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Abstract 14 

To understand the effects of policy changes on organisations and compositions of cropping systems at 15 

regional scale and their contribution to the sustainable development of regions, we built a regional, 16 

spatially explicit, multi-scale, bioeconomic model called MOSAICA. This model explicitly 17 

incorporates information at field, farm, sub-regional and regional scale to provide cropping system 18 

mosaics by way of regional optimisation of the sum of individual farmer's utilities under field, farm 19 

and territory biophysical and socio-economic constraints. Its generic structure means it can be used in 20 

different regions with geographic information on the location of the field and farm, data on cropping 21 

system performance, on location factors and on policy schemes. We used the model in Guadeloupe to 22 

test the impact of three scenarios of change on the agricultural subsidy regimes. The model produced 23 

three cropping system mosaics which reduced the area under banana and sugarcane, turned specialized 24 



 

banana and sugarcane farming systems into breeding systems while improving the overall contribution 25 

of agriculture to sustainable development. The spatially explicit results of changes in ecosystem 26 

services, and in farming systems with MOSAICA make it an appropriate decision-aid tool for regional 27 

planning. 28 

Highlights 29 

• We built a multi-scale spatially explicit regional bioeconomic model called MOSAICA 30 

• MOSAICA combines field, farm, and regional data to produce cropping system mosaics 31 

• MOSAICA models impacts of policy and novel scenarios on cropping systems mosaics 32 

• Spatially explicit indicators can help decision-makers to assess different targeted policies 33 

• MOSAICA can help explore scenarios to improve sustainable development of regions 34 

 35 
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1. Introduction 39 

Agriculture plays an active role in the provision of ecosystem services by way of ecosystem 40 

management. Recent studies have shown that the spatial organisation of cropping systems, which are 41 

called cropping system mosaics at the landscape scale, drives the provision of some ecosystem 42 

services (Thenail et al., 2011). These cropping system mosaics contribute to the protection of soils 43 

(Ronfort et al., 2011), the rational use of water (Bergez et al., 2007) and the conservation of 44 

biodiversity (Rusch et al., 2012), among others. The cropping system mosaic is also important for the 45 

provision of economic and social services, such as the provision of food and employment. Cropping 46 

system mosaics are the results of farmer cropping system choices at the field level (Dury et al., 2011).  47 

 48 



 

A cropping system choice is driven by a range of parameters that act at the field, farm and regional 49 

scale (Aubry et al., 1998). Biophysical drivers (e.g., the slope, the rainfall), social factors (e.g., the age 50 

of the farmer), economic factors (e.g., the investment capacity), farm structure and resources (e.g., the 51 

farm size, the number of workers), the farmer's objective and risk aversion can strongly drive the 52 

choice of cropping system. At the field scale, biophysical factors can constrain the adoption of new 53 

cropping systems (Chopin and Blazy, 2013), and the change in the production quota at the farm scale 54 

and the personal objectives of farmers affect the choice of farming systems (Bureau et al., 2001). At 55 

the regional scale, the implementation of agricultural policies (Flichman et al., 2011) and protected 56 

environmental areas drive the choice of crops and agricultural practices. Some of these factors are 57 

spatially heterogeneous and can then affect farmer choices in a different way depending on their 58 

location in the territory. The location of cropping systems has a direct impact on the values of 59 

ecosystem services that are provided by agriculture. Thus, to manage ecosystem service provision at 60 

the regional scale, decision-makers should implement well-adapted, multi-scale, spatially explicit 61 

policies aimed at organising the landscape to increase the provision of services in the desired direction. 62 

 63 

Bioeconomic models have been frequently used for ex ante assessments of impacts from policy 64 

changes on the choice of farmer cropping systems at the farm scale. This type of model links farmer 65 

resources and context variables with activities that describe cropping systems (Flichman et al., 2002; 66 

Janssen and van Ittersum, 2007). These systems have been widely used in a range of different studies 67 

primarily at the farm scale (Dogliotti et al, 2005; Louhichi et al., 2010; Belhouchette et al., 2011; Leite 68 

et al., 2014) or from the farm scale to the regional scale (Laborte et al., 2007; van Ittersum et al., 69 

2008).  70 

 71 

However, the interrelationships between the field, farm and regional scales have scarcely been 72 

explicitly integrated into bioeconomic models despite their influence on the decision-making process 73 

of farmers (Delmotte et al., 2013). Moreover, assessing the consequences of cropping system changes 74 



 

in current bioeconomic models is not spatially explicit, which decreases the usefulness of the 75 

assessment for decision-makers, who want to determine the impact of the policy on the cropping 76 

system mosaics and the evolution of the contribution from these mosaics to the sustainable 77 

development of their region. Some regional models including SOLUS (Schipper et al., 1998) and 78 

Landscape IMAGES (Groot et al., 2007) take different spatial scales into account in the design and 79 

assessment of policy support for sustainable land-use options. However, SOLUS does not directly 80 

account for individual constraints at farm level (Schipper et al., 1998) and IMAGES is mostly used to 81 

optimise landscape functions to explore possible trade-offs among these functions with an 82 

evolutionary algorithm.  83 

 84 

To assess the effects of policies on the contribution of cropping systems to sustainable development at 85 

a regional scale, we built a regional, spatially explicit, multi-scale bioeconomic model of farmers’ 86 

choice of cropping systems at the field scale. The economic component is embedded in the decision 87 

model, which is based on the optimisation of the overall gross margin with a risk coefficient under 88 

farm resources constraints such as farm size or workforce. The biophysical part of MOSAICA relies 89 

on (i) an algorithm of cropping system allocation, which is under the conjoint influence of the 90 

biophysical context of the fields and the biophysical performance of the cropping systems, and (ii) the 91 

biophysical process behind the equations used to calculate the indicators, which provide information 92 

on the pressure of the cropping system mosaic on the ecosystems. This model can optimise the 93 

allocation of cropping systems regionally at the field scale by accounting for the constraints and 94 

opportunities at the field level, the availability of production factors at the farm scale, farmers’ 95 

attitudes to risk, the policy implemented and the availability of resources (e.g., water for irrigation) at 96 

the regional scale. 97 

We first present the area of implementation and then the bioeconomic model for a scenario analysis at 98 

the regional scale with an application in Guadeloupe, a French Outermost Region, with three 99 

scenarios. 100 



 

  101 

2. Material and methods 102 

2.1. Area of implementation  103 

 104 

Figure 1: Crop organisation at the district scale and comparison of the census data in 2010 with the 105 

geographic database used in the study. On the map, S stands for sugarcane, P for pasture, B for 106 

banana, Cg for crop-gardening, Or for orchards, Tu for tubers, Me for melon, Pi for pineapple, Pl for 107 

plantain and F for fallow 108 

We implemented our generic bioeconomic model in Guadeloupe as an example. Guadeloupe is a 109 

French archipelago located in the Caribbean. In this area, the climate is tropical, rainfall is positively 110 

correlated with relief, and ranges from 1,000 to 5,000 mm yr-1. Soils in the mountain areas are acid, 111 

Andosols, Nitosols, Ferralsols and vertic soils, while flat lands have Calcisols and Vertisols. The total 112 



 

cultivated area of the archipelago, which is composed of the Grande-Terre, Basse-Terre and Marie-113 

Galante islands, is 32,948 hectares (PDRG, 2011), the different cropped areas and their spatial 114 

arrangement within the territory, is shown in Figure 1.There are 7749 farms in Guadeloupe, and their 115 

sizes range from less than one hectare to more than one hundred hectares, with an average of four 116 

hectares (Agreste, 2010). This variability in the socioeconomic and biophysical context and farm 117 

resources is responsible for the variability of the cropping systems, described through typologies such 118 

as that of Blazy et al. (2009) for banana farms and Chopin et al. (2015) for farming systems. 119 

