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CHARACTERISTIC FUNCTIONS ON THE BOUNDARY OF A PLANAR DOMAIN

NEED NOT BE TRACES OF LEAST GRADIENT FUNCTIONS

MICKAËL DOS SANTOS

Abstract. Given a smooth bounded planar domain Ω, we construct a compact set on the boundary such that
its characteristic function is not the trace of a least gradient function. This generalizes the construction of
Spradlin and Tamasan [ST14] when Ω is a disc.
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1. Introduction

We let Ω be a bounded C2 domain of R2. For a function h ∈ L1(∂Ω,R), the least gradient problem with
boundary datum h consists in deciding whether

(1) inf

ß∫

Ω

|Dw| ; w ∈ BV (Ω) and tr∂Ωw = h

™
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is achieved or not.
In the above minimization problem, BV (Ω) is the space of functions of bounded variation. It is the space of

functions w ∈ L1(Ω) having a distributional gradient Dw which is a bounded Radon measure.
If the infimum in (1) is achieved, minimal functions are called functions of least gradient.
Sternberg, Williams and Ziemmer proved in [SWZ92] that if h : ∂Ω → R is a continuous map and if ∂Ω

satisfies a geometric properties then there exists a (unique) function of least gradient. For further use, we note
that the geometric property is satisfied by Euclidean balls.

On the other hand, Spradlin and Tamasan [ST14] proved that, for the disc Ω = {x ∈ R2 ; |x| < 1}, we may
find a function h0 ∈ L1(∂Ω) which is not continuous s.t. the infimum in (1) is not achieved. The function h0 is
the characteristic function of a Cantor type set K ⊂ S1 = {x ∈ R2 ; |x| = 1}

The goal of this article is to extend the main result of [ST14] to a general C2 bounded open set Ω ⊂ R2.
We prove the following theorem.

Theorem 1. Let Ω ⊂ R2 be a bounded C2 open set. Then there exists a measurable set K ⊂ ∂Ω such that the
infimum

(2) inf

ß∫

Ω

|Dw| ; w ∈ BV (Ω) and tr∂Ωw = 1IK

™

is not achieved.

The calculations in [ST14] are specific to the case Ω = D. The proof of Theorem 1 relies on new arguments
for the construction of the Cantor set K and the strategy of the proof.

2. Strategy of the proof

2.1. The model problem. We illustrate the strategy developed to prove Theorem 1 on the model case Q =
(0, 1)2. Clearly, this model case does not satisfy the C2 assumption.

Nevertheless, the flatness of ∂Q allows to get a more general counterpart of Theorem 1. Namely, the
counterpart of Theorem 1 [see Proposition 1 below] is no more an existence result of a set K ⊂ ∂Q s.t. Problem
(2) is not achieved. It is a non existence result of a least gradient function for h = 1IM for any measurable
domain M ⊂ [0, 1]× {0} ⊂ ∂Q with positive Lebesgue measure.

We thus prove the following result whose strategy of the proof is due to Petru Mironescu.

Proposition 1. [P. Mironescu] Let M̃ ⊂ [0, 1] be a measurable set with positive Lebesgue measure. Then the
infimum in

(3) inf

ß∫

Q

|Dw| ; w ∈ BV (Q) and tr∂Qw = 1IM̃×{0}

™

is not achieved.

This section is devoted to the proof of Proposition 1. We fix a measurable set M̃ ⊂ [0, 1] with positive
measure and we let h = 1IM̃×{0}. We argue by contradiction: we assume that there exists a minimizer u0 of

(3). We obtain a contradiction in 3 steps.

Step 1. Upper bound and lower bound

This first step consists in obtaining two estimates. The first estimate is the upper bound

(4)

∫

Q

|Du0| ≤ ‖1IM̃×{0}‖L1(∂Q) = H
1(M̃).

Here, H
1(M̃) is the length of M̃.

Estimate (4) follows from Theorem 2.16 and Remark 2.17 in [Giu84]. Indeed, by combining Theorem 2.16
and Remark 2.17 in [Giu84] we may prove that for h ∈ L1(∂Ω) and for all ε > 0 there exists a map uε ∈ BV (Ω)
s.t.

∫

Ω

|Duε| ≤ (1 + ε)‖h‖L1(∂Ω) and tr∂Ωuε = h.

The proof of this inequality when Ω is a half space is presented in [Giu84]. It is easy to adapt the argument
when Ω = Q = (0, 1)2. The extension for a C2 set Ω is presented in Appendix E.
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Step 2. Optimality of (4) [see (5)]

The optimality of (4) is obtained via the following lemma.

Lemma 2. For u ∈ BV (Q) we have
∫

Q

|D2u| ≥
∫ 1

0

|tr∂Qu(·, 0)− tr∂Qu(·, 1)|.

Here, for k ∈ {1, 2} we denoted
∫

Q

|Dku| = sup

ß∫

Q

u∂kξ ; ξ ∈ C1
c (Q) and |ξ| ≤ 1

™

where C1
c (Q) are the set of real valued C1-functions with compact support included in Q.

Lemma 2 is proved in Appendix B.1.
From Lemma 2 we get

∫

Q

|D2u0| ≥
∫ 1

0

|tr∂Qu0(·, 0)− tr∂Qu0(·, 1)| =
∫ 1

0

1IM̃×{0} = H
1(M̃).

Since we have
∫

Q

|Du0| := sup

ß∫

Q

udiv(ξ) ; ξ = (ξ1, ξ2) ∈ C1
c (Q,R2) and ξ21 + ξ22 ≤ 1

™
≥

∫

Q

|D2u0| ≥ H
1(M̃),(5)

we get the optimality of (4).
Step 3. A transverse argument
From (4) and (5) we may prove

(6)

∫

Q

|D1u0| = 0.

Equality (6) is a direct consequence of the following lemma.

Lemma 3. Let Ω be a planar open set. If u ∈ BV (Ω) is s.t.
∫

Ω

|Du| =
∫

Ω

|D2u|,

then

∫

Ω

|D1u| = 0.

Lemma 3 is proved in Appendix B.2.
In order to conclude we state an easy lemma.

Lemma 4. [Poincaré inequality] For u ∈ BV (Q) satisfying tr∂Qu = 0 in {0} × [0, 1] we have
∫

Q

|u| ≤
∫

Q

|D1u|.

Lemma 4 is proved in Appendix B.3.
Hence, from (6) and Lemma 4 we have u0 = 0 which is in contradiction with tr∂Qu0 = 1IM̃×{0} with

H 1(M̃) > 0.

2.2. Outline of the proof of Theorem 1. The idea is to adapt the above construction and argument to
the case of a general C2 domain Ω. If Ω has a flat or concave part Γ of the boundary ∂Ω, then a rather
straightforward variant of the above proof shows that 1IM, where M is a non trivial part of Γ, is not the trace
of a least gradient function.

Remark 5. Things are more involved when Ω is convex. For simplicity we illustrate this fact when Ω = D =
{x ∈ R2 ; |x| < 1}. Let M ⊂ S1 ∩ {(x, y) ∈ R2 ; x < 0} be an arc whose endpoints are symmetric with respect
to the x-axis. We let (x0,−y0) and (x0, y0) be the endpoints of M [here x0 ≤ 0 and y0 > 0].

We let C be the chord of M. On the one hand, if u ∈ C1(D) ∩W 1,1(D) is s.t. trS1u = 1IM then, using the
Fundamental Theorem of calculus, we have for −y0 < y < y0

∫

√
1−y2

−
√

1−y2
|∂xu(x, y)| ≥ 1.
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Thus we easily get

∫

D

|∇u| ≥
∫

D

|∂xu| ≥
∫ y0

−y0

dy

∫

√
1−y2

−
√

1−y2
|∂xu(x, y)| ≥ 2y0 = H

1(C ).

Consequently, with the help of a density argument [e.g. Lemma 17 in Appendix A] we obtain

inf

ß∫

D

|Du| ; u ∈ BV (D) and trS1u = 1IM

™
≥ H

1(C ).

On the other hand we let ω := {(x, y) ∈ R2 ; x < x0}. It is clear that u0 = 1Iω ∈ BV (D) and trS1u0 = 1IM.
Moreover

∫

D

|Du0| = H
1(C ).

Consequently u0 is a function of least gradient. We may do the same argument for a domain Ω as soon as we
have a chord entirely contained in Ω. This example suggest that for a convex set Ω, the construction of a set
K ⊂ ∂Ω s.t. (2) is not achieved has to be "sophisticated".

The strategy to prove Theorem 1 consists of constructing a special set K ⊂ ∂Ω [of Cantor type] and to

associate to K a set B∞ [the analog of M̃× (0, 1) in the model problem] which "projects" onto K and s.t., if u0

is a minimizer of (1), then

(7)

∫

B∞

| ~X ·Du0| ≥ H
1(K).

Here, ~X is a vector field satisfying | ~X | ≤ 1. It is the curved analog of ~X = e2 used in the above proof.
By (7) [and Proposition 24 in Appendix E], if u0 is a minimizer, then

(8)

∫

Ω\B∞

|Du0|+
∫

B∞

(|Du0| − | ~X ·Du0|) = 0.

