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Abstract

A formulation of gradient fatigue criteria is proposed in the context of multidmg-cycle
fatigue (HCF) of metallic materials. The notable dependence of fatigue limitroe som-
mon factors not taken into account in classical fatigue criteria, is anagaeédnodeled.
Three interconnected factors, the size, stress gradient and loatkctseare here inves-
tigated. A new class of fatigue criteria extended from classical ones wéhssgradient
terms introduced not only in the normal stress but also in the shear streg®igents, is
formulated. Such a formulation allows to capture both "size" and graditautef as well
as to cover a wide range of loading mode, then can model both phenomerdieiSis
Stronger” and "Higher Gradient is Stronger”. Gradient version®wofesclassical fatigue

criteria such as Crossland and Dang Van are provided as illustrations.
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Cycle Fatigue

1 Introduction

In recent years there has been an increasing interest inogawg fatigue criteria

for metals capable of dealing with high stress gradient(adanotches, voids, con-
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tacts, etc.) and particular issues related to small scalesnples are found, on the
one hand in notches and fretting problems [1; 2; 3; 4; 5; 6],@mthe other hand in
problems related to small electronic components and elesachanical devices.
At sufficiently small sizes, some factors (size, gradiert lxading effects) which
effects on fatigue limits are inherently not captured byssieal fatigue criteria,
become important and must be taken into account through nigsvig. Among
them, experimental evidences show three interconnectest size effect, gradient
effect! and loading effectdf. [7; 8; 9; 10; 11; 12]). A visible general correlation
between these factors is théthe smaller the size, the higher the gradient, then
the higher fatigue resistanceThere are also cases where the gradient exists but
independent from the size, although both influence on nat&rength (e.g. resid-
ual surface stress cases). For the sake of further anaiyssgires to clarify what
are the sources of the size effect by isolating it from theligrat effect. Size effect
is commonly considered as the pure size effect related tottallurgical defects
and heterogeneity of material, and is proved insignificantgared to the other at
the considered scale (e.g. tension-compression fatiga@t€ig. 5, [13; 7]). Then
a preliminary qualitative remark is that, such a pure sigecéfust is a part, but not
enough to explain the fact well known &maller is Strongerthat we observe in
fatigue tests.

The gradient effect is another factor which may help to jrtetrthat fact. Such ef-
fect, termed hereHigher Gradient is Stronget'is roughly related to three sources:
boundary condition, loading mode and size. The first is agsatwith constraints
on dislocation glide (passivated surfaces and interfdmms)dary layers, etc.); the
second concerns loading type which decides the spatiaisstlistribution state in
the solid (null gradient in tension-compression, non-zgedient in bending, etc.);
the last is associated with the size (e.g. geometry and gra@s). For instance,
in bending test, the smaller the beam radius the higher thessgradient (and the
higher the fatigue limit). Experimental results [14; 7] dretvariation in fatigue
strength at various radii conclude to the dominance of theignt effect upon the
pure size effect. Then the sources of the gradient effeateptewo things: first,

"Smaller is Stronger" experimentally observed is mainlyilaited to the gradient

I In the current work, this must be understood as stress gradient. effec



effect in the cases considered here, rather than totallhagotire size effect as
usually believed; second, the gradient effect, i.e. "Highedient is Stronger", is
really a phenomenon different from the size effect.

All previous analyses for both the size and gradient effejdy that although the
size and gradient effects are intimately interconnectedusnially confused in the
literature, they are actually two distinct phenomena. Tdrener only contributing
in part to "Smaller is Stronger" and requiring to be modeleatier approach, is
negligible compared to the latter and thus left out in theentrstudy; whereas the
latter is not only "Higher Gradient is Stronger" but also amfaictor contributing
to "Smaller is Stronger"” that we observe, and is the objectufyshere. In brief,
from phenomenological aspect, "Higher Gradient is Strohigenaturally related
to the gradient effect only, while "Smaller is Stronger" ikated to both pure size
and gradient effects where the latter is dominant. Then "B&mial Stronger" here
is just a "visible image" of gradient effect rather than theesffect from mechan-
ical point of view. From phenomenological point of view, "Staris Stronger" is
however an experimentally observed fact that evokes aitiugwelation to the size
rather than the gradient. For this reason, henceforth srdsearch, the terminol-
ogy "size effect’(placed within quotes) is still used for "Smaller is Strorigéut
as an apparent size effect; and the terminolgmdient effecis used for "Higher
Gradient is Stronger". In such a sense, an important comnciudiawn is thattak-
ing into account only gradient effect (related to all its smes) is enough to capture
both "size effect” and gradient effect on fatigue resisganc

In this study, only cases where the gradient effect is pitesgart from the inherent
pure size effect, are considered. As in [7], the notch eHfeetjarded as a particular
case of the gradient effect, is left out in the study restdd¢b macroscopically elas-
tic behavior or stabilized elastic shakedown state [15§uUoh a context and along
with the notable conclusion above, Gradient Fatigue Cateiith stress gradient
terms introduced are capable to capture the "size", gradreahiaading effects,
and thus to model both phenomena "Smaller is Stronger" anchédiGradient is
Stronger”, as found in the applications considered here.

Classical fatigue criteria without material length scaledict no size, gradient nei-

ther loading effects. The objective is to establish a newsctd fatigue criteria for



considering the previous factors. Existing approachebrig@ith such problems
are Cf. [8; 9; 10; 11; 12]):(i) critical layer of Flavenot and Skally [16{ji) dis-
tance approaches such as: effective distance approachvonh&je [4], Qylafkuet
al. [5]; theory of critical distances, Taylor [2], Araugt al. [3]; (iii) nonlocal ap-
proaches such as: maximum stressed-strained volume binSenal.[17]; energy
based criterion of Palin-Luc and Lasserre [18]; volumegnergy based criterion
of Banvilletet al.[9] and Palin-Luc [10]; gradient method proposed by Brand and
Sutterlin [19; 20];(iv) local approaches such as: gradient dependent criterion of
Papadopoulos and Panoskaltsis [7]; that of Ngargueudedjah[21], and several
derivatives based on this work [7] proposed by Fowatrgl.[1; 22] and Weber [12]
(gradient version of the criterion of Robert [23], and thaFofjue [24; 25]), etc.
The review of Papadopoulos and Panoskaltsis [7] is re-useédeveloped to make
more clear the connection as well as the distinction betwieerffects by analyz-
ing the role of each dimension of specimen in fatigue resesalt is shown that
two issues remain: first, the non-effect of the shear strestient on fatigue limits
is only found for some metals - but not all; second, the infbgeof the stress gradi-
ent amplitude must be clarified. Thereby, in the spirit of ffpdient fatigue criteria
extended from classical ones with stress gradient termgraposed and validated
to clarify the issues. The main idea is to maintain the gdrfemenework of the
classical fatigue criteria, but to embed into it gradiemtrite which enable to de-
scribe the effects concerning the stress heterogenedubuli®n. Three steps are
done: first, the dependence of fatigue limit on the previ@acsdrs in the cases of
uniaxial stress cyclic loadings is phenomenologicallylyred; second, the stress
gradient fatigue criteria which capture the previous fextre established; and fi-
nally, a generalization to multiaxial loadings is perfodrend some applications
are provided.

The outline of the work is as follows. Section (2) focuses ®analyzing existing
experiments on gradient, size and loading effects; in 8edB8), basing on these
analyses as well as notable observations and using as actessigal fatigue cri-
teria in the spirit of [7], new criteria with stress gradiéatms entering not only in
the normal stress but as well in the shear stress parts, epes®ed in the context

of macroscopic elasticity. Such a formulation allows the céteria to capture the



phenomena only by means of gradient terms. These criteria are gemechlinder
multiaxial loadings to be a new class of stress gradientienudtl fatigue criteria,
in Section (4) and (5), some classical fatigue criteria saglCrossland and Dang
Van are extended within such framework; Section (6) is d=vd their numerical

implementation; and finally, Sections (7) and (8) are dismrs and conclusions.