2.2. Overview of the bioeconomic model MOSAICA 120 

 121 

Figure 2: Presentation of Multi-scale model of the crOpping Systems Arrangement and Its 122 

Contribution to sustAinable development (MOSAICA) 123 

The modelling framework with the inputs and outputs of the Multi-scale model of the crOpping 124 

Systems Arrangement and Its Contribution to sustAinable development (MOSAICA) is shown in 125 

Figure 2. The inputs of the model are i) the geographic database of fields that contain information 126 

about the biophysical context and the farm structure, e.g., the farm size and the land tenure, ii) the 127 

database of activities that describe the cropping systems and technical-economic coefficients that can 128 



 

be allocated to fields and iii) the farm typology and the classification algorithm for the eight farm 129 

types. The model optimizes the sum of individual farmer's utilities at the regional scale, which 130 

includes expected farm revenue and the risk aversion towards price and yield variations. The 131 

allocation of cropping systems is modelled through a set of equations that model the choice of 132 

cropping systems by farmers at different scales, namely the field, farm, sub-regional and regional 133 

scales. Optimisation is performed at the regional scale because equations are implemented at this scale 134 

to constrain the overall quantity of production for some crops within the entire area of study (because 135 

of market sizes or production quotas). The outputs of the model are the cropping system mosaics and 136 

the calculation of a range of sustainability indicators. 137 

 138 

2.3. Model inputs  139 

2.3.1. Building the geographic databases 140 

First, a geographic database of fields is needed to calibrate the model and to design and assess 141 

cropping system mosaics. Second, a shapefile of farms is built with the information obtained on the 142 

farm locations. Third, the reliability of these databases must be checked before the scenario analysis at 143 

the regional scale, e.g., by comparison of the crop areas with regional public statistics. Fourth, the 144 

farm and field databases are completed with allocation factors that are biophysical and structural 145 

context variables. 146 

In our case study in Guadeloupe, we worked with a geodatabase of fields that was provided by the 147 

local agency that helps farmers with their subsidy applications. The initial geographic database 148 

gathered 25 057 fields, owned by 5336 farmers, and the crops grown on them in 2010. The reliability 149 

of the farm and field databases is checked by comparing the area of each crop in the database with the 150 

agricultural census data in 2010 (Agreste, 2010). We can see that the total number of farms in the 151 

database is smaller than the actual number, 5336 farms compared with the initial 7749 farms, from the 152 

statistics. This discrepancy in the database is quite homogeneously spread among the sub-regional 153 

areas, but the Marie-Galante area is better represented than the eastern Grande-Terre and the 154 



 

southwestern Basse-Terre. The crop areas follow trends that are linked to the number of farms. Except 155 

for the lack of data on crop-gardening and pastures, a gap that prevents us from generalising some of 156 

the trends in changes observed in these crops (Figure 1), the database is satisfactory because it 157 

represents 80% of the agricultural area.  158 

 159 

The field areas were then calculated and aggregated to obtain the size of each farm. Rainfall quantities 160 

were calculated based on the mean rainfall levels for 30 years. Inter-annual rainfall was assessed based 161 

on monthly rainfall determined from data from meteorological stations interpolated using the kriging 162 

tool in ArcGIS 9.3 (ESRI, 2009). The soil types were added based on an intersection with the soil 163 

shapefiles from a soil map (Colmet-Daage, 1969). In Guadeloupe, 20% of the fields are contaminated 164 

by chlordecone (Cabidoche et al., 2009), which can be up taken by some crops. The contamination 165 

rate depends on the soil chlordecone content, plant anatomy and physical-chemical properties of the 166 

soil (Cabidoche and Lesueur-Jannoyer, 2012). Consumption of contaminated crops has been shown to 167 

have harmful effects on humans (Multigner et al., 2015). The risk map for chlordecone contents was 168 

used to generate the chlordecone risk in the plots (Tillieut and Cabidoche, 2006). Irrigation schemes 169 

were intersected with fields to provide information on access to irrigation. The altitude was calculated 170 

from a 15-metre digital elevation model (DEM). The slope raster was determined from this DEM by 171 

using the slope tool. The fields were spatially intersected with sub-regions and determined based on 172 

the similarity of their soil and climate conditions. This biophysical information is used in two ways: 173 

(1) as constraints for the allocation of an activity to fields (for example, when rainfall is insufficient 174 

and irrigation is impossible, the activity cannot be adopted) and (2) as input parameters for the 175 

calculation of certain indicators (mainly environmental indicators). 176 

 177 

  178 



 

2.3.2. Building the database of activities  179 

Example of 

cropping 

systems/ 

Examples of 

technical 

coefficients 

Intensive 

banana 

cropping 

system 

in plain 

Traditional 

beef 

production 

on pasture 

Staked 

yam 

based 

cropping 

system 

Mechanized 

sugarcane 

in the 

northern 

Basse-Terre 

Plantain 

cropping 

system 

in 

Basse-

Terre 

Pineapple 

cropping 

system 

with 

plastic 

mulch 

Mean yield  

(tons.ha-1.yr-1) 
44 0.66 15 74 26 23.3 

Price of sell 

(€.t-1) 
540 5400 2000 11.2 800 1100 

Income 

(€.ha-1.yr-1) 
42957 3564 30000 4852 20800 38500 

Mean variable 

costs 

(€.ha-1.yr-1) 

32540 1974 20939 2212 9414 9303 

Gross margin 

(€.ha-1.yr-1) 
10417 1590 9061 2640 11386 16327 

Use of pesticides  

(number of 

doses.yr-1.ha-1) 

8 0 2 1 3 10 

Workforce needs 

(hours.ha-1.yr-1) 
1560 70 990 15 620 450 

 180 

Table 1: Description of some cropping systems in the database of activities 181 

The central element of the bioeconomic modelling approach is the simulated production process 182 

(Hazell and Norton, 1986), which is performed through the production activity choices of farmers 183 

(Flichman et al., 2011). One activity is defined by the technical coefficients that represent the use of 184 

inputs needed to produce different outputs. The description of the cropping systems depends on the 185 

nature of data required for the optimisation process and on the calculation of the indicators (e.g., the 186 

average gross margin, cost of production, yield, working demand, sale price, etc.). 187 

In our case study, we described 36 cropping systems currently used by farmers based on (i) previously 188 

published work, (ii) expert knowledge and (iii) on-farm surveys. The model is static and does not 189 

account for variations in cropping systems over time since its main aim is to perform a strategic 190 

analysis of agricultural systems under new conditions in a what-if scenario framework. We then 191 

describe multi-annual cropping system (such as banana, sugarcane or orchards), as an average of 192 

practices and performances over the full life cycle of crops without a discount rate. The possible 193 

decrease in the gross margin of multi-annual cropping systems is taken into account in the positive and 194 



 

negative variations in the gross margin Z+ and Z- defined for each activity a . Some of the activities 195 

with their technical coefficients are presented in Table 1. Livestock activities are included in pasture 196 

activities, which describe outputs from grazing livestock productions. Previously published works 197 

include scientific publications, such as Blazy et al. (2009) for banana production and technical guides 198 

published by local agricultural institutes and agricultural cooperatives. In total, 25 experts were first 199 

interviewed individually and then gathered together to come to an agreement on the characteristics of 200 

cropping systems by following the principle of the Delphi method (Harold and Murray, 2002). Ten 201 

further on-farm surveys were conducted to complete lacking data. Alternative activities could have 202 

been described but we chose not to do so in this study, since the aim of the scenarios was to assess the 203 

impacts of changes in the subsidies regime on existing farming systems. However with MOSAICA, it 204 

is possible to assess the potential contribution of new cropping systems to regional sustainability by 205 

defining new activities. 206 

 207 

2.3.3. Farm typology 208 

Statistical analyses were performed on the farm database to cluster farmers based on their decision 209 

processes.. Because crop acreages are the results of the farmer decision process (Aubry et al., 1998; 210 