We next establish a Poincaré type inequality implying that any u0 satisfying (8) and tr∂Ω\Ku = 0 is 0, which is
not possible.

The heart of the proof consists of constructing K, B∞ and ~X [see Sections 4 and 5].

3. Notation, definitions

The ambient space is the Euclidean plan R2. We let Bcan be the canonical basis of R2.

a) The open ball centered at A ∈ R2 with radius r > 0 is denoted B(A, r).

b) A vector may be denoted by an arrow when it is defined by its endpoints (e.g.
−−→
AB). It may be also denoted

by a letter in bold font (e.g. u) or more simply by a Greek letter in normal font (e.g. ν).
We let also |u| be the Euclidean norm of the vector u.

c) For a vector u we let u
⊥ be the direct orthogonal vector to u, i.e., if u = (x1, x2) then u

⊥ = (−x2, x1).

d) For A,B ∈ R2, the segment of endpoints A and B is denoted [AB] = {A+ t
−−→
AB ; t ∈ [0, 1]} and dist(A,B) =

|−−→AB| is the Euclidean distance.

e) For a set U ⊂ R2, the topological interior of U is denoted by
◦

U and its topological closure is U .
f) For k ≥ 1, a Ck-curve is the range of a Ck injective map from (0, 1) to R2. Note that, in this article,

Ck-curves are not closed sets of R2.
g) For Γ a C1-curve, H 1(Γ) is the 1-dimensional Hausdorff measure of Γ.
h) For k ≥ 1, a Ck-Jordan curve is the range of a Ck injective map from the unit circle S1 to R2.
i) For Γ a C1-curve or a C1-Jordan curve, C = [AB] is a chord of Γ when A,B ∈ Γ with A 6= B.
j) If Γ is a C1-Jordan curve then, for A,B ∈ Γ&A 6= B, the set Γ \ {A,B} admits exactly two connected

components: Γ1&Γ2. These connected components are C1-curves.
By smoothness of Γ, it is clear that there exists ηΓ > 0 s.t. for 0 < dist(A,B) < ηΓ there exists THE

smallest connected components: we have H 1(Γ1) < H 1(Γ2) or H 1(Γ2) < H 1(Γ1).

If 0 < dist(A,B) < ηΓ we may define ÃB by:

(9) ÃB is the closure of the smallest curve between Γ1 and Γ2.

k) In this article Ω ⊂ R2 is a C2 bounded open set.
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4. Construction of the Cantor set K
It is clear that, in order to prove Theorem 1, we may assume that Ω is a connected set.
We fix Ω ⊂ R2 a bounded C2 open connected set. The set K ⊂ ∂Ω is a Cantor type set we will construct

below.

4.1. First step: localization of ∂Ω. From the regularity of Ω, there exist ℓ + 1 C2-open sets, ω0, ..., ωℓ, s.t.
Ω = ω0 \ ω1 ∪ · · · ∪ ωℓ and

• ωi is simply connected for i = 0, ..., ℓ,
• ωi ⊂ ω0 for i = 1, ..., ℓ,
• ωi ∩ ωj = ∅ for 1 ≤ i < j ≤ ℓ.

We let Γ = ∂ω0. The Cantor type set K we construct "lives" on Γ. Note that Γ is a Jordan-curve.
Let M0 ∈ Γ be s.t. the inner curvature of Γ at M0 is positive [the existence of M0 follows from the Gauss-

Bonnet formula]. Then there exists r0 ∈ (0, 1) s.t. [AB] ⊂ Ω and [AB] ∩ ∂Ω = {A,B}, ∀A,B ∈ B(M0, r0) ∩ Γ.
Note that we may assume 2r0 < ηΓ [ηΓ is defined in Section 3-j].

We fix A,B ∈ B(M0, r0) ∩ Γ s.t. A 6= B. We have:

• By the definition of M0 and r0, the chord C0 := [AB] is included in Ω.

• We let ÃB be the closure of the smallest part of Γ which is delimited by A,B (see (9)). We may

assume that ÃB is the graph of f ∈ C2([0, η],R+) in the orthonormal frame R0 = (A, e1, e2) where

e1 =
−−→
AB/|−−→AB|.

• The function f satisfies f(x) > 0 for x ∈ (0, η) and f ′′(x) < 0 for x ∈ [0, η].

For further use we note that the length of the chord [AB] is η and that for intervals I, J ⊂ [0, η], if I ⊂ J then

(10)

{

‖f ′
|I‖L∞(I) ≤ ‖f ′

|J‖L∞(J)

‖f ′′
|I‖L∞(I) ≤ ‖f ′′

|J‖L∞(J)

where f|I is the restriction of f to I.

Replacing the chord C0 = [AB] with a smaller chord of ÃB parallel to C0, we may assume that

(11) 0 < η < min

®
1

2
;

1

16‖f ′′‖2
L∞([0,η])

;
1

2‖f ′‖L∞([0,η])‖f ′′‖L∞([0,η])

´
.

We may also assume that

• Letting D+
0 be the bounded open set s.t. ∂D+

0 = [AB] ∪ ÃB we have Π∂Ω, the orthogonal projection
on ∂Ω, is well defined and of class C1 in D+

0 .
• We have

(12) 1 + 4‖f ′′‖2L∞diam(D+
0 ) <

16

9

where diam(D+
0 ) = sup{dist(M,N) ; M,N ∈ D+

0 }. [Here we used (10)]

4.2. Step 2: Iterative construction. We are now in position to construct the Cantor type set K as a subset

of ÃB. The construction is iterative.
The goal of the construction is to get at step N ≥ 0 a collection of 2N pairwise disjoint curves included in

ÃB [denoted by {KN
1 , ...,KN

2N}] and their chords [denoted by {CN
1 , ...,CN

2N }].
The idea is standard: at the step N ≥ 0 we replace a curve Γ0 included in ÃB by two curves included in Γ0

(see Figure 1).

Initialization. We initialize the procedure by letting K0
1 := ÃB and C 0

1 = C0 = [AB].

At step N ≥ 0 we have:

• A set of 2N curves included in ÃB, {KN
1 , ...,KN

2N}. The curves KN
k ’s are mutually disjoint. We let

KN = ∪2N

k=1K
N
k .

• A set of 2N chords, {CN
1 , ...,CN

2N } s.t. for k = 1, ..., 2N , CN
k is the chord of KN

k .
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Remark 6. (1) Note that since the C
N
k ’s are chords of ÃB and since in the frame R0 = (A, e1, e2), ÃB is

the graph of a function, none of the chords CN
k is vertical, i.e., directed by e2.

Since the chords CN
k are not vertical, for k ∈ {1, ..., 2N}, we may define νCN

k
as the unit vector

orthogonal to CN
k s.t. νCN

k
= αe1 + βe2 with β > 0.

(2) For η satisfying (11), if we consider a chord CN
k and a straight line D orthogonal to CN

k and intersecting
C
N
k , then the straight line D intersect KN

k at exactly one points. This fact is proved in Appendix C.1.

Induction rules. From step N ≥ 0 to step N + 1 we follow the following rules:

(1) For each k ∈ {1, ..., 2N}, we let ηNk be the length of CN
k . Inside the chord CN

k we center a segment INk
of length (ηNk )2.

(2) With the help of Remark 6.2, we may define two distinct points of KN
k as the intersection of KN

k with
straight lines orthogonal to CN

k which pass to the endpoints of INk .

(3) These intersection points are the endpoints of a curve K̃N
k included in KN

k . We let KN+1
2k−1 and KN+1

2k

be the connected components of KN
k \ K̃N

k . We let also

• C
N+1
2k−1 and C

N+1
2k be the corresponding chords;

• KN+1 = ∪2N+1

k=1 KN+1
k .

Notation 7. A natural terminology consists in defining the father and the sons of a chord or a curve:

• F(CN+1
2k−1) = F(CN+1

2k ) = C
N
k is the father of the chords C

N+1
2k−1 and C

N+1
2k .

F(KN+1
2k−1) = F(KN+1

2k ) = KN
k is the father of the curves KN+1

2k−1 and KN+1
2k .

• S(CN
k ) = {CN+1

2k−1 ,C
N+1
2k } is the set of sons of the chord C

N
k , i.e., F(CN+1

2k−1) = F(CN+1
2k ) = C

N
k .

S(KN
k ) = {KN+1

2k−1,K
N+1
2k } is the set of sons of the curve KN

k , i.e., F(KN+1
2k−1) = F(KN+1

2k ) = KN
k .

The inductive procedure is represented in Figure 1.

(ηkN )2

ηkN

Figure 1. Induction step

In Figure 2&3 the two first iterations of the process are represented.

Figure 2. First iteration of the process Figure 3. Second iteration of the process

We now define the Cantor type set

(13) K =
⋂

N≥0

KN .

The Cantor type set K is fat:

Proposition 8. We have H 1(K) > 0.

