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CHARACTERISTIC FUNCTIONS ON THE BOUNDARY OF A PLANAR DOMAIN

NEED NOT BE TRACES OF LEAST GRADIENT FUNCTIONS

MICKAËL DOS SANTOS

Abstract. Given a smooth bounded planar domain, we construct a compact set on the boundary s.t. its
characteristic function is not the trace of a least gradient function. This generalize the construction of Spradlin
and Tamasan [ST14] on the disc.
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1. Introduction

We let Ω be a bounded C2 domain of R2. For a function h ∈ L1(∂Ω,R), the least gradient problem with
boundary datum h is the problem:

(1) min

ß∫

Ω

|Dw| | w ∈ BV (Ω) and tr∂Ωw = h

™
.

In the above minimization problem, BV (Ω) is the space of functions of bounded variation. It is the space of
functions w ∈ L1(Ω) having a distributional gradient Dw which is a bounded Radon measure.

If the minimization problem (1) admits solutions, such minimal functions are called functions of least gradient.
Sternberg, Williams and Ziemmer proved in [SWZ92] that if h : ∂Ω → R is a continuous map and if ∂Ω

satisfies some geometric properties then Problem (1) admits a unique solution.
On the other hand, Spradlin and Tamasan [ST14] proved that, for the disc Ω = {x ∈ R

2 | |x| < 1} [the disc
satisfies the geometric hypotheses of [SWZ92]], we may find a function h0 ∈ L1(∂Ω) which is not continuous
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2 MICKAËL DOSSANTOS

s.t. Problem (1) has no solution. The function h0 is the characteristic function of a Cantor set K ⊂ S
1 = {x ∈

R
2 | |x| = 1}
The goal of this article is to extend the main result of [ST14] for a C2 bounded open set Ω ⊂ R

2.
We prove the following theorem:

Theorem 1. Let Ω ⊂ R
2 be a bounded C2 open set. Then there is a measurable set K ⊂ ∂Ω s.t. the minimization

problem

(2) min

ß∫

Ω

|Dw| | w ∈ BV (Ω) and tr∂Ωw = 1IK

™

has no solution.

The above theorem has been proved when Ω = D is the unit disk in [ST14].
The calculations in [ST14] are specific to the case Ω = D. The proof of Theorem 1 relies on new arguments

for the construction of the Cantor set K and in the strategy of the proof.

2. Strategy of the proof

2.1. The model problem. We present the strategy developed to prove Theorem 1 by proving its adaptation
for Ω =]0, 1[2. Obviously this model case does not satisfy the hypothesis of regularity on Ω but it allows to
make simple calculations.

We thus prove the following result:

Theorem 2. Let K̃ be a fat Cantor set [e.g. a Smith-Volterra-Cantor set] supported in

ï
1

4
,
3

4

ò
, then letting

K = K̃ × {0}, Problem (2) does not admit a solution.

This section is devoted to the proof of Theorem 2. The proof is done arguing by contradiction. We assume
that there exists u0 a solution of Problem (2). We obtain a contradiction in 3 Steps.

Step 1. Upper bound
Using a result in [Giu84] [Theorem 2.16 & Remark 2.17] we have

(3) min

ß∫

Ω

|Dw| | w ∈ BV (Ω) and tr∂Ωw = h

™
=

∫

Ω

|Du0| ≤ ‖1IK‖L1(∂Ω) = |K|.

Here |K| is the length of K.
Estimate (3) follows from Theorem 2.16 & Remark 2.17 in [Giu84]. By combining Theorem 2.16 & Remark

2.17 in [Giu84] we may prove that for all ε > 0 there exists a map uε ∈ BV (Ω) s.t.
∫

Ω

|Duε| ≤ (1 + ε)‖1IK‖L1(∂Ω) and tr∂Ωuε = 1IK.

The proof of this argument is presented in [Giu84] in a special context (1) . The adaptation for Ω a C2 set is
presented Appendix C. An easy adaptation of the argument may be done for Ω =]0, 1[2.

