity in derivative.

In summary, a sudden cessation in the increase in-
mouth pressure can have a large impact in the initial
transient of the clarinet if it appears at a low enough
value of mouth pressure. A preliminary comparison
with a smoother stabilisation profiles [21] suggests
that smoother profiles give rise to slower transients.
However, because of the simple mathematic expres-
sions used for the profiles, they are not easy to com-
pare to the piecewise linear profiles shown in this ar-
ticle.
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A Table of notation
p(t) non-dimensional pressure
u(t) non-dimensional flow
γ mouth pressure parameter
ζ embouchure parameter
G(x) iterative function
xn outgoing wave (also p+n )
x∗(γ) fixed points of the function G(x); same

as φε=0

φε(γ) invariant curve (depends on ε)
Iε(γ) “Base curve” used in calculations of φ

and w (depends on ε)
Ĩ(γ) Approximation to the “base curve” I, in-

dependent of ε
wn difference between a simulated xn and

φ
w̃(γn) or w̃n prediction of wn
ε increase rate of the parameter γ
σ level of the white noise
a numerical precision used in calculations
A(γ) deterministic contribution to w
B(γ) stochastic contribution to w
γst static oscillation threshold
γdt dynamic oscillation threshold
M iteration number at which γ stops in-

creasing
γM target mouth pressure (γ)

B Perturbation methods for the
invariant curve

This appendix presents a perturbation method to cal-
culate the invariant curve, using only expressions of
function u = F (p) (see Eq. (1)). This has the ad-
vantage of producing much simpler expressions than
using function x = G(−y) (Eq. (3)). Higher order
terms are needed only when determining wn from a
simulation. For all other purposes used in this article,
the first order term is usually sufficient.

B.1 Generic forms of the invariant
curve.

The invariant curve satisfies the following equation:

φε(γ) = G (φε(γ − ε), γ) . (29)

The perturbation to order K consists in expressing
φε as a series of terms depending on powers of ε (the
perturbation):

φ(γ) =

K∑
i=0

εiφi(γ) + o(εK+1) (30)

Both φε and G are developed in a power series, φε
around γand G around the first term φ0

The right-hand side of Eq. (29) is then, to 2nd
order:

G (φε(γ − ε), γ) = G (φ0(γ), γ) +

G′ (φ0(γ, γ) (φ1(γ)− φ′0(γ)) ε+(
1

2
(φ1(γ)− φ′0(γ))

)
G′′ (φ0(γ, γ) +

G′ (φ0(γ, γ)

(
φ2(γ)− φ′1(γ)− 1

2
φ′′0(γ)

)
+

O(ε3). (31)

By equating expression (30) on the left-hand side
and (31), it is possible to isolate terms on each power
of ε, and extract expressions for each of the functions
φi.The first term is nothing but the definition of the
fixed point:

φ0(γ) = G (φ0(γ)) . (32)

Each of the higher order terms is obtained from
lower-order ones:

φ1 =
G′ (φ0)φ′0
G′ (φ0)− 1

(33)

φ2 =
G′ (φ0)

(
2φ1φ

′
0 − φ21 − φ′20

)
2 (G′ (φ0)− 1)

+ (34)

G′′ (φ0) (2φ1 − φ′′0)

2 (G′ (φ0)− 1)
(35)

. . .

All functions and derivatives of the functions φi are
taken at γ. As expected, all the derivatives of G are
taken at the fixed point φ0, and this remains true for
higher-order terms too.
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Figure 10: First four terms of the perturbation ap-
proximation to the invariant curve as a function of γ
for four different values of ζ.

B.2 Derivatives of G at the fixed
point.

Derivatives of function G, as given by Taillard [6]
are hard to calculate, as the expressions are complex.
However, the derivatives of G are related to those of
function F . y = G(x) can be defined as a parametric
curve (with parameter p) as the locus of points:

x(p) = −1

2
(p− F (p)) , (36)

y(p) =
1

2
(p+ F (p)) . (37)

The derivative of the curve y = G(x) is:

G′ =

∂y
∂p

∂x
∂p

=
F ′ + 1

F ′ − 1
=

−2
√
γ − p+ ζ (3(p− γ) + 1)

2
√
γ − p+ ζ (3(p− γ) + 1)

. (38)