This proposition is proved in Appendix C.3.
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5. Construction of a sequence of functions

A key argument in the proof of Theorem 1 is the use of the coarea formula to calculate a lower bound for
(2). The coarea formula is applied to a function adapted to the set K.

For N = 0 we let

• D+
0 be the compact set delimited by K0 = ÃB and C 0

1 := [AB] the chord of K0.

• We recall that we fixed a frame R0 = (A, e1, e2) where e1 =
−−→
AB/|−−→AB|. For σ = (σ1, 0) ∈ C 0

1 , we define:

(14) Iσ is the connected component of {(σ1, t) ∈ Ω ; t ≤ 0} which contains σ.

[Iσ is a vertical segment included in Ω].
• D−

0 = ∪σ∈C 0
1
Iσ.

• We now define the maps
Ψ̃0 : D−

0 → C 0
1

x 7→ ΠC 0
1
(x)

and
Ψ0 : D−

0 ∪D+
0 → C 0

1

x 7→
®
Π∂Ω(x) if x ∈ D+

0

Π∂Ω[Ψ̃0(x)] if x ∈ D−
0

where Π∂Ω is the orthogonal projection on ∂Ω and ΠC 0
1

is the orthogonal projection on C 0
1 . Note that,

in the frame R0, for x = (x1, x2) ∈ D−
0 , we have ΠC 0

1
(x) = (x1, 0).

For N = 1 and k ∈ {1, 2} we let:

• D1
k be the compact set delimited by K1

k and C
1
k ;

• T 1
k be the compact right-angled triangle (with its interior) having C 1

k as side adjacent to the right angle
and whose hypothenuse is included in C 0

1 ;
• H1

k be the hypothenuse of T 1
k .

We now define D−
1 = Ψ̃−1

0 (H1
1 ∪H1

2 ), T1 = T 1
1 ∪ T 1

2 and D+
1 = D1

1 ∪D1
2.

We first consider the map

Ψ̃1 : T1 ∪D−
1 → C 1

1 ∪ C 1
2

x 7→
®
ΠC 1

k
(x) if x ∈ T 1

k

ΠC 1
k
[Ψ̃0(x)] if x ∈ D−

1

.

In Appendix D [Lemma 22 and Remark 23], it is proved that the triangles T 1
1 and T 1

2 are disjoint. Thus the

map Ψ̃1 is well defined
By projecting C 1

1 ∪ C 1
2 on ∂Ω we get

Ψ1 : T1 ∪D−
1 ∪D+

1 → K1

x 7→
®
Π∂Ω(x) if x ∈ D+

1

Π∂Ω[Ψ̃1(x)] if x ∈ T1 ∪D−
1

.

σ

D1
2

T 1
2

ψ̃
−1
0 (H1

2 )

D1
1 ∪ T 1

1 ∪ Ψ̃−1
0 (H1

1 )

Figure 4. The sets defined at Step N = 1 and the dashed level line of Ψ1 associated to σ ∈ K1
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For N ≥ 1, we first construct Ψ̃N+1 and then ΨN+1 is obtained from Ψ̃N+1 and Π∂Ω.
For k ∈ {1, ..., 2N+1}, we let

• DN+1
k be the compact set delimited by KN+1

k and C
N+1
k [recall that C

N+1
k is the chord associated to

KN+1
k ] ;

• TN+1
k be the right-angled triangle (with its interior) having C

N+1
k as side adjacent to the right angle

and whose hypothenuse is included in F(CN+1
k ). Here F(CN+1

k ) is the father of C
N+1
k (see Notation

7);

• HN+1
k ⊂ F(CN+1

k ) be the hypothenuse of TN+1
k .

We denote TN+1 =

2N+1
⋃

k=1

TN+1
k , D−

N+1 = Ψ̃−1
N

Ñ
2N+1
⋃

k=1

HN+1
k

é
and D+

N+1 =

2N+1
⋃

k=1

DN+1
k .

K
N+1
2k−1

D
N+1
2k−1 K

N+1
2k

T
N+1
2k−1

H
N+1
2k−1 DN

k

Figure 5. Induction. The bold lines correspond to the new iteration

Remark 9. It is easy to check that for N ≥ 0:

(1) TN+1 ⊂ D+
N ,

(2) if x ∈
◦

TN then x /∈ TN ′ for N ′ ≥ N + 1 [here T0 = ∅].
We now define

Ψ̃N+1 : TN+1 ∪D−
N+1 → ∪2N+1

k=1 C
N+1
k

x 7→
{

Π
C

N+1
k

(x) if x ∈ TN+1
k

Π
C

N+1
k

[Ψ̃N (x)] if x ∈ Ψ̃−1
N (∪2N+1

k=1 HN+1
k )

.

In Appendix D [Lemma 22 and Remark 23], it is proved that for N ≥ 1, the triangles TNk for k = 1, ..., 2N are

mutually disjoint. recursively, we find that all the Ψ̃N ’s are well-defined.

And, as in the Initialization Step, we get ΨN+1 from Ψ̃N+1 by projecting ∪2N+1

k=1 C
N+1
k on ∂Ω:

ΨN+1 : TN+1 ∪D−
N+1 ∪D+

N+1 → KN+1

x 7→
®
Π∂Ω[Ψ̃N+1(x)] if x ∈ TN+1 ∪D−

N+1

Π∂Ω(x) if x ∈ D+
N+1

.

It is easy to see that ΨN+1(TN+1 ∪D−
N+1 ∪D+

N+1) = KN+1.

6. Basic properties of B∞ and ΨN

6.1. Basic properties of B∞. We set BN = TN ∪D+
N ∪D−

N . It is easy to check that for N ≥ 0 we have
BN+1 ⊂ BN and K ⊂ ∂BN . Therefore we may define

B∞ = ∩N≥0BN
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which is compact and satisfies K ⊂ ∂B∞.
We are going to prove:

Lemma 10. The interior of B∞ is empty.

Proof of Lemma 10. From Lemma 22 [and Remark 23] in Appendix D combined with Hypothesis (11), we get
two fundamental facts:

(1) The triangles TN1 , ... ,TN2N+1 are mutually disjoint.
(2) We have:

(15) H
1(HN+1

k ) <
H 1(F(CN

k ))

2
.

For a non empty set A ⊂ R2 we let

rad(A) = sup{r ≥ 0 ; ∃x ∈ A s.t. B(x, r) ⊂ A}.
Note that the topological interior of A is empty if and only if rad(A) = 0.

On the one hand, it is not difficult to check that for sufficiently large N

(16) rad(BN ) = rad(BN ∩D−
N).

On the other hand, using (15) we obtain for N ≥ 1:

(17) rad(BN+1 ∩D−
N+1) ≤

rad(BN ∩D−
N )

2
.

Consequently, by combining (16) and (17) we get the existence of C0 s.t.

(18) rad(BN ) ≤ C0

2N
.

Since B∞ = ∩N≥0BN , from (18) we get that rad(B∞) = 0.
�

6.2. Basic properties of ΨN . We now prove the key estimate for ΨN :

Lemma 11. There exists bN = oN (1) s.t. for N ≥ 1 and U a connected component of BN , the restriction of
ΨN to U is (1 + bN )-Lipschitz.

Proof. Let N ≥ 1 and U be a connected component of BN . The restriction of Ψ̃N to U ∩ (TN ∪D−
N ) is obtained

as composition of orthogonal projections on straight lines and thus is 1-Lipschitz.

There exists bN = oN (1) s.t. the projection PN := Π∂Ω defined in D+
N is (1 + bN )-Lipschitz. The functions

ΨN are either the composition of Ψ̃N with PN or ΨN = PN . Consequently the restriction of ΨN to U is
(1 + bN)-Lipschitz. �

In the following we will not use ΨN but "its projection" on R. For N ≥ 1 and k ∈ {1, ..., 2N}, we let
BN
k := Ψ−1

N (KN
k ) and we define

Πk,N : BN
k → R

x 7→ H 1(¸�AΨN (x))

where ¸�AΨN (x) ⊂ ÃB is defined by (9) as the smallest connected component of ∂Ω \ {A,ΨN(x)} if ΨN(x) 6= A

and ¸�AΨN (x) = {A} otherwise.

Lemma 12. For N ≥ 1 there exists cN ∈ (0, 1) with cN = oN (1) s.t. for k ∈ {1, ..., 2N} the function
Πk,N : BN

k → R is (1 + cN)-Lipschitz.

Proof. Let N ≥ 1, k ∈ {1, ..., 2N} and let x, y ∈ BN
k be s.t. ΨN (x) 6= ΨN(y). It is clear that we have

|Πk,N (x)−Πk,N (y)| = H
1( ˇ�ΨN (y)ΨN (x))

where ˇ�ΨN (y)ΨN (x) ⊂ KN
k is defined by (9) as the smallest connected component of ∂Ω \ {ΨN(y),ΨN (x)}.