Step 2. Saturation of (3) [see (6)]
We fix (un)n ⊂ C∞(Ω) ∩BV (Ω) s.t. tr∂Ωun = 1IK and un → u0 in BV-norm, i.e.,

un
L1

→ u0 and

∫

Ω

|∇un| →

∫

Ω

|Du0|.

The sequence is defined by convolution with u0 and a Friedrichs mollifiers with compact support [see [Giu84]-
Theorem 1.17].

We let also B∞ := {(x, y) ∈]0, 1[2 |x ∈ K̃ and y > 0}. The saturation of (3) consists in obtaining:

(4)

∫

B∞

|∂2un| ≥ |K|.

1This result was initially proved by Gagliardo in [Gag57]. A short proof of "trW 1,1
= L1" may be found in [Mir15]. The

key-point is here the quantitative form of the upper bound on
∫

Ω
|Duε| given by Remark 2.17 in [Giu84].
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As observed by Mironescu, the key tool in the proof of (4) is Fubini Theorem combined with the Fundamental
Theorem of calculus.

∫

B∞

|∂2un| =

∫ 1

0

dx

∫ 1

0

|∂2un|1IB∞
dy(5)

≥

∫ 1

0

dx

∣

∣

∣

∣

∣

∫ 1

0

∂2un1IB∞
dy

∣

∣

∣

∣

∣

=

∫ 1

0

1IK̃

= |K̃| = |K|.(6)

Step 3. A transverse argument
In order to obtain a contradiction we are going to prove that [for sufficiently large n]

(7)

∫

Ω

|∇un| −

∫

B∞

|∂2un| ≥ δ for some δ > 0 independent of n.

From the BV-convergence we have
∫

Ω

|Du0| = lim
n

∫

Ω

|∇un|

= lim
n

∫

B∞

|∂2un|+

Ç
∫

Ω

|∇un| −

∫

B∞

|∂2un|

å

[(6)&(7)] ≥ |K|+ δ.

The last estimate yields a contradiction with (3).
Thus it suffices to prove (7).
We make the following dichotomy: u0 6≡ 0 in Ω \B∞ or u0 ≡ 0 in Ω \B∞.
If u0 6≡ 0 in Ω \B∞, since tr∂Ω\Ku0 = 0, then u0 can not be a constant in Ω \B∞. Thus

δ :=
1

2

∫

Ω\B∞

|Du0| > 0.

Therefore, for sufficiently large n,
∫

Ω

|∇un| −

∫

B∞

|∂2un| ≥

∫

Ω\B∞

|∇un| ≥ δ.

This prove Estimate (7).

We now assume that u0 ≡ 0 in Ω \B∞. It is clear that we may fix
1

4
< a < b <

3

4
and 0 < c < d < 1 s.t.

δ′ :=
1

2

∫

]a,b[×]c,d[

|u0| > 0 and ({a, b}×]0, 1[)∩B∞ = ∅.

Noting that u0 ≡ 0 in Ω\B∞ and that the sequence (un)n is obtained by the convolution of u with a C∞-mollifier
with compact support, it follows that for sufficiently large n we have un ≡ 0 in {a, b} × [c, d].

Consequently, from Lemma 3.2 in [ST14], we get [for sufficiently large n]
∫

]a,b[×]c,d[

|∂1un| ≥
2

b− a

∫

]a,b[×]c,d[

|un| > δ′.

Since
∫

]a,b[×]c,d[
|∂1un| > δ′,

∫

]a,b[×]c,d[
|∂2un| ≤ 2|K|, by Lemma 3.3 in [ST14] we obtained:

∫

]a,b[×]c,d[

|∇un| ≥

∫

]a,b[×]c,d[

|∂2un|+
δ′2

4|K|+ δ′
.

We thus get (7) with δ :=
δ′2

4|K|+ δ′
.
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2.2. Comments. To prove Theorem 1, we plan to follow the strategy presented above. The first main step
in this strategy is the construction of a suitable Cantor set K ⊂ ∂Ω. Once K is constructed we define B∞ by
bending lines orthogonal to ∂Ω.