2 Analyses of gradient fatigue tests: size, gradient and lang effects

In this section, analyses on single component zero and emngradient fatigue
tests from the literature, including two groups, uniaxiatmal stress and shear
stress tests, are made to clarify the size, stress gradidnbading effects on fa-
tigue limits. The tests exempt from the size and gradiemtct$f are used as refer-
ence. A special attention is also paid on the interpretatiathe three effects and
their relation as well as the capacity of either eliminatongntegrating them into
"gradient terms" for some cases. Analyses and preliminamglaosions drawn here
for single component fatigue tests are generalized to fat@mew gradient fatigue

criteria under multiaxial cyclic loadings.

2.1 Uniaxial normal stress cyclic loading
a) Experimental observations and interpretation of stigsslient effect

Some analyses of [7] and [12] are reported here on fatiguerande of metals
in bending or tension-compression tests. Two respectstindt groups of results,
uniaxial normal cyclic stress states with non-zero and nermal stress gradients,
respectively, allow to draw some comments about the nortredsgradient effect
and about the possibility of integrating the loading efiatd gradient effect. In the
first example, a well-established experimental fact is gdvf@und: for the same
smooth geometry and material, and the same nominal sirgsgFig. 1(a)), the

specimen in fully reversed tension-compression test sissiawver nominal fatigue

2 In this study, these effects are captured in the sense that the gradasithets to be
present as prerequisite - to which the loading effect is naturally attaeheteas and the

pure size effect is proved unimportant compared to the others.



Fig. 1. Stress distribution types in fatigue tests of the same specimen: (anteosipres-

sion vs. bending tests; (b-c-d) tension-compression vs. rotativargeas. plane bending
(cf. Weber [12])

stress than in fully reversed bending test. Or similarly inudnother observation

[35; 12; 7]: a large number of experiments proved that thly fidversed bending
fatigue limit f_; (rotative bending, or plane bending) is always higher timenhto-
mologueo_; in fully reversed tension-compression test for smooth saswith
the same geometry and material (Tab. 1). This experimeatli$ attributed to

the"beneficial gradient effect{7], which exists in bending but not in tension. The

N o fa Difference between
Materials P iy (rotative bending) oqandf,
(cycles) (MPa) (MPa) %)
Steel 30NCD16 10° 560 658 +17.5
Steel XC18 10° 273 310 +13.6
Iron cast GS61 10° 245 280 +14.3
Steel 35CD4 10’ 558 581 +4.1
Table 1

Comparison between the fully reversed tension-compression and rdiatidéng fatigue
limits of smooth specimens with the same geometry and material, for different materials
(Results of Palin-Luc [35], synthesized by Weber [12])

second experimental example illustrates and makes moae itle point of view
"beneficial gradient effectand also roughly deals with the&ze effectiscussed
more in detail in the next analyses. Fig. 2 presents the expatal results ob-

tained on smooth circular tubes subjected to tension-cesspon or rotating bend-



ing. In tension-compression the stress gradient is zeeorahults exhibit alight
increase tendency in fatigue limithen the radius of test specimens decreases. Be-
cause of the absence of stress gradient, this variationeofatigue limit may be
considered as aure size effecanalyzed later. With the counterparts in rotative
bending, however, atrong increase tendency in fatigue limitth decreasing ra-
dius and an asymptotic value when the radius increasespane f Apart from the
pure size effect as in the tension-compression case, thisgsincrease tendency of
fatigue limit with the small radius as well as the saturatioimsensitivity tendency
with the large enough radius again, can be only attributédeideneficial gradient

effect which increases as the radius decreases and vica. Vdrs two examples
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Fig. 2. Evolution of the fully reversed tension-compression and rotatwveling fatigue
limits of smooth specimens with the same geometry and material according to their radii
(Results of Massonnet [27], synthesized by Weber [12])

above only sketched thafluence of the pure size and gradient effemtsfatigue
limits. Besides these two factors, it remains the loadingatfivithin the context of
the current treatment. The study of the loading effect néed® now put into the
consistent framework with the previous others, to thordyigkamine all of three,
from probabilistic point of view of fatigue damagslated to metallurgical defects.
Indeed, the difference in fatigue limit in the various tesses of the above exam-
ples can be explained from a statistical point of view: thigdathese volumes are,
the larger the number of defects, i.e. the more the prolabilifatigue damage of

the specimen is.



First, consider theure size effedhrough constant moment tests on samples of the
same material, bending moment and radius - i.e. the samenabmaximum stress
o and stress gradient, but different lengths (data of [14jresented by [7]). As
shown in Fig. 4(a), the bending fatigue limit always incesawith the decrease in
the specimen length. For the same radius, the volume of tis¢ lmexded zone de-
creases with the decrease in the length. Hence, a concldisaam about the "pure
size effect” is: for the same instant stress distributiowel as nominal maximum
stress and material, the smaller the sample size is, thdesnia volume of the
most stressed zone is, the higher the fatigue limit is.

Second, three types of tests, in tension-compressiontjy®taending and plane
bending, for the smooth specimens with the same geometrgnatetial, subjected
to the same nominal maximum stress.y, are now examined (Fig. 1(b-c-d)) in or-
der to make clear thstress gradient effecthe fatigue limits [27] are respectively
decreasing as as reported in Fig. 2 and Tab. 2, [12]. For raktevith defects,
this phenomenon can be explained from a probabilistic pafiview. In fact, the
common feature of the three tests is, the critical pointshair tcross-section are
subjected to the same stress state. However, the volumbe ofdst loaded zones
are different. In descending volume order, they are ters@npression, rotative
bending and plane bending, corresponding to increasingrafifatigue limits.
The stress gradient leads to a disparity of the stresshlisitvh, and with the same
nominal maximum stress, that also leads to the diminutiothefvolumes of the
most stressed zones, i.e. to the raise of fatigue resistdmeestress gradient is
then a quantity able to represent and model all those inftioms notably fatigue
resistance. Another explanation is related to the avertigsssin a representative
volume element (RVE) [6], which is different between theettests for the criti-
cal point, during a fatigue cycle. This stress is equal tontlagimum stress for the
tension-compression tests, whereas it is reduced by tlsempee of a gradient for
the bending tests. Therefore, the maximum stress in the R\Elee stress gradi-
ent are two relevant quantities for the fatigue resistattoey will be used in the
formulation of fatigue criteria taking these phenomena axtcount.



Third, theloading effectimplies the influence of loading mode on fatigue limit.
For instance, for the same geometry, material and nomingimuen stress, plane
bending and rotative bending give different fatigue limitsfact, the rotative bend-
ing induces a more important circumferential stress gradiee to rotation. The
loading effect of the rotative bending, as just explainedh be captured by using
probabilistic approach or possibly by averaging stressesrelevant RVE.