Moreover, from Lemma 20 in Appendix C.2, we have the existence of C ≥ 1 independent of N and k s.t. for
x, y ∈ BN

k s.t. ΨN(x) 6= ΨN (y) we have [denoting X := ΨN (x), Y := ΨN (y)]

dist (X,Y ) ≤ H
1
Ä
X̄Y
ä
≤ dist (X,Y ) [1 + Cdist (X,Y )]



10 MICKAËL DOSSANTOS

and
H

1(KN
k ) ≤ H

1(CN
k )

[

1 + CH
1(CN

k )
]

.

From Step 1 in the proof of Proposition 13 [Appendix C.3] we have

max
k=1,...,2N

H
1(CN

k ) ≤
Å
2

3

ãN
.

Thus letting aN :=

Å
2

3

ãN ñ
1 + C

Å
2

3

ãNô
we have aN → 0 and since X̄Y ⊂ KN

k we get:

dist (X,Y ) ≤ H
1
Ä
X̄Y
ä
≤ H

1(KN
k ) ≤ H

1(CN
k )

[

1 + CH
1(CN

k )
]

≤ aN (1 + CaN ).

Thus, letting ãN = max {aN (1 + CaN ), |bN |} where bN is defined in Lemma 11, we get

H
1
Ä
X̄Y
ä
= |Πk,N (x)−Πk,N (y)| ≤ H

1 ([ΨN (y)ΨN (x)]) (1 + CãN )

≤ (1 + ãN ) (1 + CãN ) |x− y|.
Therefore, letting cN be s.t. 1 + cN = (1 + ãN ) (1 + CãN ) we have cN = oN (1), cN is independent of k ∈
{1, ..., 2N} and Πk,N is (1 + cN)-Lipschitz. �

7. Proof of Theorem 1

We are now in position to prove Theorem 1. This is done by contradiction. We assume that there exists a
map u0 ∈ BV (Ω) which minimizes (2).

7.1. Upper bound. The first step in the proof is the estimate

(19)

∫

Ω

|Du0| ≤ ‖1IK‖L1(∂Ω) = H
1(K).

This estimate is obtained by proving that for all ε > 0 there exists uε ∈ W 1,1(Ω) s.t. tr∂Ωuε = 1IK and

(20) ‖∇uε‖L1(Ω) ≤ (1 + ε)‖tr∂Ωuε‖L1(Ω) = (1 + ε)H 1(K).

Proposition 24 in Appendix E gives the existence of such uε’s.
Clearly (20) implies (19).

7.2. Optimality of the upper bound. In order to have a contradiction we follow the strategy of Spradlin
and Tamasan in [ST14]. We fix a sequence (un)n ⊂ C1(Ω) s.t.

(21) un ∈ W 1,1(Ω) ; un → u in L1(Ω) ;

∫

Ω

|∇un| →
∫

Ω

|Du0| ; tr∂Ωun = tr∂Ωu0.

Note that (21) implies

(22)

∫

F

|∇un| →
∫

F

|Du| for all F ⊂ Ω relatively closed set.

Such a sequence can be obtained via partition of unity and smoothing ; see the proof of Theorem 1.17 in [Giu84].
For the convenience of the reader a proof is presented in Appendix A [see Lemma 17].

For further use, let us note that the sequence (un)n constructed in Appendix A satisfies the following addi-
tional property:

∣

∣

∣

∣

If u0 = 0 outside a compact set L ⊂ Ω and if ω is an open set
s.t. dist(ω,L) > 0 then, for large n, un = 0 in ω

.

For x ∈ B0 we let

(23) V0(x) =

®
νΠ∂Ω(x) if x ∈ D+

0

(0, 1) if x ∈ D−
0

,

and for N ≥ 0, x ∈ BN+1 we let

(24) VN+1(x) =







VN (x) if x ∈ BN\
◦

T N+1

ν
C

N+1
k

if x ∈
◦

T
N+1
k

,

where, for σ ∈ ∂Ω, νσ is the normal outward of Ω in σ and ν
C

N+1
k

is defined in Remark 6.1.

We now prove the following lemma.
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Lemma 13. When N → ∞ we may define V∞(x) a.e. x ∈ B∞ by

(25)
V∞ : B∞ → R2

x 7→ limN→∞ VN (x)
.

Moreover, from dominated convergence, we have:

VN1IBN
→ V∞1IB∞

in L1(Ω).

Proof. If x ∈ B∞ \ ∪N≥1TN , then we have VN (x) = V0(x) for all N ≥ 1. Thus limN→∞ VN (x) = V0(x).

For a.e. x ∈ B∞ ∩ ∪N≥1TN there exists N0 ≥ 1 s.t. x ∈
◦

TN0 . Therefore for all N > N0 we have VN (x) =
VN0(x). Consequently limN→∞ VN (x) = VN0(x). �

This section is devoted to the proof of the following lemma:

Lemma 14. For all w ∈ C∞ ∩W 1,1(Ω) s.t. tr∂Ωw = 1IK we have
∫

B∞∩Ω

|∇w · V∞| ≥ H
1(K)

where V∞ is the vector field defined in (25).

Remark 15. Since |V∞(x)| = 1 for a.e. x ∈ B∞, it is clear that Lemma 14 implies that for all n we have
∫

B∞∩Ω

|∇un| ≥ H
1(K).

From (22) we have:
∫

B∞∩Ω

|Du0| ≥ H
1(K).

Section 7.3 is devoted to a sharper argument than above to get
∫

B∞∩Ω

|∇un| ≥
∫

B∞∩Ω

|∇un · V∞|+ δ

with δ > 0 is independent of n. The last estimate will imply
∫

B∞∩Ω
|Du0| ≥ H 1(K) + δ which will be the

contradiction we are looking for.

Proof of Lemma 14. We will first prove that for w ∈ C∞ ∩W 1,1(Ω) s.t. tr∂Ωw = 1IK we have

(26)

∫

BN∩Ω

|∇w · VN | ≥ H 1(K)

1 + oN (1)
.

where VN is the vector field defined in (23) and (24).
Granted (26), we conclude as follows: if w ∈ C∞ ∩W 1,1(Ω) s.t. tr∂Ωw = 1IK, then

∫

B∞∩Ω

|∇w · V∞| = lim
N→∞

∫

BN∩Ω

|∇w · VN |

≥ lim
N→∞

H
1(K)

1 + oN (1)
= H

1(K),

by dominated convergence.
It remains to prove (26). We fix w ∈ C∞ ∩W 1,1(Ω) s.t. tr∂Ωw = 1IK. Using the Coarea Formula we have for

N ≥ 1 and k ∈ {1, ..., 2N}, with the help of Lemma 12, we have

(1 + cN )

∫

B
(k)

N
∩Ω

|∇w · VN | ≥
∫

B
(k)

N
∩Ω

|∇Πk,N ||∇w · VN |

=

∫

R

dt

∫

Π−1
k,N

({t})∩Ω

|∇w · VN |.

Here, if Π−1
k,N ({t}) is non trivial, then Π−1

k,N ({t}) is a polygonal line:

Π−1
k,N ({t}) = Iσ(t,k,N) ∪ I1k,N,t ∪ · · · ∪ IN+1

k,N,t

where

• σ(t, k,N) ∈ [AB] is s.t. [AB] ∩Π−1
k,N ({t}) = {σ(t, k,N)},

• Iσ(t,k,N) is defined in (14),
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• for l = 1, ..., N we have I lk,N,t = Π−1
k,N ({t}) ∩ TN+1−l,

• IN+1
k,N,t = Π−1

k,N ({t}) ∩D+
N .

From the Fundamental Theorem of calculus and from the definition of VN , denoting

• Iσ(t,k,N) = [M0,M1] [where M0 ∈ ∂Ω \ ÃB and M1 = σ(t, k,N)],

• I lk,N,t = [Ml,Ml+1], l = 1, ..., N + 1 and MN+2 ∈ KN
k ,

we have for a.e. t ∈ Πk,N (KN
k ) and using the previous notation,

∫

[Ml,Ml+1]

|∇w · VN | ≥ |w(Ml+1)− w(Ml)|.

Here we used the convention w(Ml) = tr∂Ωw(Ml) for l = 0&N + 2.
Therefore for a.e t ∈ Πk,N (KN

k ) we have
∫

Π−1
k,N

({t})∩Ω

|∇w · VN | ≥ |tr∂Ωw(MN+2)− tr∂Ωw(M0)| = 1IK(MN+2).

Since K ⊂ KN = ∪2N

k=1K
N
k , we may thus deduce that

(1 + cN )

∫

BN∩Ω

|∇w · VN | = (1 + cN )
2N
∑

k=1

∫

B
(k)

N
∩Ω

|∇w · VN | ≥
∫

ÂB

1IK = H
1(K).

The last estimate clearly implies (26) and completes the proof of Lemma 14. �

7.3. Transverse argument. We assumed that there exists a map u0 which solves Problem (2).
We investigate the following dichotomy:

• u0 6≡ 0 in Ω \B∞;
• u0 ≡ 0 in Ω \B∞.

We are going to prove that both cases lead to a contradiction.