Dury et al., 2011), these variables should be included in the statistical analysis, which may also 211 

include biophysical variables, farm structure or socio-economic variables (Andersen et al., 2007). 212 

In our case study, we used a farming system typology and a classification algorithm that were realised 213 

on Guadeloupian farmers categorised into the following eight farm types: "arboriculturists", "banana 214 

growers", "specialised cane growers", "diversified cane growers", "diversified", "breeders", "crop-215 

gardeners" and "mixed cane growers-breeders"(Chopin et al., 2015). These are mainly the percentages 216 

of the acreages of the different crops grown on a given farm. As a cropping plan is the result of the 217 

farmer’s decision process, the farm typology groups farms with similar decision processes. The 218 

classification algorithm, which consists of several thresholds of crop acreage proportions at the farm 219 

scale, has been implemented in our bioeconomic model as a set of if-then rules to provide (i) a 220 



 

classification of farm types at the initial state of the mosaic and (ii) a post-optimisation classification 221 

that shows the evolution of farming systems from the initial cropping system mosaic to the simulated 222 

one after scenario analysis. 223 

 224 

2.4. The model description 225 

2.4.1. Objective function 226 

The objective function of our regional bioeconomic model is a Markowitz-Freund (Mosnier et al., 227 

2009). The optimal acreage at the regional scale is the one obtained from the maximisation of utility 228 

U, which is the maximum of the sum over the full population of farmers of the total gross margin ma 229 

of activity a balanced with the sum of expected positive and negative variations in the gross margin, 230 

respectively Z+
a and Z-

a, multiplied by a risk-aversion coefficient Ø at the farm scale (Equation 1). The 231 

risk is then modelled using a linear approach (Mosnier et al., 2009). 232 

The coefficients of variability are determined for each activity based on agro-economic expertise and 233 

encompass both an agronomic risk (yield variability related to climate conditions, pest attacks or 234 

diseases) and commercial outlet risk (from the variability in the selling price across the selling season) 235 

aggregated together. We applied two variability coefficients Z+
a and Z-

a (Equation 1 and 2) to each 236 

activity based on an appraisal of this risk because this type of risk formulation is known for generating 237 

good results in bioeconomic models (Arriaza et al., 2003). For instance, for sugarcane cropping 238 

systems in the northern part of Basse-Terre, these positive and negative variations have been set to 239 

respectively - 250 €.ha.yr-1 and + 250 €.ha.yr-1, because of its low commercial risk and low variability 240 

in the crop yield. 241 
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In Equation 3, ma is the average gross margin of activity a based on a mean yield Y, a price P with 245 

subsidies S and a given level of variable cost C (Equation 3). The area of activity a is symbolised by 246 

X, and X(a,p) represents the vector of decision variables, that is to say, the area covered by each 247 

activity a (the cropping system in our case study) on plot p (Farms f can choose one or several 248 

cropping systems on the same plot). 249 

 250 

2.4.2. Constraint equations 251 

Equations are primarily implemented in bioeconomic models as constraints to the adoption of 252 

cropping systems by farmers. These equations impact the allocation process of cropping systems at 253 

different scales. 254 

In our case study, we mixed expertise and descriptive statistics to highlight the thresholds of variables 255 

that described the locations of cropping systems (Leenhardt et al., 2010) and implemented them in 256 

several equations at different scales. The complete list of equations is given in the Appendix. 257 

 258 

At the field scale, we implemented a set of equations linking the cropping systems to the slope, field 259 

area, rainfall amounts, altitude, soil type and land tenure, which were calculated for all individual 260 

fields and affect the choice of cropping systems. For instance, mechanised cropping systems were 261 

limited to a slope Slpmax of 15% because of the impossibility of ploughing or mechanically 262 

harvesting on steeper slopes in field p with a slope of Slp (Equation 4). 263 

 264 

!" �#$�  ≥  �#$
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 267 



 

At the farm scale, the farm size, agronomic rules for crop rotations, production quotas and workforce 268 

resources are the primary constraints for the adoption of cropping systems. For instance, the size of 269 

workforce, which was determined according to the observation of initial areas Xinit for cropping 270 

systems allocated to plots p in 2010 and the work W required for activity a, was considered to be a 271 

limited resource for farmers since flexibility of work is mainly managed at farm scale (Equation 5). 272 

 273 
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 275 

At the sub-regional scale, environmentally and geographically protected indications constrain the 276 

adoption of cropping systems. At the regional scale, we defined the maximum thresholds for limiting 277 

the quantity of crops produced based on either production quotas for banana or sugar, respectively 77 278 

977 and 10 700 tons.yr-1 (PDRG, 2011; CTCS, 2005) or current consumption for non-exported crops, 279 

such as plantain, based on the sum of production for local market and importation I of the crop 280 

produced by activity a (respectively 4500 and 150 tons (Equation 6). 281 

∑ ∑ ∑ ��	,� ,�	� 	 ≤  ∑ ∑ ∑ ��)*)+	,�,�	� +  !		���-   (6) 282 

2.5. Calibration procedure 283 

Farm types 
Risk aversion 

coefficient Ф 

Arboriculturists  1.3 

Banana growers  1.2 

Specialised cane growers  0.3 

Diversified cane growers  1.4 

Diversified  0.55 

Breeders  2.4 

Crop-gardeners  0 

Mixed cane growers - breeders  2.3 

 284 

Table 2: risk aversion coefficients used for the calibration of MOSAICA 285 



 

The calibration procedure is based on the allocation of several sets of risk aversion coefficients Ø to 286 

farmers based on their farm type. These risk aversion coefficients at farm scale help reproduce 287 

farmer's cropping plans based on a hypothesis about their level of risk aversion. Several iterations are 288 

performed until 80% of farming systems are well-calibrated. After reaching this threshold, the model 289 

can be considered satisfactory. 290 

 291 

In our case study, we tested several sets of risk aversion coefficients Ø per farm type as calibrating 292 

coefficients of our model. The same risk aversion coefficient was allocated to each farm belonging to 293 

the same farm type (Table 2). We established a range of hypotheses on the level of risk aversion per 294 

farm type to start the calibration iteration. After running 100 iterations, we managed to obtain a set of 295 

risk aversion coefficients that provided satisfying results at the farm scale in terms of cultivated crop 296 

areas. The coefficient has a value that ranges from 0, a risk neutral farm type, to crop-gardeners, 297 

approximately 3, a very risk-averse farm type, such as the breeders in this example (Acs et al., 2009).  298 

 299 

2.6. Evaluation of the model 300 

The base year outputs in a bioeconomic model should match those observed in reality. The percentage 301 

of absolute deviation (PAD) between the observed acreage Xinit(a) for activity a and the simulated 302 

acreage X(a) for a field p, summed at a different spatial scale (i.e. at regional scale), is widely used to 303 

check this match (Hazell and Norton, 1986; Leite et al., 2014). The best calibration is reached when 304 

PAD is close to 0. 305 

 306 

��. (%� = 100 ∗ 
∑  |(34546(	�� 37�|8

∑ 34546(	�8
     (7) 307 

Because the purpose of our model is to ensure the correct prediction of the location of a cropping 308 

system at various spatial scales, we checked the outputs of our model at multiple scales with this PAD  309 



 

(Equation 7). We considered the results to be satisfactory when the percentage of absolute deviation 310 