To summarize, the pure size, stress gradient and loadinge racel three factors
influencing on fatigue. Their close connection can be imtggal either under the
probabilistic failure aspect as just discussed, or undeaterage stress in the RVE,
although their manifestations are not totally identicalthis study, gradient ap-
proaches will be developed to represent some of these plresreom

N fforaive f,Plane Difference between

Materials (cy C;De s) (rotative bending) | (plane bending) | f1°*"®and f,”*"
(MPa) (MPa) (%)
Steel 30NCD16 108 658 690 +4.9
Steel XC18 10° 310 332 +7.1
Iron cast GS61 108 280 294 +5.0
Steel 35CD4 107 581 620 +6.7

Table 2

Comparison between the fully reversed rotative bending and plane lpefadigue limits
for different metals of smooth specimens of the same geometry and m{Reillts of
Palin-Luc [35], synthesized by Weber [12])

b) Typical fatigue tests
The differences between four-point bending tests and lemati bending experi-

ments allow to point out the distinction between pure sizé gradient effects. In
the former, the bending moment is the same atany time inteeval L < x < LH
and equal toM = F'L (Fig. 3(a)). The bending stregs and its gradien’” for
L<z<L+land—R <y < R are then:

FL
O = 04y €06, s Ogy = Ty (1)

Y =Vo with 0,3, =0, 0ppy=—7=—, Opz.=0 (2)



I I I 1 y
— X | S— X
Bending Moment Diagram Bending Moment Diagram
M(x) = FL, L=x=L+ M(x) = -F(L-x)

Fig. 3. Four-point bending (constant moment) and cantilever bending asfeur-point
bending; (b) cantilever bending [7].

in which Eq. (2) is written for the most stressed points, p&nts located al. <

x < L+ and aty = +R. In both Egs. (1) and (2), all components not mentioned
are null. The notations, ., o.,, ando,, . mean partial derivative of,, relative

to respectivelyr, y andz.

In the cantilever bending test the bending momeniis= — F'(L—x) (Fig. 3(b)).
The bending stress and its gradient@ox x < L and—R < y < R are given by:

_F(L —
O = 04y €06, s Opy = My (3)

F — Oy —F(L—1x) 04
VO' v Ozzx Ji I y Ozaxyy 7 R y Oxx,z 0 ( )

Eq. (4) is written for the critical points, i.e. thosezat 0 andy =+R.

In their work, [7] did distinguish clearly the pure size anddjent effects on fatigue
limits, and both obviously concern the specimen size inrdenanners. Now it is
worthy recalling and making more clear the role each spetisiee (such as the
length L and radiusk of the beam) plays in the pure size and gradient effects on
fatigue strength. The aim of such analysis is to answer toesten: "Is it pos-
sible to formulate fatigue criteria which can include thbes¢h effects in a certain
sense just by introducing in classical criteria approprigtadient terms"? As well-
known, according to many authors the pure size effect shoeiladdressed within
the context of statistical approaches. To answer to thetigmeshe role of each
sample dimension must be clarified. First of all, it is con&dihat both length and
radius of specimens affect on the fatigue limit (Fig. 4): agjer the radius and/or

the length, the lower the fatigue endurance. But a more irapbdquestion is: by

10



means of which effect they influence on the fatigue resigdtirough the pure
size effect, or the gradient effect, or even both simultasg)? On the one hand,
the influence of. on the fatigue limit is a well-established experimentat titer
the results of [14] synthesized by [7] in Fig. 4(a). On theenthand, in view of Eq.
(2) showing the independence of the normal stress gradieht thus the role of.

in the fatigue limit in four-point bending is clearly readid through solely the pure
size effect not gradient effect.

300 340

40 Kh steel o
Rotating Pure Bending Fatigue Limits ° 40 Kh steel
290 - R = const =10mm 330 Rotating Pure Bending Fatigue Limits

L= const =20mm

280 X experimental points -
Xos __ regression linear trend @ experimental points
1 320 p — regression linear trend

270 —
‘ -46

[-0.1713
- " ) \
300

points estimated by linear regression L]

—

fatigue limit (Mpa)

260 =
X ~~

fatigue limit (Mpa)

250

240 ——— - 290
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 1 2 3 4 5 6 7 8 9 10
specimen effective length L (mm) specimenradius R (mm)

Fig. 4. Constant moment bending fatigue limit data: (a) constant ragljyb) constant
length L (Results of Pogoretskii and Karpenko [14], represented by Weldg) |

On the contrary, apart from the pure size effect, the gradiffact is present as the
normal stress gradient is not zero and is disdependent (Eq. 2).

The quantitative estimate of the contribution of the pume ffect made in [7],
using the results of the constant moment tests on specinii¢ns same radius but
different lengths, is recalled and used. The slope of thealitrend observed for the
(fatigue limit-R) data in Fig. 4(a) is much higher than the one for the (fatigu#-

L) data in Fig. 4(b). This shows that the gradient effect is ateoof magnitude
higher than the pure size effect. It eventually resultsantlie case of constant mo-
ment tests, a preliminary conclusion that, an appropriateduction of the normal
stress gradient terms in the expression of fatigue criteeaough to reproduce the
experimental results.

The influence of. and R on the fatigue limit are now realized by means of the in-
herent pure size effect and the gradient effect as both tigghd. and the radius?
are present in the expression of the normal stress gradigntd]. From the previ-

11



ous observations, one can conclude that a presence of nsim@sd gradient terms
in the formula of fatigue criteria, such as Eq. (4), is enotmlaccurately model
these fatigue tests.

Besides this analysis, the experiments of [13], performelkufully reversed tension-
compression on specimens of various sizes, manifestedigibggsmall pure size
effect on the observed fatigue limits. These experimerdatd dre depicted in Fig.
5 for cylindrical specimens of a mild steel and a nickel-chiam steel, where
the observed fatigue limits are plotted against the speatiradii. It seems that no
systematic pure size effect related Roexists. In another class of results, Fig. 2
indicates a slight increase tendency of tension-compedatigue limit with the
decrease in specimen radius. A conclusion drawn from thesdts is, the pure

size effect ic nenlinihle at leact within the <ize rannearmhn<ideratinn

900 ‘ | ‘ — 11—

800 2.5% Nikel Steel ] 801 Mid Steel ]
= Fully reversed tension-compression = 300F Fully reversed tension-compression
L 700 Data from Phillips 1951 _ o L Data from Phillips 1951 B
= S
= L < 2501
E600- @ o 31 E r 7
2 —————:————— ———— T gooLg o g O o _
500~ @ 4 3 - P i
g 400; linear trend of data 1 g sor linear trend of data

r 1 100 1
300 I I I [ I T [T O (O R B IR
2 4 6 8 10 12 14 2 4 6 8 10 12 14 16 18
R (mm) R (mm)
a) b)

Fig. 5. Fully reversed tension-compression fatigue limit ¢R&sults of Phillips and Hey-

wood [13], represented by Papadopoulos and Panoskaltsis [7])

2.2 Shear stress cyclic loading

Cyclic torsion tests (fully reversed and/or asymmetriceditin tests) from the liter-

ature are examined in this section. Torsion tests intrallgiexhibit shear stress gra-
dients, which are therefore always present in the casesdsosad here. The com-
parison of the torsion fatigue limit between different stip@osed mean torque
tests, i.e. different mean shear stresses as well as itegtador the same smooth
geometry and material, is re-analyzed.

The experimental result, clearly demonstrated by the claign in [36], is that the

12



fatigue limit in torsion is the same in fully reversed and imyasymmetrical tor-
sion tests for the same smooth geometry and material. Basitigiofact, [7] did
conclude the independence of the fatigue limit from the shiass gradient effect
for some metals. In view of this, [7] did not introduce anydjemt term concern-
ing shear stresses in their fatigue criteria. Departinghftbis result, we add the
argument that such an independence of the fatigue limit doesnsure a similar
independence from the amplitude of the shear stress gtadieums, the amplitude
of the shear stress gradient is introduced in the relevanponent of fatigue crite-
ria (sec. 4.3).

To consider this capability, the shear stress state andatsSent in torsion tests for
—R <r < R, are written down:

M M
O = 0Oy (€x®€z + €z®€x); Ogz = 77" = 7 z? + 3/2 (5)
M x T M
Y=Vo; sz,m:IM:UmRzaaxz,y:Iny_’_yQZUmz]gQasz,z:O (6)

where Eq. (6) is written for the maximum strained points,ii-e R.

The influence ofk on the fatigue limit, experimentally observed as in Fig. @af
[27] is concretized through the pure size effect and therssieass gradient am-
plitude effect presumably. According to the previous ase$y the pure size effect
concerningR is regarded as negligible compared to the latter. Therdfwran-
troduction of a shear stress gradient amplitude term iscserfii to reproduce the

experimental results.