7.3.1. The case u0 6≡ 0 in Ω \ B∞. We thus have

∫

Ω\B∞

|u0| > 0. In this case, since (tr∂Ωu0)|∂Ω\∂B∞
≡ 0, we

have

(27) δ :=

∫

Ω\B∞

|Du0| > 0.

Estimate (27) is a direct consequence of the following lemma applied on each connected components of Ω \B∞.

Lemma 16. [Weak Poincaré lemma] Let ω ⊂ R2 be an open connected set. Assume that there exist x0 ∈ ∂ω
and r > 0 s.t. ω ∩B(x0, r) is Lipschitz.

If u ∈ BV (ω) satisfies tr∂ω∩B(x0,r) = 0 and
∫

ω
|Du| = 0 then u = 0.

Lemma 16 is proved in Appendix B.4.
Recall that we fixed a sequence (un)n ⊂ C1 ∩W 1,1(Ω) satisfying (21).
In particular, for sufficiently large n, we have

∫

Ω\B∞

|∇un| >
δ

2
.

Thus, from Lemma 14 and the fact that |V∞(x)| = 1 for a.e. x ∈ B∞,
∫

Ω

|∇un| ≥
∫

B∞

|∇un · V∞|+
∫

Ω\B∞

|∇un| ≥ H
1(K) +

δ

2
.

This implies
∫

Ω

|Du0| = lim
n

∫

Ω

|∇un| ≥ H
1(K) +

δ

2

which is in contradiction with (19).
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7.3.2. The case u0 ≡ 0 in Ω \ B∞. We first note that, since tr∂D+
0
u0 6≡ 0, there exists a triangle TN0

k s.t.
∫

T
N0
k

|u0| > 0. We fix such a triangle TN0

k and we let α be the vertex corresponding to the right angle.

We let R̃ = (α, ẽ1, ẽ2) be the direct orthonormal frame centered in α where ẽ2 = ν
C

N0
k

[ν
C

N0
k

is defined

Remark 6.1],i.e., the directions of the new frame are given by the side of the right-angle of TN0

k .

It is clear that for N ≥ N0 we have VN ≡ ẽ2 in
◦

TN0

k .

By construction of B∞, TN0

k ∩B∞ is a union of segments parallel to ẽ2, i.e. 1IB∞ |T
N0
k

(s, t) depends only on

the first variable "s" in the frame R̃.
Since

∫

T
N0
k

|u0| > 0, in the frame R̃, we may find a, b, c, d ∈ R s.t., considering the rectangle (whose sides are

parallel to the direction of R̃)

P := {α+ sẽ1 + tẽ2 ; (s, t) ∈ [a, b]× [c, d]} ⊂ TN0

k

we have
∫

P

|u0| > 0.

Since from Lemma 10 the set B∞ has an empty interior [and that 1IB∞ |T
N0
k

(s, t) depends only on the first

variable in the frame R̃], we may find a′ < b′ s.t.

• [a′, b′]× [c, d] ⊂ [a, b]× [c, d],
• S ∩B∞ = ∅ with S := {α+ sẽ1 + tẽ2 ; (s, t) ∈ {a′, b′} × [c, d]}
• δ :=

∫

P′

|u0| > 0 with P ′ := {α+ sẽ1 + tẽ2 ; (s, t) ∈ [a′, b′]× [c, d]}.

Moreover, since S and B∞ are compact sets with empty intersection, we may find V , an open neighborhood of
S s.t. dist(V , B∞) > 0.

Noting that u0 ≡ 0 in Ω\B∞, from Lemma 17 [in Appendix A] it follows that for sufficiently large n we have

• un ≡ 0 in S,

•
∫

P′

|un| >
δ

2
.

Consequently, from a standard Poincaré inequality
∫

P′

|∂ẽ1
un| ≥

2

b′ − a′

∫

P′

|un| >
δ

b′ − a′
=: δ′.

Therefore
∫

P′
|∂ẽ1

un| > δ′,
∫

P′
|∂ẽ2

un| ≤ 2H 1(K) and then by Lemma 3.3 in [ST14] we obtain:
∫

P′

|∇un| ≥
∫

P′

|∂ẽ2
un|+

δ′2

4H 1(K) + δ′
.

Thus, from Lemma 14, for sufficiently large n:
∫

Ω

|∇un| ≥ H
1(K) +

δ′2

4H 1(K) + δ′
− on(1).

From the convergence in BV -norm of un to u0 we have
∫

Ω

|Du0| ≥ H
1(K) +

δ′2

4H 1(K) + δ′
.

Clearly this last assertion contradicts (19) and ends the proof of Theorem 1.

Appendices

Appendix A. A smoothing result

We first state a standard approximation lemma for BV -functions.

Lemma 17. Let Ω ⊂ R2 be a bounded Lipschitz open set and let u ∈ BV (Ω). There exists a sequence
(un)n ⊂ C1(Ω) s.t.
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(1) un
strictly−→ u in the sense that un → u in L1(Ω) and

∫

Ω

|∇un| →
∫

Ω

|Du|,
(2) tr∂Ωun = tr∂Ωu for all n,
(3) for k ∈ {1, 2},

∫

Ω

|∂kun| →
∫

Ω

|Dku| := sup

ß∫

Ω

u∂kξ ; ξ ∈ C1
c (Ω,R) and |ξ| ≤ 1

™

(4) If u = 0 outside a compact set L ⊂ Ω and if ω is an open set s.t. dist(ω,L) > 0 then, for large n,
un = 0 in ω.

Proof. The first assertion is quite standard. It is for example proved in [AG78] [Theorem 1]. We present below
the classical example of sequence for such approximation result [we follow the presentation of [Giu84], Theorem
1.17].

Let Ω ⊂ R2 be a bounded Lipschitz open set and let u ∈ BV (Ω).
For n ≥ 1, we let ε = 1/n. We may fix m ∈ N∗ sufficiently large s.t. letting for k ∈ N

Ωk =

ß
x ∈ Ω ; dist(x, ∂Ω) >

1

m+ k

™

we have
∫

Ω\Ω0

|Du| < ε.

We fix now A1 := Ω2 and for i ∈ N \ {0, 1} we let Ai = Ωi+1 \ Ωi−1. It is clear that (Ai)i≥1 is a covering of Ω
and that each point in Ω belongs to at most three of the sets (Ai)i≥1.

We let (ϕi)i≥1 be a partition of unity subordinate to the covering (Ai)i≥1, i.e., ϕi ∈ C∞
c (Ai), 0 ≤ ϕi ≤ 1

and
∑

i≥1 ϕi = 1 in Ω.

We let η ∈ C∞
c (R2) be s.t. supp(η) ⊂ B(0, 1), η ≥ 0,

∫

η = 1 and for x ∈ R2 η(x) = η(|x|). For t > 0 we let
ηt = t−2η(·/t).

As explained in [Giu84], for i ≥ 1, we may choose εi ∈ (0, ε) sufficiently small s.t.






















supp(ηεi ∗ (uϕi)) ⊂ Ai
∫

Ω

|ηεi ∗ (uϕi)− uϕi| <
ε

2i
∫

Ω

|ηεi ∗ (u∇ϕi)− u∇ϕi| <
ε

2i

.

Here ∗ is the convolution operator.
Define

un :=
∑

i≥1

ηεi ∗ (uϕi).

In some neighborhood of each point x ∈ Ω there are only finitely many nonzero terms in the sum defining un.
Thus un is well defined and smooth in Ω.

Moreover, we may easily check that

‖un − u‖L1(Ω) +

∣

∣

∣

∣

∫

Ω

|Du| −
∫

Ω

|∇un|
∣

∣

∣

∣

< ε [here ε = 1/n].

Thus the previous estimate proves that (un) satisfies the first assertion, i.e, un
strictly−→ u.

As claimed in [Giu84] [Remark 2.12] we have tr∂Ωun = tr∂Ωu for all n. Thus the second assertion is satisfied.
We now prove the third assertion. Since un → u in L1(Ω), by inferior semi continuity we easily get for

k ∈ {1, 2}
∫

Ω

|Dku| ≤ lim inf
n→∞

∫

Ω

|∂kun|.

We now prove

∫

Ω

|Dku| ≥ lim sup
n→∞

∫

Ω

|∂kun|.
Let ξ ∈ C1

c (Ω,R) with |ξ| ≤ 1. Since η is a symmetric mollifier and
∑

ϕi = 1 we have
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∫

Ω

un∂kξ =
∑

i≥1

∫

Ω

ηεi ∗ (uϕi)∂kξ

=
∑

i≥1

∫

Ω

uϕi∂k(ηεi ∗ ξ)

=
∑

i≥1

∫

Ω

u∂k[ϕi(ηεi ∗ ξ)]−
∑

i≥1

∫

Ω

u∂kϕi(ηεi ∗ ξ)

=
∑

i≥1

∫

Ω

u∂k[ϕi(ηεi ∗ ξ)]−
∑

i≥1

∫

Ω

ξ [ηεi ∗ (u∂kϕi)− u∂kϕi] .