The construction of K is done Section 4 and B∞ is defined Section 5.
A second main step is to implementing the appropriate substitute of Fubini Theorem. This involves Coarea

formula. The estimate we will device [the analog of (6) is done by Lemma 8] is obtained asymptotically by
integration [via Coarea formula] along level sets of an appropriate function. The appropriate function is, roughly
speaking, the projection on K "along" connected components of B∞.

The plan of this article is the following:

• In Section 3 we specify some notations and defintions.
• In Section 4 we present the construction of the set K ⊂ ∂Ω.
• In Section 5 we construct the fundamental tool in the proof of Theorem 1. The Cantor set K is obtained

by a standard iterative process. It is defined as the intersection of set KN ⊂ ∂Ω: K = ∩N≥1KN . In
Section 5, for N ≥ 1, we construct a Lipschitz map ΨN defined in a subset of Ω with value in KN . The
main difficulty in this construction is to get a map with a sharp control of its Lipschitz semi-norm (see
Lemma 6).

• In Section 6 we state some properties on B∞ and ΨN : the topological interior of B∞ is empty and we
give an upper bound for the Lipschitz semi-norm of ΨN (see Lemma 6).

• Section 7 is dedicated to the proof of Theorem 1.
• For the convenience of the reader, the proof of some results are postponed to appendices.

In Appendix A we prove that the measure of the Cantor set K is positive.
Appendix B is dedicated to some technical results about the set B∞.
In Appendix C we sketch the proof of Giusti to get the analog of (3).

3. Notations, definitions

The ambient space is the euclidean plan R
2. We let Bcan be the canonical basis of its direction space.

a) The open ball centered at A ∈ R
2 with radius r > 0 is denoted by B(A, r).

b) A vector may be denoted by an arrow when it is defined with its extremities (e.g.
−−→
AB), it may be also

denoted by a letter in bold font (e.g. u) or more simply by a grec letter in normal font (e.g. ν).
We let also |u| be the usual euclidean norm of the vector u.

c) For a vector u we let u
⊥ be the direct orthogonal vector to u, i.e., if the coordinates of u are (x1, x2), then

those of u⊥ are (−x2, x1).

d) For A,B ∈ R
2, the segment of extremities A and B is denoted by [AB] = {A + t

−−→
AB | t ∈ [0, 1]} and

dist(A,B) = |
−−→
AB| is the usual euclidean distance.

e) For a set U ⊂ R
2, the topological interior of U is denoted by

◦

U and its topological closure is U .
f) For k ≥ 1, a Ck-curve is the range of a Ck injective map from ]0, 1[ to R

2. Note that, in this article,
Ck-curves are not closed sets of R2.

g) For Γ a C1-curve, H 1(Γ) is the 1-dimensional Hausdorff measure of Γ.
h) For k ≥ 1, a Ck-Jordan curve is the range of a Ck injective map from the unit circle S

1 to R
2.

i) For Γ a C1-curve or a C1-Jordan curve, C = [AB] is a chord of Γ when A,B ∈ Γ with A 6= B.
j) If Γ is a C1-Jordan curve then, for A,B ∈ Γ&A 6= B, the set Γ \ {A,B} admits exactly two connected

components: Γ1&Γ2. These connected components are C1-curves.
By smoothness of Γ, it is clear that there is ηΓ > 0 s.t. for 0 < dist(A,B) < ηΓ there exists THE smallest

connected components: we have H 1(Γ1) < H 1(Γ2) or H 1(Γ2) < H 1(Γ1).

If 0 < dist(A,B) < ηΓ we may define AB by:

(8) AB is the closure of the smallest curve between Γ1 and Γ2.

k) In this article Ω ⊂ R
2 is a C2 bounded open set. By C2 we mean that ∂Ω is of class C2:

• There exists a covering {U1, ..., Un} of ∂Ω by open sets, ∂Ω ⊂ ∪ni=1Ui,

• For all i ∈ {1, ..., n} there is a C2 diffeomorphism ϕi : Ui → D s.t.
∣

∣

∣

∣

ϕi(Ui ∩ Ω) = {(x1, x2) ∈ D |x2 > 0}
ϕi(Ui ∩ ∂Ω) = {(x1, x2) ∈ D |x2 = 0}

.
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4. Construction of the Cantor set K

It is clear that, up to consider a connected component of Ω, in order to prove Theorem 1 we may assume
that Ω is a connected set.