2.3 Discussion

Analyses in the section 2.1 show that: (i) the gradient eétbacfour-point bending
fatigue limits related to the length is null whereas the pire effect related to
the length is negligible compared to both pure size and gradiffects related to
the radius. (ii) the gradient effect on tension-compressaigue limits related to
all dimensions is null whereas the pure size effect relatethe radius can also
be negligible, at least within the radius size range undesiceration. Analyses in
the section 2.2 prove that: (iii) for the considered metatiaterials, the shear stress
gradient effect on torsion fatigue limits through all dirseams is null and the role

of the stress gradient amplitude effect is possible.

13



These estimations allow to preliminarily confirm the posgjbto formulate new
gradient fatigue criteria well reproducing the analyzegez¥nental results. In
brief, the above indepth comparative analysis demonsttagenegligibility of the
pure size effect, whereas affirms the strong influence of trenal stress gradi-
ent as well as the non-influence of the shear stress gradieshtespecially allows
supposing the possible role of the shear stress gradieritad® Indeed, a depen-
dence of the pure torsion fatigue limit of a cylinder on itdites is only attributed to
the shear stress gradient amplitude effect as both norndadlaear stress gradient
effects are here null while the pure size effect is alwaygyimcant. Hence, apart
from a gradient term introduced into the normal stress camapbas proposed in
[7], another term of gradient amplitude into the shear stoesmponent of any fa-
tigue criterion is indispensable (most visibly for the ca¢he pure torsion). The
rationale of introducing a gradient term into the shearsstpart is more reinforced
if one notes that the non-effect of the shear stress gradrefatigue interpreted by
[7] is only found for some metals considered, but not meafongll, thus such a

presence of gradient is generally reasonable.
3 Formulation of gradient multiaxial high-cycle fatigue criteria
3.1 General form of the classical fatigue endurance créeri

A general form of the fatigue limit criteria can be writtenfaiows:
f(Ca(n), No(n), Ny (7)) <0 (7)

f is a function, chosen in many cases as linear;hd the normal vector of the
“critical plane"; andC,(n*), N,(n*), N,,(n*) are the amplitudes of shear stress
and normal stress, and the mean value of normal stressciteghe The shear
stress generally appears in fatigue criteria through itpliamde C,(n*), due to
the independence of the fatigue limit with respect to the m&eear stress for a
large number of metallic materials. And if one considers tha amplitude and the
mean value of normal stress appear in form of their sumM,g..(n*), (7) can be

rewritten:

F(Ca(n™), Nipa(n)) = Ca(n*) + aNpaa(n") = b < 0 (8)

14



with a, b being two material parameters.
3.2 General form of the stress gradient fatigue criteria

The classical criteria (Crossland, Dang Van, ...) will nownbedified to include
the "size effect"® experimentally observed and beneficial influence of thesstre
gradient in the cases analyzed and corresponding to thacsufétigue and "de-
creasing stress gradient”. At this stage it is reminded twoiat points. First, even
if the torsion fatigue limit is generally independent frohetshear stress gradient,
it is not sure that it is also independent from the amplitutithe last. Second, the
small pure size effect and the influence of the normal stressignt on the bending
fatigue limit show that adding only gradient terms couldwalto model the fatigue
tests results. Basing on these analyses, under multiagidirig a generalization of
the above experimental fact will be done.

With the presence of the unique gradient term (e.d?,ip, as Papadopoulos’ pro-
posal), the gradient fatigue criteria successfully repméshe difference in the fa-
tigue limit of uniaxial normal stress cyclic loadings, beem fully reversed bend-
ing tests and fully reversed tension-compression testsveMer, because of the
vanishing of the gradient term of the model [7] in the casewkporsion, such a
formulation with the unique gradient term is not able to esent the possible in-
fluence of shear stress gradient amplitude and the "sizet'effe¢he fatigue limit
in torsion. For example, for torsion tests performed on spe with various radii,
the fatigue between the "reference test" (without any effant test at a certain
radius is found identical using such an approach, whichmgraoy to experimental
facts. The criterion adopted in [7] with only one stress ggatterm in the normal
stress part can describe gradient effects for tension-oegsn loadings with non
zero hydrostatic stress, but not for shear stress loadifigss it leads to the ne-
cessity of adding a second gradient term to the shear steesBesides the stress
gradient term appearing in the normal stress part in ford efV oy, another gra-
dient term, the gradient of stress tensor (or alternatigéjeviatoric stress tensor)

1Y || .=1|Vel.., is added to the shear stress part. Basing on all these asalyse

3 in the sense as discussed right from the introduction, actually it implies thgngradi-

ent effect related to the size.
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new form of fatigue criteria taking into account gradierieefs, is proposed:

F(Ca(n™), Nypar(n")) = Ca(n") + aNppae(n") = b < 0 9)

Whereé’va(n*) and Nmax(n*) are extended definitions of the counterparts in the

classical criteria. We propose the following forms for tagsiantities:

Cum) = Colm)r (10 1) (10)

(11)

— max; Zi:l ny n;ny Yijk
Nma;r ) = Nma:v * n I L
(1) = N1, 15520

The two functionsf, and f,, including the stress gradient terms, can have the fol-

lowing forms :
1Y . 1Y [0\
A =1 (1 12
f (TCa(n*) 70a<n*) ( )
max, 22:1 ny n;ny Yik max; Zzzl nining Yk o
W L =1 (& L 13
! ( N (1) T Noa(n?) (13)

Note thatf,. could alternatively be function of the gradient of the strdsviator.
These expressions will be specified for the two criteria mered in the next sec-
tions.l* and!l} are twomaterial characteristic lengths., andn, are twomaterial
characteristic exponent®r actuallygradient-amplifying exponentatroduced to
get a more flexibility in capturing any large experimentakdeass.

To sum up, it is clear to confirm the necessity of the simulbaisepresence of the
two gradient terms in fatigue criteria, one for the normeg¢ss$ part throughy and
the other for the shear stress part throllgh| .. These criteria are used to describe
fatigue limits under different kinds of loading (loadindest) in which the gradi-
ent effect is taken into account and the pure size effectsigmificant compared
to the other. After all, using as a basis the classical fatigpteria for formulating
the stress gradient dependent fatigue criteria after tbeeaimethodology, some il-
lustrations will be made in the following, one for Crosslamiiezion and the other
for Dang Van criterion. The same approach could be in priecpplied to other

classical fatigue criteria.
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4 Gradient Crossland criterion
4.1 Classical Crossland criterion

The Crossland criterion [29] is used as a basis for the dex@top of a gradient
dependent criterion. The classical Crossland criteriomdsfthe fatigue limit of

metallic specimens subjected to multiaxial in-phase cyatliess states asf, [31]:

Ve, 4 @Poas < e (14)

wherea. and~,. are material parameterg,/, , is the amplitude of the square root
of the second invariant of the stress deviator tensornd is the maximum hy-

drostatic stress during a loading cycle.

The amplitude of the square root of the second invariant@fsthess deviator can
be defined, in general case, as the half-length of the lomtpest of the deviatoric
stress path by :

=g s ot = b o st (0t

(15)
or as the radius of the smallest hypersphere circumscrib#uketdeviatoric stress

path by :

V= H;{H{mfx |s(t)—s, H} _ ;5 néiln{m?x (st—s1)< (0 —sl)} (16)

The maximum value that the hydrostatic stress reachesgitivenloading cycle is:

Poow = max {;tr (a(t))} _ Tk a7)

In these equations, the summation convention over repéadéces holds and

andp are respectively the deviatoric and spherical part of thessttensor:
1
p(t) = 5tr (c(t)) and s(t)=o(t)—p(t)I (18)
andI is the second order unit tensor.