All higher order derivatives can be calculated itera-
tivelly:

G(n) =

∂G(n−1)

∂p

∂x
∂p

. (39)

For instance the second derivative is:

G′′ = − 4F ′′

(F ′ − 1)3
=

− 8ζ(−3γ + 3p− 1)

(2
√
γ − p+ ζ (3(p− γ) + 1))

3 . (40)

In general these formulas are not of much use be-
cause they are functions of p instead of x. However,
it can be proved that the fixed point of G corresponds
to p = 0 (the line y = x corresponds to the axis u),
so that:

G′(φ0(γ)) =
−2
√
γ + (1− 3γ)ζ

2
√
γ + (1− 3γ)ζ

, (41)

and

G′′(φ0(γ)) = − 8ζ(3γ + 1)(
2
√
γ + (1− 3γ)ζ

)3 . (42)

etc.

B.3 Perturbation terms.

From Eqs (33) and (35), the first perturbation terms
can be written:

φ0(γ) =
ζ

2
(1− γ)

√
γ, (43)

φ1(γ) =
(1− 3γ)ζ

(
(3γ − 1) ζ + 2

√
γ
)

16γ
, (44)

φ2(γ) = −
(
9γ2 − 1

)
ζ2
(
5ζ (3γ − 1) + 8

√
γ
)

256γ5/2
.(45)

The first perturbation terms (φi for i = 1 to 4) are
represented graphically in Fig. 10.

C Approximated expression of
Ĩ(γ)

According to the shape of Ĩ(γ), the second-order Tay-
lor expansion of Ĩ(γ) around the static oscillation
threshold γst is:
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Ĩ(γ) ≈ Ĩ(γst) + (γ − γst)Ĩ ′(γst)+
(γ − γst)2

2
Ĩ ′′(γst). (46)

Through Eq. (12), by definition, we have Ĩ(γst) =
0. Since Ĩ(γ) is the integral of a known function, at
the static threshold, the expression of the first and
the second derivatives of Ĩ(γ) are:

Ĩ ′(γst) = ln |G′(x∗(γst), γst)| = 0, (47)

Ĩ ′′(γst) =

(
d

dγ
ln |G′(x∗(γ), γ)|

)
γ=γst

. (48)

Eq. (48) can be calculated explicitly from the ex-
pression of G′(x∗(γ), γ), given by Eq. (41). The re-
sulting expression estimated in γ = γst. After calcu-
lation we obtain Ĩ ′′(γst) = 3

√
3ζ, yielding:

Ĩ(γ) ≈ 3
√

3
ζ

2
(γ − γst)2, (49)

with a quadratic approximation close to γst.

D Details of the calculation of
the simplified expression of
B(γ)

Using Eq. (13), Eq. (17) is developed,

B(γ) =
σ2

ε

∫ γ+ε

γ0+ε

(
w̃(γ)

w̃(γ′)

)2

dγ′

=
σ2

ε
exp

(
2
Ĩ(γ + ε)

ε

)

×
∫ γ+ε

γ0+ε

exp

[
2

(
−Ĩ(γ′ + ε)

ε

)]
dγ′,(50)

and replacing Ĩ(γ) by its expression given by
Eq. (18), the term B(γ) is approximated by:

B(γ) =
σ2

ε
exp

(
2
Ĩ(γ + ε)

ε

)
∫ γ+ε

γ0+ε

exp

(
−3
√

3ζ

ε
(γ′ + ε− γst)2

)
dγ′, (51)

Eq. (51) can be formally integrated using the error
function erf(x) [22]:

Bn =
σ2

ε
exp

(
2
Ĩ(γ + ε)

ε

)
1

2

√
πε

3
√

3ζ

×

erf
√3

√
3ζ

ε
(γ′ + ε− γst)

γ+ε
γ0+ε

. (52)

The term in square brackets in Eq. (52) can often
be approximated to the values of the error function
far from γst, respectively -1 and 1, allowing to write:

erf
√3

√
3ζ

ε
(γ′ + ε− γst)

γn+ε
γ0+ε

≈ 2. (53)

Finally, using Eq. (53), the expression of B(γ) be-
comes:

B(γ) = σ2

√
π

3
√

3ζε
exp

(
2
Ĩ(γn + ε)

ε

)
. (54)
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