On the one hand we have [note that ϕi(ηεi ∗ ξ) ∈ C1
c (Ai) and |ϕi(ηεi ∗ ξ)| ≤ 1]

∣

∣

∣

∣

∣

∣

∑

i≥1

∫

Ω

u∂k[ϕi(ηεi ∗ ξ)]

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

A1

u∂k[ϕi(ηεi ∗ ξ)] +
∑

i≥2

∫

Ai

u∂k[ϕi(ηεi ∗ ξ)]

∣

∣

∣

∣

∣

∣

≤
∫

Ω

|Dku|+
∑

i≥2

∫

Ai

|Dku|

≤
∫

Ω

|Dku|+ 3

∫

Ω\Ω0

|Dku|

≤
∫

Ω

|Dku|+ 3ε.

Here we used that each point in Ω belongs to at most three of the sets (Ai)i≥1, for i ≥ 2 we have Ai ⊂ Ω \ Ω0

and
∫

Ω\Ω0

|Dku| ≤
∫

Ω\Ω0

|Du| < ε.

On the other hand, since for i ≥ 1

∫

Ω

|ηεi ∗ (u∇ϕi)− u∇ϕi| <
ε

2i
, we get

∣

∣

∣

∣

∣

∣

∑

i≥1

∫

Ω

ξ [ηεi ∗ (u∂kϕi)− u∂kϕi]

∣

∣

∣

∣

∣

∣

≤
∑

i≥1

∫

Ω

|ηεi ∗ (u∂kϕi)− u∂kϕi| < ε.

Consequently

sup

ß∫

Ω

un∂kξ ; ξ ∈ C1
c (Ω,R) and |ξ| ≤ 1

™
=

∫

Ω

|∂kun| ≤
∫

Ω

|Dku|+ 4ε

and thus lim sup
n

∫

Ω

|∂kun| ≤
∫

Ω

|Dku|. This inequality in conjunction with lim inf
n

∫

Ω

|∂kun| ≥
∫

Ω

|Dku| proves

the third assertion of Lemma 17.
The last assertion of Lemma 17 is a direct consequence of the definition of the un’s. �

Appendix B. Proofs of Lemma 2, Lemma 3, Lemma 4 and Lemma 16

B.1. Proof of Lemma 2. Let u ∈ BV (Q). We prove that

∫

Q

|D2u| ≥
∫ 1

0

|tr∂Qu(·, 0)− tr∂Qu(·, 1)|.

From Lemma 17, there exists (un)n ⊂ C1(Q) s.t. tr∂Qun = tr∂Qu, un
strictly−→ u and

∫

Q

|∂2un| →
∫

Q

|D2u|.
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From Fubini’s theorem and the Fundamental theorem of calculus we have
∫

Q

|∂2un| =

∫ 1

0

dx1

∫ 1

0

|∂2un(x1, x2)|dx2

≥
∫ 1

0

dx1

∣

∣

∣

∣

∣

∫ 1

0

∂2un(x1, x2)dx2

∣

∣

∣

∣

∣

=

∫ 1

0

dx1 |tr∂Qun(x1, 1)− tr∂Qun(x1, 0)|

=

∫ 1

0

|tr∂Qu(·, 1)− tr∂Qu(·, 0)| .

Since
∫

Q
|∂2un| →

∫

Q
|D2u|, Lemma 2 is proved.

B.2. Proof of Lemma 3. Let Ω be a planar open set. Let u ∈ BV (Ω) be s.t.
∫

Ω

|Du| =
∫

Ω

|D2u|.

We prove that

∫

Ω

|D1u| = 0. We argue by contradiction and we assume that

∫

Ω

|D1u| > 0, i.e., there exists

ξ ∈ C1
c (Ω) s.t. |ξ| ≤ 1 and

η :=

∫

Ω

u∂1ξ > 0.

Let (ξn)n ⊂ C1
c (Ω) be s.t. |ξn| ≤ 1 and

ηn :=

∫

Ω

u∂2ξn →
∫

Ω

|D2u|.

For (α, β) ∈ {x ∈ R2 ; |x| ≤ 1} we let ξ
(n)
α,β = (αξ, βξn) ∈ C1

c (Ω,R
2). Clearly, |ξ(n)α,β | ≤ 1 and

(28)

∫

Ω

|Du| ≥
∫

Ω

udiv(ξ
(n)
α,β) = αη + βηn.

If we maximize the right hand side of (28) w.r.t. (α, β) ∈ {x ∈ R2 ; |x| ≤ 1}, then we find with (α, β) =Ç
η

√

η2 + η2n
,

ηn
√

η2 + η2n

å

∫

Ω

|Du| ≥
√

η2 + η2n →
n→∞

√

η2 +

Å∫

Ω

|Du|
ã2

>

∫

Ω

|Du|.

This is a contradiction.

B.3. Proof of Lemma 4. Let u ∈ BV (Q) satisfying tr∂Qu = 0 in {0} × [0, 1]. We are going to prove that
∫

Q

|u| ≤
∫

Q

|D1u|.

Let (un)n ⊂ C1(Ω) be given by Lemma 17. Using the Fundamental theorem of calculus we have for (x1, x2) ∈ Q

|un(x1, x2)| ≤
∫ x1

0

|∂1un(t, x2)|dt ≤
∫ 1

0

|∂1un(t, x2)|dt.

Therefore, from Fubini’s theorem, we get
∫

Q

|un| ≤
∫

Q

dx1dx2

∫ 1

0

|∂1un(t, x2)|dt =
∫ 1

0

dx2

∫ 1

0

|∂1un(t, x2)|dt =
∫

Q

|∂1un|.

It suffices to see that
∫

Q
|un| →

∫

Q
|u| and

∫

Q
|∂1un| →

∫

Q
|D1u| to get the result.

B.4. Proof of Lemma 16. Let ω ⊂ R2 be an open connected set. Assume there exist x0 ∈ ∂ω and r > 0 s.t.
ω ∩B(x0, r) is Lipschitz.

Let u ∈ BV (ω) satisfying tr∂ω∩B(x0,r)u = 0 and
∫

ω
|Du| = 0. We are going to prove that u = 0. On the one

hand, since
∫

ω
|Du| = 0, we get u = C with C ∈ R a constant. We thus have tr∂ω∩B(x0,r)u = C. Consequently

C = 0 and u ≡ 0.
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Appendix C. Results related to the Cantor set K
C.1. Justification of Remark 6.(1). We prove the following lemma:

Lemma 18. Let η > 0 and let f ∈ C2([0, η],R) be s.t. η <
1

2‖f ′‖L∞([0,η])‖f ′′‖L∞([0,η])
. We denote Cf the

graph of f in an orthonormal frame R0.
For 0 ≤ a < b ≤ η, denoting C the chord [(a, f(a)), (b, f(b))], for any straight line D orthogonal to C s.t.

D ∩ C 6= ∅, the straight line D intersect Cf,a,b at exactly one points where Cf,a,b is the part of Cf delimited by
(a, f(a)) and (b, f(b)).

Remark 19. We may state an analog result with f ∈ C1 where we use the modulus of continuity of f ′ instead
of ‖f ′′‖∞ in the hypothesis.

Proof. The key point here is uniqueness. Indeed, for 0 ≤ a < b ≤ η and C , D as in the lemma, we may easily
prove that Cf,a,b ∩ D 6= ∅ by solving an equation. [We do not use η < (2‖f ′‖L∞([0,η])‖f ′′‖L∞([0,η]))

−1 for the
existence]

In contrast with the existence of an intersection point, its uniqueness is valid only for η not too large. To
prove uniqueness we argue by contradiction and we consider f and η as in lemma and we assume that there
exist two points 0 ≤ a < b ≤ η s.t. there exist a ≤ x < y ≤ b s.t. the segments [(x, f(x)), (y, f(y))] and
[(a, f(a)), (b, f(b))] are orthogonal. Note that with this hypothesis the straight line D := ((x, f(x)), (y, f(y))) is
orthogonal to the chord C := [(a, f(a)), (b, f(b))].

So we get
f(y)− f(x)

y − x
= − b− a

f(b)− f(a)
.

From the Mean Value Theorem, there exist c ∈ (x, y) and c̃ ∈ (a, b) s.t. f ′(c) = − 1

f ′(c̃)
. Consequently

(29) f ′(c)× [f ′(c̃)− f ′(c)] = −1− [f ′(c)]2.

From the hypothesis η < (2‖f ′‖L∞([0,η])‖f ′′‖L∞([0,η]))
−1, we have

|f ′(c̃)− f ′(c)| ≤ η‖f ′′‖L∞([0,η]) <
1

2‖f ′‖L∞([0,η])
.

Therefore, we get

|f ′(c)× [f ′(c̃)− f ′(c)]| < 1

2
which is in contradiction with (29). �

C.2. Two preliminary results. We first prove a standard result which states that the length of a small chord
is a good approximation for the length of a curve.