The material parameters. and~. can be related to the fully reversed tension-

compression fatigue limit, denoted by, ¢, and to the torsion fatigue limit, denoted
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by t., by:

e=togt 0= V3 (19)
As well-known, to obtain the observed detrimental effecadénsile mean stress
state, the parametet. in Eq. (19), must be positive, and thereforg; t> s, /v/3.
Furthermore, since the "size" and gradient effects are nmuoad in the classi-
cal Crossland criterion, it is only valid for the specimerglaenough and smooth
enough. For this reason, the subsctipf" used for the fatigue limits,., and t.;
means material constants independent of the "size" andegraefifects which will
be used as references for other case-studies. Concrettlg, dase where these ef-
fects could be important, new fatigue criteria to includenthare required. As well
for this reason, in Eq. (19) just.r is chosen instead dfbecause in size range un-
der consideration where the gradient effects can be signifiqusts,.¢ is regarded
as a characteristic constant intrinsic to material butfrintthe sense that only that

is exempt from the gradient effect.
4.2 Formulation of the gradient Crossland criterion

Using as a basis the classical Crossland criterion, Eq. (idxtee general frame-
work for the development of a gradient dependent fatigué kniterion (Eq. 9), a

new version can be written in the form:

Vs + 0y Pras < %4 (20)

From the classical expression ¢f/,, a new formembedded with gradient terim

proposed:
= 1 ||Z||>”T ( ||Z||>”T
V= | =lls|2]1 = (220} | = 1= (22 (21)
2=y 2 [ (1 : o1

[ is amaterial characteristic lengthandn,, is amaterial characteristic exponent

The quantityl| Z|| = ||V s|| is used as an indicator of the influence of the gradient of
the stress deviator which reflects the spatial non-unifastmidution of stress state.
Similarly to [7], the ratio of the norm| Z|| over the norm||s|| is called reduced
gradient too. However in the current work that is more eyagtiderstood as the

shear reduced gradient of the new fatigue criterion.
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Eq. (21) can be found in more familiar and visible way whetisgt., =2:

VI = ﬁ[usw - 2|Z)] (22)

which is similar to the expression @lasticity criteria within the framework of

gradient dependent modelsee e.g. [34]. However, the present study will not fix

n,=2 but let it be a material parameter to calibrate experiméntal

In the spirit of Eq. (22), and taking account of the recenippsition of Amargier
et al[1] which expression includes the productgf, , and a function of the hy-
drostatic stress gradient, we define the following ampda'tg/d’ja which combines
V12, and the full stress gradiefiY’|| , is the form:

— Y\~
. 1— (120 23
N ﬁJ ( . (23)

For the sake of illustration, the following treatment isfpemed for in-phase load-

ing where simple expressions can be obtained. The stréesasta point is written

as.:
0ij(t) = 0,5 sin(wt) + 745, 4,J =,9, 2, (24)

whereg;; is the amplitude of th¢:j) stress component oscillating around a-

mean value and over T- the loading period.

The expression of the third order tend6rand the amplitude of its norifiy'|| , are
elaborated in the present case-study, as Eq. (25) or (26):

\Y\ﬂ:n}lfiln{mgx HY(t)—YlH} = H}lflln{mgdx \/(Y(t)—Yl) . (Y(t)—Yl)}(25)
or [[Y|a= H%?X{H%?X\/(Y(t )Y (tr) o (Yt )_Y(tl))} =1/ AY; Yk (26)

with Y;;, =5, and the product definitiort” ¢ Y = Y;,;Y;j.
Thus, from Eq. (16) with the expression ¢/, , and of||s| , = ,/45;;5,;, and Eq.
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(25) with the expression dfY || ., \/ia is elaborated as Eq. (23):

— 1 1/}A/'Z.. }A/; nr
\/jz,a = J2§ij§zj {1 - (lTM> ] (27)

~ o~

Sijsij

With respect to%, the same form as the one of [7] is proposed:

IGI\"™
1— <z(, Pm> ] (28)

with G, the gradient of?,,.. being the vector:

—~—

Pmax - Pmax

G = vaax = T[Pmax,azy Pmaa:,ya Pmaa:,z} (29)

which norm||G|| is:

HGH = \/(Pmax,m)Q + (Pmaa:,y)2 + (Pmax,z)2 (30)

The norm of the gradient @?,,.., i.€. ||G]|, is used as an indicator of the influence

of the normal stresses gradient. One more again, the ratieeofiorm||G|| over
P,... i1s called here hydrostatic reduced gradient.

Moreover, in Eq. (28)], andn, are alsomaterial characteristic parametessith

the same signification ds andn... as in [7], to avoid the degradation in the case of
null value of P,,,,, but non-zero value of its gradient, an extended definitiotnef

McCauley bracke(o> is adopted:

<gg”G”>_zg IG5 11, and <zgl”f”>—o 1,000 <0 (a1)

Prax Pras Prax mazx mazx
1G] -
ls =0 if P =0
< Praz

The properties expressed by Eq. (31) have been used to méheneglect the
gradient effect in the case of a fully compressive cycle efttiidrostatic stress (i.e.
P <0). This assumption can be disregarded if experimental &etsr that it is

irrelevant.
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Finally, the criteria written as:

Y.\
Jh 1_(ZT” “’) P
- 15[l

has six materials parametdrs,, v,, .-, l,, n,, n,) to be identified experimentally.

IGI\"™
1— <lg P -7, <0 (32)

4.3 Calibration of the material parameters

As the proposed criterion reduces to the classical Crosslaadn the absence of
"size" and gradient effects, the parametegset v, are the same as those in the

. ) . 3t,.
classical version, and given by =~.=t,.;, andoy,=a,.= I _\/3.
Sref
A procedure for obtaining the parameters from fully revdrs®sion and fully re-

versed constant moment bending tests is detailed hereafter

a) Fully reversed torsion tests
The criterion described by Eq. (20) is applied, first, to thsecof fully reversed

torsion tests. Let us denote byrRl the fatigue limit of a specimen of radius.

Considering the critical points (locatedrat + R), their relevant quantities are:
O =049 sin(wt) (e,Reg + eg®@e,) = t(R) sin(wt) (e, Reg + eg@ey)

5ij 8ij = 2<t(R>)2 and ﬁjk ?ijk - 2(29)2 B 2<t(§)>2

—_~—

Prae =0 and /i, —t(R) L.(R) 33)

with  L.(R)=/1—(l;/R)"": shear reduced gradient (34)
And using Eqgs. (33) the proposed fatigue criterion, Eq.,(B@ds to:

t(R) = — (35)

\/1 __(ZT/}%)nT

This formula is used to calibrate the three material pararset. s, [, andn., using

the experiment curve relating the fatigue limik)(to the radius of the specimen.
The material parameters are then calibrated using the $gastre method on the
tests points; and therefore the optimal parameters (ieevdlues which minimize
the scatter between the predicted and experimental pdartf)e criterion are ob-

tained. As an illustration, the torsion fatigue tests gikgrMassonnet [27] are used
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to identify 7,.;, [, andn,, as shown in Fig. 6. A visual image aof t aforemen-
tioned is as well found in this graph. The values obtained arg = 115MPa,
[, = 1.6mm andn, = 0.5.

Medium carbon steel
Pure Torsion

t (MPa) (data from Massonnet 1956)
160
150 \ & Experience
----- Crossland_classical
140 (without Gradient)

Crossland_Gradient
\i !