(PAD) was less than 15% for the primary crops at the regional scale, and 20% in the sub-regions and 311 

farms, as recommended by authors who assess the reliability of bioeconomic farm models 312 

(Kanellopoulos et al., 2010; Hazell and Norton, 1986; Janssen and van Ittersum, 2007). 313 

2.7. Sustainability indicators at the regional scale 314 

The impact of agriculture on society at a regional scale depends on the state of the cropping system 315 

mosaic. To assess these impacts, MOSAICA includes a set of sustainability indicators at the regional 316 

scale. The indicators consist of a quantitative externality assessment of a farmer’s choice of cropping 317 

plan at the regional scale, and they are related to (i) the technical coefficients of farmers’ cropping 318 

systems allocated at the field scale, (ii) the location of fields in the region, which drives the potential 319 

impacts of cropping systems on the response of agriculture to sustainability issues and (iii) the 320 

properties of the fields (e.g., rainfall amount, the size of the field, etc.). The indicator score then varies 321 

depending on the cropping systems allocated within the whole cropping system mosaic.  322 

In our case study, one to three indicators were previously designed by Chopin et al. (submitted) for 323 

each sustainability issue (Table 3). None of the economic indicators and few of the social indicators 324 

are spatially explicit. They are determined based on the aggregated results of all individual fields at the 325 

regional scale (e.g. the agricultural added value is the aggregation of the gross margins at field scale). 326 

On the other hand, most environmental indicators account for the location of each cropping system. 327 

More information on the indicators can be found in supplementary material. 328 



 

Sustainability objectives Indicators Description Units 

Improving agricultural revenue 

Overall farm revenues Aggregation of cropping system gross margins at regional scale €.yr-1 

Repartition of revenue among the farm 

population 

The Gini indicator measures the balance of farm revenue repartition  

(high value: inequity in repartition / low value: equity) (Ceriani and 

Verme, 2012) 

- 

Increasing autonomy from 

subsidies 
Total amount of subsidies Aggregation of cropping system subsidies at regional scale €.yr-1 

Reaching food self-sufficiency 

Ratio of produced carbohydrates over needs Aggregation of the entire production of carbohydrates, proteins and 

fats from crop production at regional scale divided by the needs of 

population calculated based on the local population size and 

average needs 

% 

Ratio of produced proteins over needs % 

Ratio of produced fats over needs % 

Producing local energy from 

agriculture 
Energy potential produced by crops 

Aggregation of cropping system potential production of energy at 

regional scale 
MW.yr-1 

Contributing to employment Total number of workers 
Aggregation of the number of workers needed for cropping systems 

at regional scale 
pers.yr-1 

Insuring safety of locally 

produced foodstuff 

Area with a potential chlordecone 

contamination of food crops 

Sum of the area for which contamination of crops is possible due to 

the contamination of soil, the type of crop grown and the soil type 
ha 

Improving the state of 

biodiversity 
Risk for birds in high-value ecological zones 

Average score of pesticide risk in these areas due to cropping 

system using pesticide with acute toxicity and the quantity of active 

ingredients 

- 

Enhancing water quality 

Ratio of potentially polluted rivers  Qualitative score determined at the field scale with a decision tree 

with information on the quantity of active ingredients, the quantity 

of run-off based on expert knowledge for each type of soil, the half-

life of the active ingredients in the environment, ... ( see Tixier et 

al, 2006). The score obtained at water body scale is the average 

score from fields located around water bodies. The proportion of 

water bodies potentially polluted are the ones with a score above 7. 

% 

Ratio of potentially polluted water abstraction 

sources  
% 

Ratio of potentially polluted water catchments  % 

Amount of water needed for irrigation 
Aggregation of cropping system needs for water based on the 

quantity of rainfalls and the average crop needs per month 
m3 

Protecting soil quality Area potentially eroded due to farming practices 

Sum of field areas with a score above 6 obtained with a decision 

tree based on the type of soil, the crop cover of activities... (Tixier, 

2005) 

ha 

Decreasing contribution to 

climate change 
Overall CO2 emissions from farming activities 

Aggregation of cropping system emissions from cradle to farm gate 

with the exportation of crops 
tons CO2.yr-1 

Improving diversity of 

agricultural landscapes 
Diversity of crops across the landscape 

Simpson's diversity indicator: it assesses the diversity of crops 

through the calculation of the proportion of each crop in the entire 

agricultural area (Simpson, 1949) 

- 

Table 3: Indicators for the assessment of cropping system mosaics with MOSAICA 329 



 

2.8. Policy scenarios 330 

The current policy and the scenarios developed to illustrate the use of MOSAICA are summarised in 331 

Figure 3. The cropping system mosaic, which was obtained with the calibration procedure, is used as 332 

the base year in the scenario analysis presented in the next sections. 333 

 334 

2.8.1. Current agricultural policy in Guadeloupe 335 

 336 

Figure 3: Description of the current agricultural policy in Guadeloupe and the changes tested in 337 

scenarios 338 

 339 

Currently, agriculture in Guadeloupe is highly subsidised by several agricultural policies. The primary 340 

policies in favour of the Outermost Regions are i) the POSEI ("Program of specific options for 341 

isolation and insularity") arrangements, ii) the rural development program of Guadeloupe 2007-2013 342 

that encompass the less favoured area measures, the agri-environmental measures and the structural 343 

measures to sectors and iii) national subsidies (Figure 3 - see Supplementary materials for more 344 

details). 345 

 346 



 

2.8.2. Expected changes in Guadeloupe's agricultural policy  347 

The current policy towards Outermost Regions is going to change because of the pressure from the 348 

World Trade Organization to liberalise the sugarcane and banana markets (European Union, 2012).. 349 

For sugar, national subsidies are going to disappear by 2017, and the banana contingent from the RUP 350 

may disappear by 2020. We will then test the impact of three scenarios in terms of changes in the 351 

subsidy levels and characteristics of the cropping system mosaics at the regional scale and the effects 352 

of these mosaics on the contribution of agriculture to the sustainable development of society. 353 

In the "Area reallocation” scenario, the entire quantity of subsidies from the first pillar, or 48.34 354 

M€.yr-1, is reallocated to each crop equally for 1768 € per hectare of production, including sugarcane 355 

and bananas (Figure 3). 356 

In the “Workforce reallocation” scenario, the amount of subsidies from the first pillar is reallocated, 357 

for each unit of hired workforce with 15 569 € per unit of workforce. The rationale behind distributing 358 

subsidies according to the number of hired labourers is the fact that the unemployment rate is high in 359 

Guadeloupe (27%) and such subsidies could offer new opportunities for stimulating the labour market 360 

(Figure 3). 361 

In the "Decoupling” scenario, the current level of payments from national subsidies and POSEI 362 

payments are defined at farm level, and represent 69.8 M€.yr-1, and they are maintained at farm level 363 

but completely decoupled from agricultural production (Figure 3). Subsidies to agriculture are no 364 

longer linked to crop production like in the CAP decoupling scheme in Europe (Viaggi et al., 2011). 365 

 366 

3. Results 367 

3.1. Model calibration 368 

3.1.1. At the regional scale 369 



 

 370 

Figure 4: Comparison of the regional crop areas between the observed situation and the simulated one 371 

after the calibration step 372 

 373 

We first compared the simulated acreage allocated to different crops under the current policy with 374 

those observed in Guadeloupe in the geographic database. The calibration procedure used in the 375 

modelling framework resulted in a good match for 8 out of 10 agricultural uses over the territory 376 