Lemma 20. Let 0 < η < 1 and let f ∈ C2([0, η],R+). We fix an orthonormal frame and we denote Cf the
graph of f in the orthonormal frame. Let A = (a, f(a)), B = (b, f(b)) ∈ Cf (with 0 ≤ a < b ≤ η) and let

C = [AB] be the chord of Cf joining A and B. We denote ÃB the arc of Cf with endpoints A and B.
We have

H
1(C ) ≤ H

1(ÃB) ≤ H
1(C ) {1 + (b− a)‖f ′′‖L∞ [2‖f ′‖L∞ + ‖f ′′‖L∞(b − a)]} .

Proof. The estimate H 1(C ) ≤ H 1(ÃB) is standard, we thus prove the second inequality.
On the one hand

H
1(C ) =

»
(a− b)2 + [f(a)− f(b)]2 = (b − a)

√

1 +

Å
f(a)− f(b)

a− b

ã2
.

On the other hand

H
1(ÃB) =

∫ b

a

√

1 + f ′2.

With the help of the Mean Value Theorem, there exists c ∈ (a, b) s.t.

f(a)− f(b)

a− b
= f ′(c).
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Applying once again the Mean Value Theorem [to f ′], for x ∈ [a, b] there exists cx between c and x s.t.

f ′(x) = f ′(c) + f ′′(cx)(x − c).

Consequently for x ∈ [a, b] we have:
»
1 + f ′(x)2 =

»
1 + [f ′(c) + f ′′(cx)(x − c)]2

=
»
1 + f ′(c)2

�
1 +

2f ′(c)f ′′(cx)(x− c) + f ′′(cx)
2(x− c)2

1 + f ′(c)2

≤
√

1 +

Å
f(a)− f(b)

a− b

ã2
[

1 + 2‖f ′‖L∞‖f ′′‖L∞(b − a) + ‖f ′′‖2L∞(b− a)2
]

.

Thus we have

H
1(ÃB) =

∫ b

a

»
1 + f ′(x)2 dx

≤ (b − a)

√

1 +

Å
f(a)− f(b)

a− b

ã2
[

1 + 2‖f ′‖L∞‖f ′′‖L∞(b− a) + ‖f ′′‖2L∞(b− a)2
]

= H
1(C ) {1 + (b− a)‖f ′′‖L∞ [2‖f ′‖L∞ + ‖f ′′‖L∞(b− a)]} .

�

We now state another technical lemma which gives an upper bound for the height of the curve w.r.t. its
chord.

Lemma 21. Let 0 ≤ a < b ≤ η, f ∈ C2([0, η],R+) be a strictly concave function and let Cf be the graph of f
in an orthonormal frame. Let A = (a, f(a)) and B = (b, f(b)) be two points of Cf .

Assume that we have η <
1

2‖f ′‖L∞([0,η])‖f ′′‖L∞([0,η])
in order to define for C ∈ [AB] [with the help of Lemma

18] C̃ as the unique intersection point of Cf with the line orthogonal to [AB] passing by C.
We have

H
1([CC̃]) ≤ (b− a)2‖f ′′‖L∞

8
.

Proof. Let 0 ≤ a < b ≤ η, f ∈ C2([0, η],R+) be as in Lemma 21.
We consider the function

g : [0, η] → R

x 7→ f(x)−
ï
f(b)− f(a)

b− a
(x− a) + f(a)

ò
.

It is clear that g is non negative since f is strictly concave.
For C ∈ [AB], we let C̃ be as in Lemma 21. Then we have

sup
C∈[AB]

H
1([CC̃]) = max

[0,η]
g.

Thus, it suffices to prove max[0,η] g ≤ (b− a)2‖f ′′‖L∞

8
.

Since g is C1 and g(a) = g(b) = 0, there exists c ∈ (a, b) s.t.

g(c) = max
[0,η]

g and g′(c) = 0.

Let t ∈ {a, b} be s.t. |t− c| ≤ b− a

2
. Using a Taylor expansion, there exists c̃ between c and t s.t.

0 = g(t) = g(c) + (t− c)g′(c) +
(t− c)2

2
g′′(c̃).

Thus

0 ≤ max
[0,η]

g = g(c) = − (t− c)2

2
g′′(c̃) ≤ (b − a)2‖f ′′‖L∞

8
.

The last inequality completes the proof. �
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C.3. Proof of Proposition 13. We prove that

(30) lim inf
N→∞

H
1(KN ) > 0.

Step 1. We prove that max
k=1,...,2N

H
1(CN

k ) ≤
Å
2

3

ãN

For N ≥ 1 we let {KN
k ; k = 1, ..., 2N} be the set of the connected components of KN . We let CN

k be the
chord of KN

k and we define µN = maxk=1,...,2N H 1(CN
k ). Note that by (11) we have µ0 < 1.

We first prove that for N ≥ 0 we have

(31) µN+1 ≤ 2

3
µN .

By induction (31) implies [since to µ0 < 1]

(32) µN ≤
Å
2

3

ãN
.

In order to get (31), we prove that for N ≥ 1 and KN
k a connected component of KN and C

N
k its chord, we

have

(33) H
1(C ) ≤ 2H 1(CN

k )

3
for C ∈ S(CN

k )

[see Notation 7 for S(·), the set of sons of a chord].

Let N ≥ 1. For k ∈ {1, ..., 2N}, we let KN
k be a connected component of KN . We let KN+1

2k−1,K
N+1
2k ∈ S(KN

k )

be the curve obtained from KN
k in the induction step.

For k̃ ∈ {2k − 1, 2k}, we let C
N+1

k̃
be the chords of KN+1

k̃
.

In the frame R0, we may define four points of Γ, (a1, f(a1)), (b1, f(b1)), (a2, f(a2)), (b2, f(b2)), with 0 < a1 <
b1 < a2 < b2 < η s.t.:

• the endpoints of KN+1
2k−1 are (a1, f(a1))&(b1, f(b1));

• the endpoints of KN+1
2k are (a2, f(a2))&(b2, f(b2));

• the endpoints of KN
k are (a1, f(a1))&(b2, f(b2)).

In the frame R0 we let also (α1, β1), (α2, β2) be the coordinates of the points of CN
k s.t. for l ∈ {1, 2}, the

triangles whose vertices are {(al, f(al)); (bl, f(bl)); (αl, βl)} are right angled in (αl, βl).
We denote

• I1 the segment [(b1, f(b1)); (α1, β1)];
• I2 the segment [(a2, f(a2)); (α2, β2)].

From the construction of KN+1
2k−1&KN+1

2k and from Pythagorean theorem we have for l = 1, 2

H
1(CN+1

2k−2+l)
2 = H

1(Il)2 +
Å

H 1(CN
k )− H 1(CN

k )2

2

ã2
.

Using Lemma 21 we get that

H
1(Il) ≤ (b2 − a1)

2‖f ′′‖L∞ .

On the other hand we have obviously b2 − a1 ≤ H 1(CN
k ). Consequently we get

H
1(CN+1

2k−2+l)
2 ≤ H

1(CN
k )4‖f ′′‖2L∞ +

Å
H 1(CN

k )− H 1(CN
k )2

2

ã2

≤ H
1(CN

k )4‖f ′′‖2L∞ +
H 1(CN

k )2

4
.

Therefore

H
1(CN+1

2k−2+l) ≤
H 1(CN

k )

2

»
1 + 4‖f ′′‖2L∞H 1(CN

k )2,

thus using (12) we get

H
1(CN+1

2k−2+l) ≤
2H 1(CN

k )

3
.

The last estimate gives (33) and thus (32) holds.
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Step 2. We prove that lim inf
N→∞

2N
∑

k=1

H
1(CN

k ) > 0

For N ≥ 1, we let

cN =

2N
∑

k=1

H
1(CN

k ).

The main ingredient in this step consists in noting that, a son of CN
k is an hypothenuse of a right angled

triangle which admits a cathetus of length
H 1(CN

k )− H 1(CN
k )2

2
.

Consequently we have

H
1(CN+1

2k−1) + H
1(CN+1

2k ) ≥ H
1(CN

k )− H
1(CN

k )2.

Thus, summing the previous inequality for k = 1, ..., 2N we get

cN+1 =
2N
∑

k=1

H
1(CN+1

2k−1) + H
1(CN+1

2k ) ≥
2N
∑

k=1

H
1(CN

k )[1− H
1(CN

k )] ≥ cN (1− µN ) ≥ cN

ñ
1−
Å
2

3

ãNô
.

By induction for N ≥ 2

cN ≥ c1

N−1
∏

k=1

ñ
1−
Å
2

3

ãkô
= c1 × exp

[

N−1
∑

k=1

ln

ñ
1−
Å
2

3

ãkô]
.

It is clear that lim infN
∑N−1

l=1 ln
î
1−

(

2
3

)k
ó
> −∞, thus lim infN cN > 0.

Step 3. We prove (30).
Since for KN

k , a connected component of KN , and CN
k its chord, we have H 1(KN

k ) ≥ H 1(CN
k ), from Step

2 we get (30).

Appendix D. A fundamental ingredient in the construction of the Ψ̃N ’s

In this section we use the notation of Sections 4 and 5.