130 inJ2,a & Pmax

DangVan_Gradientin

t(t) & P(t)
120

110 R (mm)

Fig. 6. Fully reversed torsion fatigue limit of smooth cylindrical samgtdsMassonnet
[28])

We notice that the fatigue limit tends toward infinity as thdius tends toward the
characteristic length.. It defines the limit of the model. Nevertheless, it indisate
a tendency consistent with the fa@maller is Stronger."

b) Fully reversed constant moment bending tests (fourtgm@nding tests)
To calibrate the other parametels, () the criterion Eq. (20) is now applied to

the case of fully reversed four-point bending tests. Thigdigtlimit of a specimen

of radiusR is denoted fR). Considering the most stressed points, i.e. points lying
atL <z < L+ andaty=+R, relevant quantities, in particul j;@, calculated

by Eq. (27) are given by:

O =0, €,0€, =04, sin(wt) e,Qe, =F(R) sin(wt) e, Re,

Vi, =22 Lm) (36)
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with  Ly(R) = /1= (3/2)"/* (I, / R)" = Ly4(L,) (37)
Similarly, with the help of Eq. (28)13,;; can be elaborated, in this case-study, as:

0 T(R) —
Pmaar: - - and Pmax -
3 3

f<3R>Laf (R) (38)

with  L,;(R) =1— (I,/R)" : normal reduced gradient (39)

Gpy FL 5, f

and G:Pmaz,x:OaPmaa:,y_ 3 _37[_%:@>Pmax,z:0 (40)
f

and |G| === 41

16l = 57 (41)
Finally, the fatigue criterion (20), lead to the followingpmession of the fatigue

limit f:
Sref
f(R) = > Spef (42)
1= l,Rne (1— 2 )~ 2l (1 L. ((R))
7 \/g t7"ef \/3 tref 7

As previously, this formula is used to calibrate the thre¢emal parameters,.,

l, andn,, using the experiment curve relating the fatigue liiit f to the radius of
the specimen. The material parameters are calibrated trs@rigast square method
on the tests points to obtain the optimal parameters. Aslastriition, the four-
point bending tests given by Pogoretskii [14] are used tatible s, ., [, andn,
assuming that.t; and L, (R) are known from the previous calibration. The result
is shown in Fig. 7d. A visual image of.s aforementioned is as well found in this
graph.

c) Application to the fully reversed cantilever bendingses
It is of more interest to apply the criterion Eq. (20) to theseaf fully reversed

cantilever bending tests to see, besides the well-knovenafak, the role ofL. The
difference and similarity in fatigue limit between two ksdf bending, i.e. four-
point bending and cantilever bending is analyzed. Let ugtdetine corresponding
fatigue limit f(R). Considering the most stressed points, i.e. points-at) and
aty =+ R (Fig. 3), again, respective quantities and théﬁﬂ determined by Eq.
(27) are given:

O =043 €, Q€ =0, sin(wt) e, e, = [ sin(wt) e, ®e, (43)
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%ZﬂzfgfLM&L> (44)

9 nr/2
R) (45)

with L.,-f/(R, L) = \l 1— (3/2)”T/2 (ZT/R)nT <1 + ﬁ

Similarly, with the help of Eq. (28)137,;; can be evaluated for this case:

a-a:xx _f/(R) a-aczy f/(R)
- Pmaa:mz — = 7Pmaz - = = 7Pmamz: 46
¢ [ T3 3L vl 3R #=0p U9
_S'®B) [ R
Proe = T 1. 1) 48)
R2 nr/2
with L,p(R,L)=1—(l,/R)"™ (1 + L2> (49)
Finally, from Eq. (20),/’ is obtained as:
/ Sref
f (R) - S Z Sref (50)
Lop(R, L) — —= (L,#(R,L) — L.1(R, L
(R L) = i (Log (R L) = Loy (R 1))

Using the Eq. (50), a class of experimental data of the euetilbending fatigue
tests are successfully reproduced, as shown in Fig. 7(a-c).

On the other hand, for specimens with< L, the ratio(R?/L?) is negligible.
Under these circumstances the fatigue limit in fully reeersonstant moment and
cantilever bending of specimens of the same radius, carendl are related to the
tension-compression fatigue limit by EqQ. (42). Using thsswamption an important
number of bending fatigue limits has been analyzed. It wirogt that the value
1/2 for the exponents.. andn, brought adequate predictions for the experiments
studied. The criterion is then:

/2
YLy e
1— d P 1—
Vkﬂd (”mm + g Pnaa | 1= \lo{ -

with four materials paramete(s,, v,,,, [,) to be identified experimentally.

— 7, <0 (51)

Figure 7 shows some test results of rotating bending fatiiguies from the litera-
ture in which the fatigue limits are plotted against the gpea radii. Figures 7(a-c)

are related to cantilever bending tests and Fig. 7(d) depmistant moment tests.
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The solid curves in these graphs present the simulationtivélproposed criterion,
where the value: = 1/2 has been assumed. As shown, the accordance with the

experimental data is satisfactory.

Carbon steel SAE 1220 steel (as rolled
Rotating Cantilever Bendin Rotating Cantilever Bendin
 (MPa) (data from Massonet 1955) £ (MPa) (data from Moore 1944)
300 250
# Experience & Experience
275 T T T T T~ Crossland_classical k ..... Crossland_classical
(without Gradient) 225 (without Gradient)
= Papadopoulos_Gradient| | | @ Papadopoulos_Gradien
250 * in Pmax tin Pmax
s Crossland_Gradientin Crossland_Gradient in
12,a & Pmax \ 12,a & Pmax
e DangVan_Gradientin 200 £ - DangVan_Gradientin
225 * E 2 ) & P(t) L g (t) & P(t)
Sref
Sref
200 R (mm) 175 R (mm)
0 5 10 15 20 25 30 o 5 10 15 20 25
a) b)
SAE 10365 steel 40Kh steel
Rotating Cantilever Bending Rotating Constant Moment Bendin
 (MPa) data from Moore 1944 f(MPa) data from Pogoretskii 1965;
300 330

& Experience & Experience

275 \ 320 1
o | Crossland_classical | | | &« | | | | e Crossland_classical
{(without Gradient) (without Gradient)
----- Papadopoulos_Gradient -----Papadopoulos_Gradien
250 t inPmax 310 tin Pmax
\;\ Crossland_Gradientin Crossland_Gradient in
L 2 o J2,a & Pmax L 3 J2,a & Pmax

DangVan_Gradientin DangVan_Gradient in

225 F
Sret (t) & P(t) 300 (t) & P(t)
*
Sref
200 + R (mm) 290 1 R (mm)
o 5 10 15 20 25 0 5 10 15 20 25
c) d)

Fig. 7. Fully reversed bending fatigue limits of cylindrical specinf{ptassonnet [27],
Moore & Morkovin [33], Pogoretskii & Karpenko [14], Papadopow@ Panoskaltsis [7])

d) Application to the fully reversed combined bending-twgstests
The criterion (20) is now applied to the case of fully reversephase bending and

torsion fatigue tests [7]. Specimens of toroidal shape swally used for these tests.
Considering the most stressed points, i.e. poinis-at- R, =0 and denoting by
o, andr, the limit amplitudes of the normal and shear stresses ragpbcrelated

quantities especially/iﬂ, by Eq. (27), are given:

o =0, sin(wt) e, e, + 7, sin(wt) (e, Rey + eg Re,)

— 2
@ﬂ:,/?wg L,o(0a, 70, R) (52)
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with:

2 2\ nr/2
Lie(0a, 70, R) = \/1—(L./R)™ with zm:zm(w) (53)

T\ 202 4 672

For the maximum hydrostatic stre%, the same expression as the case of bend-
ing tests, Eq. (38), is here given:

—_~— Ua

Poroz = SLUC(R) with L,e=1—(l;/R)" = Loy (54)

The criterion is therefore expressed as:

2
<(;a +T§> Lo+ a % L,. <7, , ormore concretely,
(2N e (36w
B\ R s ) ey (L (/R <

(55)

Comparison with classical and Papadopoulos results
The application of the classical Crossland criterion in thgecof fully reversed in-
phase combined tension-compression and torsion fatigi® géves the following

"ellipse arc equation’’