(Figure 4). Results for melons were not satisfactory with a PAD of 100% because the melon cropping 377 

system was not adopted by farmers because they rent out their land to a company which produces 378 

melon for export and renting out land is not taken into account in the model. However, we show that, 379 

at this scale, the model provides reliable information despite some deviations compared with the initial 380 

state of the system for two minor crops.  381 

 382 

3.1.2. At the sub-regional scale 383 



 

 384 

Figure 5: Comparison of the sub-regional crop areas between the observed situation and the simulated 385 

one after the calibration step 386 

 387 

At the sub-regional scale, a comparison of the initial and simulated acreages reveals the predictive 388 

quality of the model (Figure 5). In Grande-Terre and Marie Galante, sugarcane and pastures were well 389 

simulated with, for instance, PAD values of 5% and 1%, respectively, for the centre of Grande-Terre. 390 

Bananas are well represented in the north with a PAD of 1%. For the east of Grande-Terre, the crop-391 

gardening level is quite underestimated but acceptable, with a PAD of 20%. In Basse-Terre, the north 392 

is well-simulated for sugarcane, pasture and bananas. In the south-east, only the sugarcane level is 393 

underestimated because of a conflict in the simulation between sugarcane and fallow fields as adopted 394 

within a banana-based system for rotations. In the south-west, the simulation results are good for 395 

orchards, bananas, crop-gardening, sugarcane and fallow fields but less favourable for pasture with 396 

28%. We conclude from these results that the MOSAICA model accurately reproduces the agricultural 397 

landscape characteristics of the sub-regions in Guadeloupe. 398 



 

Number of farms in 

types at regional scale 

Initial \ simulated 

Arboricul 

turists 

Banana 

growers 

Specialised 

cane 

growers 

Diversified 

cane growers 
Diversified Breeders 

Crop 

gardeners 

Mixed 

cane-

growers 

breeders 

Total 
(initial) 

Matches 

 

Arboriculturists 60 0 0 14 37 3 0 7 121 50%  

Banana growers 2 159 0 7 15 3 0 19 205 78% 
 

Specialised cane growers 0 0 1473 50 0 53 0 1 1577 93%  

Diversified cane growers 14 0 257 665 24 71 0 19 1050 63%  

Diversified 17 0 0 73 150 17 11 18 286 52%  

Breeders 0 0 0 1 0 1072 0 16 1089 98%  

Crop gardeners 0 0 0 0 13 0 141 0 154 92%  

Mixed cane-growers 

breeders 0 1 0 35 1 235 0 582 854 68% 

 

Total (simulated) 93 160 1730 845 240 1454 152 662 5336 81%  

Table 4: Comparison of the number of types correctly modeled with the calibration procedure 399 



 

3.1.3. At the farm scale 400 

Based on the farm type algorithm implemented in MOSAICA at the farm scale, we compared changes 401 

in the number of farms in the types in the original geographic database to the simulated one from the 402 

calibrated procedure (Table 4). We observed an overall good simulation level at the farm scale with 403 

approximately 81% of the farms classified in the right type. Results were good for “breeders", 404 

"specialised cane-growers" and "crop-gardeners", "banana growers" and "mixed cane-growers 405 

breeders" showing that these types of farms were correctly classified, while results were average for 406 

"diversified cane-growers", "arboriculturists", and "diversified". However, most of the misclassified 407 

farms were classified in groups that are really close to their initial type in terms of crop area. For 408 

instance, 35% of "arboriculturists" were initially classified in the "diversified" group in this 409 

simulation, and the "diversified" group is close to "arboriculturists" in term of acreage. The 410 

hypothesised level of risk aversion of farmers initially stated by the research team proved to be 411 

appropriate to reproduce the behaviour of farmers in terms of their choice of cropping system after a 412 

few iterations. At the farm level, the model provides a good-quality reproduction of current farming 413 

systems. 414 

 415 

3.1.4. At the field scale 416 

Areas with homogeneous 

soil and climate conditions 

Areas with a match between 

the initial and simulated crop 

(hectares) 

Total area 

(hectares) 

Proportion 

of matched 

areas 

Center Grande-Terre 1296 1740 73% 

Eastern Grande-Terre 4034 5007 76% 

Marie-Galante 3114 4218 70% 

Northern Basse-Terre 3924 5035 76% 

Northern Grande-Terre 5636 7201 74% 

Southeastern Basse-Terre 1984 2999 56% 

Southwestern Basse-Terre 991 1150 74% 

Sum 20978 27350 77% 

 417 

 418 

 419 

 420 

 421 



 

Areas with homogeneous 

soil and climate conditions 

Number of fields with a 

match between the initial and 

simulated crop 

Total number of 

fields 

Proportion 

of matched 

fields 

Center Grande-Terre 924 1540 60% 

Eastern Grande-Terre 2574 3911 66% 

Marie-Galante 3948 6054 65% 

Northern Basse-Terre 2645 4251 62% 

Northern Grande-Terre 3729 5269 71% 

Southeastern Basse-Terre 1875 3056 61% 

Southwestern Basse-Terre 724 976 74% 

Sum 16419 25057 66% 

 422 

 Table 5: Results of calibration compared with the current crop areas and the number of fields 423 

The evaluation of the model at the field scale showed that we correctly modelled the crops grown on 424 

66% of plots, which represent 77% of the area of the territory (Table 5). This percentage can be 425 

considered satisfactory given the number of activities in the model the farmers can choose. This level 426 

of precision was homogeneous among 6 out of 7 for the sub regions but was lower for the south-427 

eastern Basse-Terre for which only 56% of areas were correctly modelled. This lower level of 428 

precision is related to the rotation of bananas and sugarcane that compose one cropping system but is 429 

allocated to several plots. 430 

  431 



 

3.2. Analysis of the scenarios 432 

3.2.1. Cropping patterns changes under scenarios 433 

 434 

Figure 6: Acreages evolution between the base year and the three scenarios at the Guadeloupean scale 435 

 436 

The general trends observed throughout the three scenarios demonstrate a sharp decrease in sugarcane 437 

and banana production over the island (Figure 6). By contrast, the areas devoted to pasture and fallow 438 

fields increase and the area devoted to crop gardening and orchards increase more progressively, as 439 

well.  440 

In the "area reallocation" scenario, the sugarcane and banana area greatly decreased from 14 000 441 

hectares to less than 6000 and from close to 2000 hectares to 0, respectively. In parallel, the pasture 442 

area increased from close to 7000 to 12 000 hectares and fallow field areas increased from 2000 to 443 

close to 6000 hectares. Crop-gardening areas doubled from 900 hectares to 2000, and the orchard areas 444 

increased slightly from 1000 to 1200.  445 

In the "workforce reallocation" sugarcane areas decreased from 14 000 to more than 8000 hectares, 446 

and the banana areas in Guadeloupe remained at 600 hectares. The increase in the pasture, fallow 447 

fields and crop-gardening areas were weaker. Pasture areas reached 10 000 hectares, fallow field areas 448 



 

increased to 4000 hectares, and crop-gardening areas accounted for 1500 hectares. The orchard area 449 

increased from 1000 to 2000 hectares. 450 

In the "decoupling" scenario, sugarcane and banana disappeared, and the pasture area remained at the 451 

same level as that for the "area reallocation" scenario, at 12 000 hectares. The fallow area greatly 452 

increased from an initial 2000 to more than 10 000 hectares. The level reached by crop-gardening in 453 

this scenario was the highest, at 2500 hectares, and the orchard areas were close to their level in the 454 

"area reallocation" scenario, at 1500 hectares. 455 

3.2.2. Change in cropping system organisation at the sub-regional scale 456 

 457 

Figure 7: Cropping systems mosaics from the base year and the three scenarios 458 

The new organisation of cropping systems into sub-regions is described in Figure 7. 459 