Lemma 22. Let γ ⊂ ÃB be a curve and let C be its chord. We let γ1, γ2 be the curves included in γ obtained
by the induction construction represented Figure 1 [section 4.2]. For l = 1, 2, we denote also by Cl the chord of
γl and by Tl the right-angled triangle having Cl as side of the right-angle and having its hypothenuse included
in C .

If H 1(C ) < min{2−1, (4‖f ′′‖2L∞)−2}, then the hypothenuses of the triangles T1 and T2 have their length

strictly lower than
H 1(C )

2
. And in particular the triangles T1 and T2 are disjoint.

Remark 23. From (11), we know that C0 = C 0
1 is s.t. H 1(C 0

1 ) < min{2−1, (4‖f ′′‖2L∞)−2}. From (31) we have
that for N ≥ 1 and k ∈ {1, ..., 2N} we have H 1(CN

k ) < H 1(C 0
1 ) < min{2−1, (4‖f ′′‖2L∞)−2}.

Therefore with the help of Lemma 22, for N ≥ 1, the triangles TNk ’s are pairwise disjoint.

Proof. We model the statement by denoting {M,Q} the set of endpoints of γ and N and P are points s.t.:

• M,N are the endpoints of γ1
• P,Q are the endpoints of γ2.

We denote δ := H 1([MQ]) = H 1(C ) < min{2−1, (4‖f ′′‖2L∞)−2}.
We fix an orthonormal frame R̃ with the origin in M , with the x-axis (MQ) and s.t. N,P,Q have respectively

for coordinates (x1, y1), (x2, y2) and (x3, 0) where 0 < x1 < x2 < x3 and y1, y2 > 0.
By construction we have

x1 =
δ − δ2

2
, x2 =

δ + δ2

2
and x3 = δ.

Moreover, arguing as in the proof of Lemma 21 we have [recall that ÃB is the graph of a function f in an
other orthonormal frame]:

0 < y1, y2 ≤ δ2‖f ′′‖L∞ .
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b
(0, 0)

b
(x1, y1 = ax1)

b
(x2, y2 = αx2 + β)

b
(x3, 0)

y = ax

y = αx + β

b

(x4, 0)

b

(x5, 0)

Figure 6. Model problem

From these points, in Section 4.2, we defined two right-angled triangles having their hypothenuses contained
in the x-axis.

The first triangle admits for vertices the origin (0, 0), (x1, y1) and a point of the x-axis (x4, 0). This triangle

is right angled in (x1, y1). In the frame R̃, one of the side of the right-angle is included in the line parametrized
by the cartesian equation y = ax. Since δ ≤ 1/2

|a| =
∣

∣

∣

∣

y1
x1

∣

∣

∣

∣

≤ 2δ2‖f ′′‖L∞

δ − δ2
≤ 4‖f ′′‖L∞δ.

The second triangle admits for vertices (x2, y2), (x3, 0) and a point of the x-axis (x5, 0). This triangle is

right-angled in (x2, y2). In the frame R̃, one of the side of the right-angle is included in the line parametrized
by the cartesian equation y = αx+ β where

|α| =
∣

∣

∣

∣

y2
x2 − x3

∣

∣

∣

∣

≤ 2δ2‖f ′′‖L∞

δ − δ2
≤ 4‖f ′′‖L∞δ.

The proof of the proposition consists in obtaining

x4 <
x3

2
and x3 − x5 <

x3

2
.

We get the first estimate. With the help of Pythagorean theorem we have

x2
1 + y21 + (x1 − x4)

2 + y21 = x2
4.

By noting that y1 = ax1 we have

x4 = (1 + a2)x1.

Thus:

x4 <
x3

2
⇐⇒ (1 + a2)

δ − δ2

2
<

δ

2

⇐= (1 + 16‖f ′′‖2L∞δ2)(1− δ) < 1

⇐⇒ δ − δ2 <
1

16‖f ′′‖2L∞

⇐= δ <
1

16‖f ′′‖2L∞

.

Following the same strategy we get that if δ <
1

16‖f ′′‖2L∞

then x3 − x5 <
x3

2
. �

Appendix E. Adaptation of a result of Giusti in [Giu84]

In this appendix we present briefly the proof of Theorem 2.16 and Remark 2.17 in [Giu84]. The argument
we present below follows the proof of Theorem 2.15 in [Giu84].

Proposition 24. Let Ω ⊂ Rn be a bounded open set of class C2 and let h ∈ L1(∂Ω). For all ε > 0 there exists
uε ∈ W 1,1(Ω) s.t. tr∂Ωuε = h and

‖uε‖W 1,1(Ω) := ‖uε‖L1(Ω) + ‖∇uε‖L1(Ω) ≤ (1 + ε)‖h‖L1(Ω).
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Proof. We sketch the proof of Proposition 24. Let h ∈ L1(∂Ω) and let ε > 0 be sufficiently small s.t.

(1 + ε2)2 + ε2 + ε4 < 1 +
ε

2
and (1 + ε2)ε2 <

ε

2
.

.
Step 1. We may consider η > 0 sufficiently small s.t. in Ωη := {x ∈ Ω ; dist(x, ∂Ω) < η} we have:

(1) The function

d : Ωη → (0, η)
x 7→ dist(x, ∂Ω)

is of class C1 and satisfies |∇d| ≥ 1/2,
(2) The orthogonal projection on ∂Ω, Π∂Ω, is Lipschitz.

We now fix a sequence (hk)k ⊂ C∞(∂Ω) s.t. hk
L1

→ h. We may assume that (up to replace the first term and
to consider an extraction):

(1) h0 ≡ 0,
(2)

∑

k≥0 ‖hk+1 − hk‖L1 ≤ (1 + ε2)‖h‖L1 .

And finally we fix a decreasing sequence (tk)k ⊂ R∗
+ s.t.

(1) t0 < min(η, ε2) is sufficiently small s.t.
• 4t0 max(1; ‖∇Π∂Ω‖L∞)×max(1, supk ‖hk‖L1) < min(ε2, ε2‖h‖L1),
• for ϕ ∈ L1(∂Ω) we have for s ∈ (0, t0)

∫

d−1({s})

|ϕ ◦Π∂Ω(x)| ≤ (1 + ε2)

∫

∂Ω

|ϕ(x)|.

(2) For k ≥ 1 we have tk ≤ t0‖h‖L1

2k(1 + ‖∇hk‖L∞ + ‖∇hk+1‖L∞)
.

Step 2. We define

uε : Ω → R

x 7→







d(x) − tk+1

tk − tk+1
hk ◦Π∂Ω(x) +

tk − d(x)

tk − tk+1
hk+1 ◦Π∂Ω(x) if d(x) ∈ [tk+1, tk)

0 otherwise

.

We may easily check that uε is locally Lipschitz and thus weakly differentiable.
From the coarea formula and a standard change of variable we have

‖uε‖L1 ≤ 2

∫

{d≤t0}

|uε||∇d|

≤ 2

∫ t0

0

ds

∫

d−1({s})

|uε|dx

≤ 2
∑

k≥0

∫ tk

tk+1

ds

∫

d−1({s})

|uε|dx

≤ 2
∑

k≥0

∫ tk

tk+1

ds

∫

d−1({s})

[|hk ◦Π∂Ω(x)|+ |hk+1 ◦Π∂Ω(x)|]dx

≤ 2(1 + ε2)
∑

k≥0

∫ tk

tk+1

ds

∫

∂Ω

[|hk(x)| + |hk+1(x)|]dx

≤ 2(1 + ε2)
∑

k≥0

(tk − tk+1)(‖hk‖L1 + ‖hk+1‖L1)

≤ 4(1 + ε2)t0 sup
k

‖hk‖L1

≤ (1 + ε2)ε2‖h‖L1

≤ ε

2
‖h‖L1.
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We now estimate ‖∇uε‖L1 . It is easy to check that if d(x) ∈ (tk+1, tk) then we have

|∇uε(x)| ≤ |∇d(x)|
ï |hk ◦Π∂Ω(x)− hk+1 ◦Π∂Ω(x)|

tk − tk+1
+ 2‖∇Π∂Ω‖L∞ [|∇hk| ◦Π∂Ω(x) + |∇hk+1| ◦Π∂Ω(x)]

ò
.

Consequently we get

‖∇uε‖L1 ≤ (1 + ε2)
∑

k≥0

®
∫ tk

tk+1

‖hk+1 − hk‖L1

tk − tk+1
+ 2‖∇Π∂Ω‖L∞(tk − tk+1)(‖∇hk+1‖L1 + ‖∇hk‖L1)

´

≤ (1 + ε2)[(1 + ε2)‖h‖L1 + 2‖∇Π∂Ω‖L∞t0‖h‖L1]

≤ (1 + ε2)[(1 + ε2) + ε2]‖h‖L1

≤ (1 + ε/2)‖h‖L1.

Consequently uε ∈ W 1,1(Ω) and ‖uε‖W 1,1 ≤ (1 + ε)‖h‖L1.
In order to end the proof it suffices to check that tr∂Ω(uε) = h. The justification of this property follows the

argument of Lemma 2.4 in [Giu84]. �
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