2 2
T, 2 Spef O, 2 Syef Oq
+ —1 + 12— <1 56
(t“’if) <\/g tref ) <576f> ( \/§ tref) (‘ST@f) N ( )

which delimits in thes, — 7, plane the safe domain. Eqg. (56) shows high dis-

crepancies between predictions and experiments for tiguéatimit in combined
bending-twisting with the "size" and gradient effects (RBYy.As in [7], to bypass
this trouble, modified material parametersand-, related to the bending fatigue
limit f (R) and torsion fatigue limit(t?) (instead ofs,.; and t.), experimentally
determined on specimens (radi@sof the same geometry as used for the combined
tension-compression and torsion tests, can be used. Twgstldiifferent from [7]
are, first, the use of ) and { R) determined at the specific radiisof specimens
under consideration, and second, the substitution of m;mrz%;;ef by f(R) and

3t

t(R), instead of only one,.; by f. Theny, =t(R) anda, = (R) —+/3, and the
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application of the Crossland criterion using these new abfer, and, leads to

the new ellipse arc equation:

(t(:%)>2 ' (jﬁfig) - 1) (f?]é))Q + (2 - 5;%%) (f?ﬁ)) <1 (57)

It is noticed that this formula is very similar to the well kmo ellipse arc formula

of Gough and Pollard.

In the following, we show that Eq. (55) obtained with the prsed criterion, re-
duces to Eq. (57) for certain values of the material pararsebedeed, first let us
review the constant moment bending case. Assuming- 0.5 as validated by a

large number of experiment, Eq. (37) yields:

er(R) ~ 1— (lT/R)nT =L, (58)

Resulting from Egs. (35, 34) and (42, 39), the expressions.aind L, ; are re-

ported below for completeness:

bep, 1/f—1/V/3t
t 7 1/Sref_1/\/§tref

And second, consider now again the combined bending-twistase by evaluating

the functionh(r,) = (W)m/z
Ta) = 202 + 672

defined in Eq. (53). Again, fon, = 0.5 assumed beforéy(,) is in the interval

to get an approximation fof.,. and /..

[1,1.1), we takeh(r,)~1, so thatl.. ~ [”~. Therefore,

LTC(R) =V 1_(ZTC/R)nT ~ L: (60)

Finally, replacingl... and L, in EQ. (55) by their approximations, with the help of
Eq. (59), Eq. (57), is recovered.

In Fig. 8 the test results of bending-twisting conducted3®] on S A E£4340 steel,
are depicted. In the same figure, the Crossland analyticpselbrc based on the
sref — by fatigue limits, Eq. (56), is plotted too. As we can see, & tst points
fall considerably outside this analytical ellipse arc.sTdemonstrates the effect of

the normal stress gradient, as the analytical ellipse agc §E) is obtained with
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zero normal stress gradient, whereas the experimentafatatambined bending-
twisting tests have a non-zero stress gradient. Furthenitois interesting to re-
consider some analyses of [7] when stated tha higher the normal stress due
to bending, the higher the difference between test pointaassland ellipse arc,
whereas the higher the shear stress, the smaller the differbetween test points
and Crossland ellipse arc becomes.Eirst, the difference between test points and
classical Crossland ellipse arc near the x-axis where thealdoad is predom-
inant, is a proof of the beneficial "size" and gradient effebtdeed, the differ-
ence between two kinds of fatigue test can be clearly seenbéhding test (test
points) includes the beneficial effects of the normal stggsslient; the tension-
compression test (Crossland ellipse arc) excludes thesetefiue to the gradient-
free stress state. Second, the coincidence between test pad Crossland ellipse
arc near the y-axis with predominant shear stress is agtnatural due to the fact
that t.., used to depict the Crossland ellipse arc after Eq. (56) aneégponding
test point on the y-axis are actually the same, thus thisca@émce really does
not reflect the "lack of sensitivity of the limiting fatigueress on the gradient of
the shear stress" [7] due to the fact that the "size" and gnaéigects in torsion
test were not accounted for. Third, to account for the "sized ahear gradient
amplitude effect, a clear distinction must be made betwggrdetermined at the
radius R, of specimen large enough and?) determined at the radiug of the
considered specimen. Then all these above analyses afiisty tfie "size effect"
on fatigue limits (Smaller is Stronger) as well as the berafeffect of the nor-
mal stress gradient (Higher Gradient is Stronger), andregdbe necessity of a
distinction between,t; =t(R.) and { R)) when applied to the classical Crossland
criterion and the new gradient criterion, respectivelytiVéill such conceptions, the
experimental data now agree very well with the ellipse asedaon the ft limits

of the new criterion proposed (Eq. 57), as plotted in Fig.t&s klso recalled [7]
that the substitution of the material parameters by the ingrahd torsion limits is
an unorthodox way to bypass the above described problentéafesical criterion.
The same ellipse formula is obtained in a more intrinsic wsing the proposed

criterion. The same approach can be applied to any othesict$atigue criterion.
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Fig. 8. Fully reversed combined bending-twisting fatigue limit d@iadley et al. [30],
Papadopoulos and Panoskaltsis [7])

5 Gradient Dang Van criterion

A stress gradient dependent version of Dang Van criteriganaposed here in the

same spirit as that of Crossland.
5.1 Classical Dang Van criterion
The Dang Van criterion presented in [32] is expressed as:
max {7(t) +ap P(t)} < bp (61)

7(t) denotes thenesoscopic shear stress amplituated is obtained from a meso-

scopic stress tenser defined by:

&(t) = (o(t) - s") (62)

s* is the center of the smallest hypersphere circumscribetedaading path in

deviatoric stress space. It is obtained by solvirighan-max" problemnas follows:

s* =arg Irgn {mgmx ls(t) — 31||} (63)
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In the case of fully reversed loading, the valsie= 0 can be directly deduced
without solving the'min-max problem'as in general case.
Denoting bys;;(t) < 6;,(t) < 6,(t) the principal stress values of stress terisor

one gets the amplitude of shear stress by:

(1) = 5(61(t) — b722(1) (64)

P(t) is the hydrostatic stress as a function of the time, given by:

P(t) = (65)

The material characteristic parametersandb, of the Dang Van criterion, can be
related to the fully reversed bending (or tension-compoesisecause of the same
stress state between them) fatigue limit , denotegl.by(or s,. ), and to the torsion

fatigue limit, denoted by, {;,

ap = 3tref - 3/2, bD == tref (66)

Sref

5.2 Formulation of gradient Dang Van criterion

Using as a basis the classical Dang Van criterion, Eq. (6angawith the general
spirit, Eq. (9), for the development of a gradient versiobhalsw:

max {7 () + a,P(t) } < b, (67)

The material parametets, b, are actually equal tap, b, respectively, as was the
case of the gradient Crossland criterion (sec. 4.2).

Using7(¢) as a basis, a new form(t) embedded with gradient terism proposed:

(D) = (1) [1— (L) ] (69

whereY (t) = Vo (t) and the definitions as well as significancenof [, are the

same as for the case of the Crossland (sec. 4.2)1%()( the same form as that of
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[7] is proposed again:

P(t) = P(t)

O
1"<l"P<t>> ] (69)

with the expressions @ (¢), || G(t)|| similar to Egs. (29, 30), the McCauley bracket
<o> similar to Eq. (31), and the definitions as well as signifieaatn,,, [, are the

same.