In the three scenarios, the sugarcane in the northern and eastern Grande-Terre and Marie-Galante is 460 

largely replaced by pasture areas, especially in the "area reallocation" and "decoupling" scenarios. The 461 

northern Basse-Terre follows the same trend. Furthermore, bananas are largely replaced by crop-462 

gardening in the "area reallocation" and "decoupling" scenarios, and less in the "workforce 463 



 

reallocation" scenario. The "area reallocation" and "decoupling" scenarios helped develop orchards 464 

and pasture instead of bananas and sugarcane, and the "workforce reallocation" scenario helped to 465 

maintain the banana area.  466 

3.2.3. Farm type changes 467 

 468 

Figure 8: Farm types evolution between the base year and the three scenarios at the Guadeloupean 469 

scale 470 

The main trends in these scenarios were a decrease in "specialised cane-growers", "banana growers", 471 

"mixed cane-growers breeders" and "diversified cane-growers" and, in parallel, an increase in 472 

"breeders", "arboriculturists" and "crop-gardeners" (Figure 8).  473 

  474 



 

3.2.4. Changes in sustainability levels 475 

Sustainability 

objectives 
Indicators Base year 

"Area 

reallocation" 

"Workforce 

reallocation" 
"Decoupling" 

Improving the 

agricultural added 

value 

Overall farm revenues (M€.y-1) 96 138 125 162 

Repartition of the revenue among the 

farm population 
0.65 0.65 0.74 0.71 

Increasing the 

independence from 

subsidies 

Total amount of subsidies  

(M€.yr-1) 75 60 62 72 

Reaching food-self 

sufficiency 

Ratio of produced carbohydrates 

over needs 
15% 20% 22% 22% 

Ratio of produced proteins over 

needs 
22% 28% 27% 29% 

Ratio of produced fats over needs 9% 13% 19% 16% 

Producing local 

energy from 

agriculture 

Energy potential produced by crops 

(MW.yr-1) 33 16 24 0 

Contributing to 

employment 

Total number of workers (persons) 
3105 2566 2928 2772 

Insuring safety of 

locally produced 

foodstuff 

Area with a potential chlordecone 

contamination of food crops 1170 2013 1529 1843 

Improving the state 

of biodiversity 
Risk for birds in high-value 

ecological zones 
1.0 0.5 0.7 0.1 

Enhancing water 

quality 
Ratio of potentially polluted rivers  39% 8% 30% 22% 

Ratio of potentially polluted water 

abstraction sources 
36% 22% 30% 22% 

Ratio of potentially polluted water 

catchments 
30% 12% 20% 11% 

Amount of water needed for 

irrigation 
17.7 14.7 19.6 15.1 

Protecting soil 

quality 

Area potentially eroded due to 

farming practices 
33.0 33 32.7 31 

Decreasing the 

contribution to 

climate change 

Overall CO2 emissions from farming 

activities (CO2 equivalent) 158 142 149 135 

Improving the 

diversity of 

agricultural 

landscapes 

Diversity of crops across landscape 

3.0 3.1 3.4 2.7 

 476 

Table 6: Evolution of the provision of ecosystem services between the base year and the three 477 

scenarios developed 478 

We examined the values of the indicators that contributed to the sustainable development of cropping 479 

system mosaics in the three scenarios (Table 6). 480 

In terms of economic sustainability, these three developed scenarios were relevant because they 481 

performed better than the base year in terms of economic sustainability, except for the repartition of 482 



 

the revenue among the farm population that was better for the base year. For the economic 483 

sustainability, the "area reallocation" scenario performed well with a good level of added agricultural 484 

value, at 138M€.yr-1, with the lowest subsidy level of 60M€.yr-1. This increase in added agricultural 485 

value is related to the increase in the cultivation of crop-gardening and orchards, and the decrease in 486 

the subsidy level is related to the decrease in bananas and sugarcane. 487 

For social sustainability, the scenarios performed better in terms of food self-sufficiency, especially 488 

scenario 3, with an increase of nearly 50% in food-self-sufficiency for each nutrient. The production of 489 

electricity among the scenarios strongly decreased from 33 MW to 0 MW in the "decoupling" scenario 490 

because of the reduction in bagasse production from sugarcane in all scenarios. The total need for 491 

workers was 3105 people during the base year, and this need decreased in the scenarios to 2566 for 492 

"area reallocation". The risk of food crop contamination by chlordecone strongly increased in the "area 493 

reallocation" scenario to 2,566 ha and less in the "workforce reallocation" scenario and engaged in 494 

"decoupling" to reach 1,529 and 1,843 hectares respectively. This is due to the cultivation of crop-495 

gardening and tubers on chlordecone contaminated soils in the south of Basse-Terre. 496 

In focusing on environmental sustainability, the pressure on biodiversity and water resources 497 

decreased over the three scenarios. This was especially true for the "area reallocation" scenario for 498 

which the pesticide pressure in water abstraction sources, water catchments and rivers was two times 499 

less important than the base year with 8% of rivers, 22% of water abstractions sources and 12% of 500 

water catchments. The amount of water for irrigation decreased from that in the base year in the "area 501 

reallocation" and "decoupling" scenarios by 3 Mm3 and 2 Mm3, respectively. In the "workforce 502 

reallocation" scenario, the water irrigation increased by 2 Mm3. The CO2 emissions decreased in all 503 

scenarios from 158 to a minimum of 135 millions of kg of CO2 equivalents in the "decoupling" 504 

scenario. The diversity of crops increased from the base year to the "workforce reallocation" scenario 505 

from 3 to 3.4, remaining the same in the "area reallocation" scenario and decreasing in the 506 

"decoupling" scenario to 2.7.  507 

 508 



 

4. Discussion 509 

The primary strengths of MOSAICA are its abilities (i) to model the impacts of scenarios on the 510 

composition and organisation of the cropping system mosaics and (ii) to assess the consequences of 511 

these changes for regional sustainability issues with spatially explicit indicators. 512 

 513 

4.1. Model capabilities for multi-scale analysis 514 

The regional bioeconomic model MOSAICA has the ability to design cropping system mosaics that 515 

result from the integration of different information at multiple scales. The model integrates field, farm, 516 

sub-regional and regional information, linking it all together. The combination of changes at these 517 

different scales modifies the farmer's choice and subsequently the entire cropping systems mosaic. The 518 

modelling of farmer cropping system choices and the in fine creation of cropping system mosaics 519 

resulting from the modification of a set of rules at different spatial scales is innovative for the creation 520 

of landscape mosaics. The design of such modelling approaches at regional scale requires a large 521 

amount of data and simplification of the diversity of farming contexts, farming and cropping systems 522 

in the entire region. In bioeconomic models, this spatial scale chain has rarely been implemented 523 

because of the lack of field and farm data. Most studies either link the field scale with the farm scale 524 

(Chavez et al., 2014) or the farm scale with the regional scale (Louhichi et al., 2010; van Ittersum et 525 

al., 2008), but the field-farm-region chain with individual data has, to our knowledge, never previously 526 

been represented in an entire region in a spatially explicit way. This inter-relation of scales can help in 527 

design and assessment innovations at multiple scales and measure their impact at the regional scale to 528 

improve sustainable development of regions (Dogliotti et al., 2014). This multi-scale modelling is 529 

especially important for addressing sustainability issues, such as food security or biodiversity 530 

preservation, that require multi-scale, relevant strategies for resolution (Spiertz et al., 2012; 531 

Cunningham et al., 2013).  532 

  533 



 

The gaps revealed in the database should be taken into account while performing the scenario analysis. 534 

They are the origins of inconsistencies in the analysis of the scenario impacting cropping system 535 

changes (Schaldach and Alcamo, 2006), especially when addressing ecosystem service assessments 536 

(Hou et al., 2013). 537 

 538 

4.2. Spatial representation of the integrated assessment of agricultural systems 539 

This model allows for the ex ante assessment of new cropping system mosaics with a set of indicators 540 

that provide information on the impacts of the new cropping systems in a spatially explicit way and 541 

the trade-offs in the provision of services. For instance, in our case study, the "decoupling" scenario is 542 

very good in terms of providing added agricultural value, but the risk of crop contamination from 543 

chlordecone is higher because of the development of crop-gardening cropping system in the south-544 

eastern part of Basse-Terre, which is very polluted (Cabidoche et al., 2009). Bioeconomic models have 545 

historically been designed and applied to assess the impact of policy changes on economic, 546 

environmental and social indicators of agricultural systems, but most of these models were not 547 

spatially explicit, and the indicators were mostly calculated at the farm scale in bioeconomic farm 548 

models (Janssen and van Ittersum, 2007).  549 

The spatially explicit assessment with the model will help decision-making in the implementation of 550 

spatial policies. Thus, in the "workforce reallocation" scenario, the amounts of intensive cropping 551 

system, crop-gardening and orchard areas are lower than they are in the "decoupling" scenario, but 552 

their environmental impacts are generally higher than in the "decoupling" scenario. This finding is the 553 

result of intensive cropping systems that are close to environmental areas in the "workforce 554 

reallocation" scenario, despite being less prevalent in the territory. The field scale allocation of 555 

cropping systems that are linked to a specific spatial location in the territory is appropriate for the 556 

ecosystem services provision issue.  557 

The model is also able to focus on the farm scale and thus help make decision-makers become aware 558 

of the possible impact of policies on farming systems. In Guadeloupe, the test of three exploratory 559 



 

scenarios with changes in the current agricultural policy raises awareness of the great impacts that this 560 

type of change could have on the agricultural areas and the farm cropping plan. The use of farm 561 

typology is particularly useful for visualising the evolution of farms within the territory from the base 562 

year to different situations. This evolution is an indicator of the farmer cropping plan changes within 563 

the territory and provides information on the trajectories of change and the inner reorganisation of 564 

farms.  565 

 566 

4.3 Limits of the model in the simulation of scenarios 567 

Farmer's decision processes are simplified in MOSAICA and its representation could be improved 568 

with more information on farms and farmers.  Farmers’ attitudes towards innovation and the roles of 569 

skills, training, and investment capacity are not taken into account in the present model but could lead 570 

to differentiated responses to scenarios. Moreover, the fixed costs and the transaction costs that can 571 

decrease the gross margin of new activities at the farm scale could be included in the study if 572 

information on the farm investment is available. The possible market for land and off-farm labour 573 

could be added to the analysis to account for the changes in the size of farm and labour over time. 574 

Technical coefficients were implemented in an empirical way and do not differ between farm types or 575 

between the different biophysical conditions. In our case study, the model incorporates the average 576 

technologies and average economic performance that may strongly differ among farms. Moreover, the 577 

labour constraint was defined at farm scale, in a second version of the model this constraint could be 578 

implemented at regional scale to allow for the exchange of workers between farms. 579 

The positive mathematical programming (PMP) approach (Howitt, 1995) or the extended variant of 580 

PMP (Kanellopoulos et al., 2010), which are used in bioeconomic models (e.g. the Farming system 581 

simulator, see Louhichi et al., 2010), could have been implemented in our model to ensure perfect 582 

calibration depending on the ex-post experiments and validation of the model predictions with these 583 

two calibrating procedures. The implementation of non-linear cost function could have produced a 584 

smoother response to our scenarios. This response would have been more representative of the 585 



 

diversity of farmer's responses to policy change. However, given the satisfactory results achieved with 586 

our calibration with risk, we consider it is sufficiently satisfactory to be used. Furthermore, thuis type 587 

of model provides accurate predictions of farmer behaviour (Arriaza et al., 2003; Lin et al., 1974).  588 

4.4. Generic nature of the model 589 

The MOSAICA model we presented in this paper is generic and can be transferred to other regions. 590 

The databases of activities in addition to the geographic database are independent from the model as in 591 

the Farming System SIMulator (FSSIM) model (Louhichi et al., 2010). Moreover, the calibration 592 

procedure can be reused because the typology of farms can be built directly from the geographic 593 

database of fields and their use in a given year by following the method of Chopin et al. (2015).  594 

Nevertheless, the model requires some modifications before being implemented elsewhere. If new 595 

drivers of crop location are known, they can be incorporated in the model equations. A database of 596 

fields and farms, as complete as possible, should be available and representative of a clearly-delimited 597 

agricultural area to allocate the cropping systems to plots and to perform a spatially explicit 598 

assessment of the contribution of the cropping system mosaics to sustainable development. Cropping 599 

systems should be well defined in the area based -for instance- on available data or expertise. For the 600 

calibration of the model, a hypothesis concerning the risk aversion of farmers should be based on good 601 

knowledge of -or expertise on- the farming system in the area concerned to provide a satisfactory 602 

outcome for decision aid in regional planning. The indicator database is flexible and allows the 603 

switching on and off of indicators based on their relevance for the area under study. 604 

4.5 Possible model developments  605 

Despite being able to provide a possible image of the future from these exploratory predictive 606 

scenarios (Borjesön et al., 2006), decision-aid could benefit from further development of the model. 607 

For instance, MOSAICA does not reveal the transition from the base year to these possible futures. 608 

MOSAICA is static, but could be transformed into a dynamic model by characterising the inter-annual 609 

variations in cropping system externalities; for instance, the annual gross margin of perennial cropping 610 

systems is generally low in the first years after implementation and increased when full production is 611 



 

reached. This multi-annual characterization of cropping system would make it possible to take into 612 

account temporal aspects of the transition of agricultural systems from the present to future states. The 613 

bioeconomic model could be linked to other modelling tools that account for market and sector-level 614 

changes. These models could simulate increases in farm area or the disappearance of farms due, for 615 

instance, to insufficient revenues. Moreover, to allow higher variability in the performance of cropping 616 

system at the different locations in a given region, MOSAICA could be coupled to crop models 617 

adapted to the different soil and climate conditions, or fed with the results of crop models in order to 618 

obtain differentiated performances of the cropping system depending on the local biophysical 619 

conditions of the fields in question (Djanibekov et al., 2013). Furthermore, marginally developed 620 

livestock production could have been introduced since it could benefit from agricultural policies and 621 

then become a more important activity at the farm and regional scale. Adding new activities to the 622 

database could be useful to test whether or not these systems would have positive impacts at the 623 

regional scale and under which conditions they could be implemented by farmers. These additions 624 

could better reproduce possible changes in the cropping system mosaic and hence provide more 625 

precise information for decision-makers and stakeholders. 626 
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Appendix 642 

!" ��  ≤  �
)*	 ,   (8) 643 

�	,� = 0 for activities" mechanized sugarcane" (A is the field area). No harvest possible under 0.3ha 644 

by harvest operator 645 

 646 

!" �#+�  ≥  �#+ 
%&	 ,   (9) 647 

�	,� = 0 for activities "mechanized sugarcane" no access above 250 meters 648 

 649 

!" 9%)*�  ≤  9%)* 
)*	 AND !" !::)� =  0 ,  ,   (10) 650 

�	,� = 0 ; Rain min is determined based on crop water needs; Irrip is the access to irrigation (0: no 651 

access/1: access to irrigation due to presence in irrigation schemes); 652 

 653 

!" �;)#� =  2 ,   (11) 654 

��=>?	��@?,� = 0, Soilp is soil type of field p and 2 is the value attributed to calcic soils for pineapple  655 

based activities. 656 

 657 

!" A+� =  1 ,   (12) 658 



 