The proposed criterion has six materials parameteysb,. (., (,,n,,n,) to be

identified experimentally.
5.3 Calibration of the material parameters

As previously, a procedure for obtaining the parameters fidly reversed torsion

and fully reversed constant moment bending tests is ddthéeeafter.

a) Fully reversed torsion tests
Applying first the gradient version described by Eq. (67)he tase of fully re-

versed torsion tests on specimen of radiysvith the fatigue limit denoted by i)

and considering the most stressed points, relevant qiesrdite:

o(t)=0.(t) (e, Qe+ eg®e,) = t(R) sin(wt) (e, @eg+ egRey)

o1 =(R) |sin(wt)|, 611 =0, 6111 = —t(R) |sin(wt)|

(1) = 561 — b111) = t(R) [sin(r)|

Y Vi = 2 (tm)s;:(“’“)2 and Y (t)]=v2 “?\m(m)(

7(t) = t(R) |sin(wt)| L,(R) (70)

P(t)=0 (71)
with: L. (R)=1-2"/%(,/R)" (72)

And using Egs. (70, 71), the proposed fatigue criteriondgel

o bD ~ tref
= m Y TR )

between two kinds of fatigue test can be clearly seen. Ashergradient Cross-

land criterion, this formula is used to calibrate the thresenal parameters..;,
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I, andn., using the experiment curve relating the fatigue limR)tto the radius
of the specimen. The material parameters are then calibusiag the least square
method on the tests points; and therefore the optimal paeamé.e. the values
which minimize the scatter between the predicted and exyarial points) for the
criterion are obtained. As an illustration, the torsiongaé tests given by Masson-
net[27] are used to identify.., [, andn., as shown in Fig. 6. A visual image of t
aforementioned is as well found in this graph. The valueaiobdt arer,.; = 115
MPa,l. = 9.8 10~'mm andn, = 0.5.

b) Fully reversed cantilever bending tests
With the same notation and most stressed points to conssder%ec. (4.3.c), all

guantities are given by:

o(t)=0..(t) e,@e, = f'(R) sin(wt) e,Re,

(R R?

1Y ()] = f; )\sm(wt)] L+ 5
7@ = ];’sm(wt)‘ L.#(R,L) (74)

A n n ]%2 nr/2
with: L.y (R, L)=1-2"" (I,/R) T(1+§) (75)
Similarly, using Eq. (69):

ﬁE):f ;R)sin(wt) Lo (R, L) (76)
with: L, (R, L):l—(la/R)””(Hg)m/z (77)

Finally, from Eq. (67), an equation with respect to the valeg"’ is solved to give:

Sref
f/(R) = 5s > Spef (78)
Loy — Qtff(Laf’ — L:p)

The fatigue limit of four-point bending tesy§ R) can be directly obtained by im-
posingL large enough such th%@ in Eq. (78) is negligible and thefi(R) = f(R).
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6 Numerical implementation

The stress gradient Crossland criterion, Egs. (20), is densd as an illustration.

The calculation o Tgﬂ, as described by Eq. (23), with the help of Eq. (16) or Eq.
(15) for /72, and of Eq. (25) or (26) fof Y (t)|
problems in a 5-dimension space fgf/; , and 18-dimension space (|| ,.

, IS "min-max" or "max-max"
,a

Therefore, in numerical aspect, the calculation/o?gya is actually”"min-max" or
"max-max"problems with23 variables. It is solved using user-written program un-
der Matlab. It remainS/D;/M which evaluation through Eq. (28) is straightforward.
Just using suitable operators in any available finite eleéc®ate (i.e. Cast3M, [37]),
the quantitiesy=V P, after Eq. (29) and thefp\GG|| after Eq. (30) are estimated
quickly.

So the proposed gradient fatigue criteria, Egs. (20) andl &h be numerically
implemented within any available finite element code alonth & user-written

program to solvémin-max"or "max-max"problems.

7 Discussion

Remark 1 (Gradient terms) Limits of classical fatigue criteria in the literature
are that the "size", gradient and loading effects are not cagtiEven in the gra-
dient fatigue criterion proposed by a number of authors siscthe typical work
of [7], the role of the shear stress gradient as well as tharstteess gradient am-
plitude in fatigue strength has not been made clear andlihaesnporarily still
neglected. In [7], the role of the shear stress gradientlwisiecnherently assumed
null only for some metals considered, but has been generalijted even when
applied to any other metal.

This study, as reasoned in the section 3.2, show that in spewad cases where
just one kind of load appears (e.g. pure torsion test, punelibg test),a unique
gradient termis enough to model the gradient and loading effects. Thiati®-
duced either in the normal stress component of the cladsitgiie criterion as [7]
proposed, or in the shear stress part as presented in thentwork. However,
in multiaxial fatigue tests, concomitant two types of strgsadient terms are in

principle indispensable to capture the previous effects.
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Remark 2 (Material characteristic length scale/) The values of of the model
proposed extend from several hundredths of a millimetebtmta millimeter for
cases considered, while the one of the model proposed veenttg by Ferréet

al. 2013 [22] takes about a micron. The very difference betwéemtis physi-
cally explained by the following reason: we study here theyfee endurance of
macroscopic specimens and components for which the craktion is generally
detected by loss of stiffness corresponding to crack lemgich can reach a mil-
limeter; whereas Ferrét al. consider crack nucleation in the scale is few dozen

microns.

Remark 3 (Insensitive threshold of effects)The dependence of fatigue limits on
both "size" and gradient effects according to the specimes gig. L, R) has a
"saturated" or "insensitive" threshold. That means, thened exists a certain
"saturated" value for the specimen siZe(, R..,) from which the fatigue behavior
is insensitive to both effects and the proposed criteriathxaeduce to the respec-

tive classical ones.

Remark 4 (Approximation of some formulae) In the illustration through Cross-
land criterion, using a priori the exponemt= 0.5 for some approximations (Eqs.
(37), (53)) results in the very simple formulas for relevgoantities, especially

in the combined bending-twisting case. This valuenofias afterwards affirmed
reasonable through very good validation with some expariaieclasses. In the
general case, however,could have another value for other experimental classes,
then the proposed criteria may require to use the exact faenkgs. (75, 77) e.g.,

to express consistently all relevant quantities (such,asL, ¢, L, ¢, L, ...) inany
case of test according to their analogues in calibratiots f@srsion and bending

tests).

8 Conclusion

The present study develops a simple formulation of gradveritiaxial fatigue cri-
teria extending the classical HCF criteria. The objectivéoisnodel the "size",

surface gradient and loading effects, not included yet assital mechanics but
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become important at small scale, by taking into accountthesgradient effect.
Basing on some experimental observations, and departimg éfassical fatigue
criteria, new class of criteria with stress gradient termgeeng not only in the
normal stress but also in the shear stress amplitude, apeged. Such a formula-
tion allows the new criteria to capture the "size" and gratiédfects, and to cover
a large range of loading mode (traction, bending, shearifig¢se new criteria
are then generalized to multiaxial cases to capture bothkmelvn phenomena
"Smaller is Stronger" and "Higher Gradient is Strongeaiid thus can reproduce
fatigue experimental data even at small scale. Here in tbrk wthe nature of these
two phenomena is also clarified. "Higher Gradient is Strohigeanly related to the
gradient effect, while "Smaller is Stronger" is related téhgoure size and gradient
effects where the latter is dominant - rather than totallyhi pure size effect as
usually believed.

Extensions of some classical fatigue limit criteria suchsStand and Dang Van are
done as illustrations. The proposed criteria shown a gooeeagent with a number
of experiments from the literature. A more comprehensiv@aton for complex
loading (real multiaxial loads) could be perspective fos tiesearch direction.
Nevertheless, in this work only cases with critical poirtsdted at the specimens
surfaces have been examined. In these cases, the gradiedhithat it has a benefi-
cial effect on fatigue. However, cases where the effect egoresumably negative,
especially with the presence of residual stresses, candmiptered. A reexami-
nation of the approach will be the object of the further wdsksides, for notched
fatigue problems, this approach may be still applicable.

In conclusion, the extension of classical fatigue critemabedding into them two
gradient terms, one corresponds to normal stress partlibe to shear stress part,
leads to new versions able to describe common effects oriaxialt fatigue en-

durance.
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