��@BC=	>>B	@ 	,� = 0,1 is a value of a land tenure different from properties or land rent. Pluri-annual 659 

crop such as banana or orchards cannot be grown on this field. 660 

 661 

If  (∑ �)*)+	,���  ≤ 10,  (13) 662 

Xa,p = 0, 10 is a subjective size threshold for the mechanization of pineapple cropping system. Material 663 

can be amortised only with an important farm size. No lending as been considered her. 664 

 665 

∑ ∑ ( �	,��	  ≤  ∑  ��)*)+	,����  (14) 666 

Land ressource constraint at farm scale 667 

 668 

 (∑ �	,���  ≤ 9;+	 ∗ (∑ �)*)+	,��� ,  (15) 669 

where Xa is here either pineapple or tubers and Rot value is the return frequency which is 0.33 for 670 

pineapple and 0.5 for tubers. 671 

 672 

(∑ �D	>,� ∗ �D	>��  ≤  (∑ �)*)+D	>,� ∗ �D	>�� ,  (16) 673 

where Xban is the area of banana. 674 

 675 

!" !E�� =  0 ,   (17) 676 

�F?@G>,� = 0, IGPp is the location or no of field p in protected geographic indication area for melon 677 

production. 678 

 679 
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Supplementary materials 907 

1°) Details on the indicators: 908 

Economic indicators: 909 

• The overall farm revenue is calculated through an aggregation of gross margins for cropping 910 

systems.  911 

• The repartition of revenue among the farm population is the Gini indicator, and it 912 

measures equity in the repartition of farm revenue (Ceriani and Verme, 2012).  913 

• The total amount of subsidies is the aggregation of every subsidy provided to farmers for 914 

agricultural production.  915 

Social indicators: 916 

• Three ratios of food nutrients produced over needs (proteins, carbohydrates and lipids) 917 

are calculated based on the nutrient contents of each crop, and the needs are calculated for the 918 

total population in Guadeloupe and the average person's needs.  919 

• The energy potential produced by crops measures the energy that can be produced from 920 

crop or crop residues, primarily bagasse from sugarcane cultivation.  921 

• The total number of workers is the aggregate workforce need from each cropping system.  922 

• The area with a potential chlordecone contamination of food crops measures the area with 923 

crop contamination risk from chlordecone, a soil pollutant from former pesticide applications 924 

in banana fields; this risk considers the soil type, the crop and the level of pollution (see 925 

Clostre et al., 2015). 926 

Environmental indicators: 927 

Most environmental indicators are spatially explicit.  928 

• The risk for birds in high-value ecological zones is the mean quantity of toxicity in the 929 

fields located in ZNIEFF areas (bird protection areas in Guadeloupe) depends on the level of 930 

toxicity of pesticides in cropping systems within ZNIEFF areas with the load index (Bechini 931 

and Castoldi, 2009).  932 

• The ratios of potentially polluted rivers, water abstraction sources and water catchments 933 

are based on the intensity of cropping systems within a buffer area for rivers and within 934 

perimeters for water catchments and abstraction sources. It is calculated through an 935 

aggregation of the R-pest indicator at the cropping system scale (Tixier et al., 2007). 936 

• The amount of water needed for irrigation is based on crop needs and mean rainfalls in the 937 

area on a monthly basis. For each month, the water need is calculated, and all the needs from 938 

each field and each period are aggregated for fields located in the irrigation perimeters.  939 

• The area potentially eroded due to farming practices depends on the soil type, the slope 940 

and the soil cover by crops.  941 



 

• The overall CO2 emissions from farming practices is not spatially explicit and only 942 

represents the aggregation of CO2 emissions from the farm to the region based on the 943 

emissions of cropping system and grazing livestock inputs from the cradle to the farm gate. 944 

• The diversity of crops across the landscape is based on the Inverse Simpson's Diversity 945 

index, which calculates the diversity of crops in each sub-region and the mean level of 946 

diversity at the Guadeloupe scale (Simpson, 1949). 947 

 948 

2°) Details on the current policies: 949 

• POSEI arrangements are subsidies that account for the geographic and economic handicaps of 950 

the Outermost Regions, their remoteness, insularity, small size, topography and climate and 951 

their economic dependence on a few products (POSEI France, 2012). POSEI measures are 952 

funded under the first pillar of the Common Agricultural Policy, and they fall into two 953 

categories, that is, the specific supply arrangement and measures to support local agricultural 954 

production.  955 

o For sugarcane, the POSEI provides a subsidy to the sugar companies and a 956 

transportation subsidy to the farmers. The subsidy provided to the industry is 14 957 

M€.yr-1, and this amount is used to increase the sugarcane payment to farmers from 958 

14.22 €.ton-1 to 32.34 €.ton-1 on average with a subsidy of 18.12 €.ton-1 depending on 959 

the saccharine richness of the sugarcane in the sub-regions. The other subsidy is used 960 

for helping farmers to pay for the sugarcane transport from the farmer's fields to the 961 

nearest collective point. This amount depends on the area in which the field is located 962 

and varies from 2.75 €.ton-1 in the eastern Grande-Terre, the northern Basse-Terre and 963 

Marie-Galante, to 3.23 €.ton-1 in the centre of Grande-Terre, and 4.76 €.ton-1 in other 964 

areas.  965 

o For banana production, the POSEI provides a protection subsidy of 400 €.ton-1 that is 966 

based on an historic production quota that was allocated to banana farms. This subsidy 967 

is provided at the farm scale, but its amount depends on the banana production of 968 

farms compared with the farm historical reference of banana production. An 80% 969 

production of the farm's historical reference ensures 100% subsidies, and below 80%, 970 

the decrease in production decreases the amount of subsidies proportionally. This 971 

subsidy can then be compared with a payment coupled to production. 972 

 973 

• The rural development program of Guadeloupe (PDRG) is financed by the European 974 

Union and national subsidies that are provided for agri-environmental measures, the replanting 975 

of sugarcane, fallowing and production in less favoured areas. These agri-environmental 976 

measures are also compensatory measures of the yield reductions that result from applying a 977 

set of management practices aimed at protecting the environment. Payments for bananas were 978 

approximately 658 €.ha-1 for banana farms when using fallow fields in their rotation to 979 

manage the population of nematodes, and 82 €.ha-1 was provided for harvesting the sugarcane 980 

without burning it because of the loss of leaves for soil protection. Payments for orchards, 981 

crop-gardening, plantains, and pineapples are not provided (PDRG, 2011). The rural 982 

development program also provides a subsidy for the replanting of sugarcane fields for the 983 



 

duration of the sugarcane plantation. This amount is 900 €.ha-1 for seven years on average. 984 

Compensatory payments for Guadeloupean farms located in mountainous areas are not 985 

integrated into the amount of subsidies when currently considering the small number of 986 

farmers that received this subsidy, or approximately 50, in 2010. 987 

 988 

• National subsidies are provided for sugarcane cultivation as a transition payment coupled to 989 

production after the reform of the sugar Common Market Organization in 2007. Its value 990 

varies depending on the level of saccharine richness but is on average 23.81 €.ton-1 of 991 

sugarcane (CTCS, 2005). 992 

 993 

• Sugarcane farmers are also remunerated for providing bagasse, a residue from sugarcane 994 

pressing, for electricity production. The amount of this payment is 10 €.ton-1 of sugarcane and 995 

is not provided for the farmers in Marie-Galante who use the bagasse is directly in the sugar 996 

factory instead of selling it to a power plant, as in Grande-Terre and Basse-Terre. 997 

 998 

 999 