We fix Ω ⊂ R
2 be a bounded C2 open connected set. The set K ⊂ ∂Ω of Theorem 1 is a Cantor set. It is

constructed by a recursive way.

4.1. First step: main hypotheses. From the regularity of Ω, there are ℓ + 1 C2-open sets, ω0, ..., ωℓ, s.t.
Ω = ω0 \ ω1 ∪ · · · ∪ ωℓ.

Moreover we may assume that:

• ωi is simply connected for i = 0, ..., ℓ,
• ωi ⊂ ω0 for i = 1, ..., ℓ,
• ωi ∩ ωj = ∅ for 1 ≤ i < j ≤ ℓ.

We let Γ = ∂ω0. The Cantor set K is constructed in Γ. Note that Γ is a Jordan-curve. From the Gauss-
Bonnet Theorem we get the existence of M0 ∈ Γ and r0 ∈]0, 1[ s.t. for A,B ∈ B(M0, r0)∩Γ, the chord [AB] ⊂ Ω
and [AB] ∩ ∂Ω = {A,B}. Note that we may assume 2r0 < ηΓ [ηΓ is defined in Section 3-j]

We fix A,B ∈ B(M0, r0) ∩ Γ s.t. A 6= B. We have:

• By the definition of M0 and r0, the chord C0 := [AB] is included in Ω.

• We let AB be the closure of the smallest part of Γ which is delimited by A,B (see (8)). Up to replace

r0 by a smaller value we may assume that AB is the graph of f ∈ C2([0, η],R+) in the orthonormal

frame R0 = (A, e1, e2) where e1 =
−−→
AB/|

−−→
AB|.

• The function f is strictly concave and f(x) > 0 for x ∈]0, η[.

Key Claim. Note that the length of the chord [AB] is η and that for intervals I, J ⊂ [0, η], if I ⊂ J then

(9) ‖f ′′
|I‖L∞(I) ≤ ‖f ′′

|J‖L∞(J)

where f|I is the restriction of f to I.

Thus, up to replace the chord C0 = [AB] by a smaller chord of AB parallel to C0, and up to restrict the function
f (and up to add a suitable constant to f) we may assume that

(10) 0 < η < min

®
1

2
;

1

16‖f ′′‖2
L∞([0,η])

´
.

We may also assume that

• Letting D+
0 be the bounded open set s.t. ∂D+

0 = [AB]∪ AB we have Π∂Ω, the orthogonal projection
on ∂Ω, which is well defined and of class C2 in D+

0 .
• Once again by (9) we have

(11) 1 + 4‖f ′′‖2L∞diam(D+
0 ) <

16

9

where diam(D+
0 ) = sup{dist(M,N) |M,N ∈ D+

0 }.

4.2. Step 2: Iterative construction. We are now in position to construct the Cantor set K as a subset of

AB. The construction is iterative.
The goal of the construction is to get at Step N ≥ 0 a collection of 2N pairwise disjoint curves included in

AB [denoted by {KN
1 , ...,KN

2N}] and their chords [denoted by {CN
1 , ...,CN

2N }].

The idea is standard: at the step N ≥ 0 we replace a curve Γ0 included in AB by two curves included in Γ0

(see Figure 1).

Initialization. We initialize the procedure by letting K0
1 :=AB and C 0

1 = C0 = [AB].

At step N ≥ 0 we have:

• A set of 2N curves included in AB, {KN
1 , ...,KN

2N}. The curves KN
k ’s are mutually disjoints. We let

KN = ∪2N

k=1K
N
k .

• A set of 2N chords, {CN
1 , ...,CN

2N } s.t. for k = 1, ..., 2N , CN
k is the chord of KN

k .
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Remark 1. (1) Note that since the CN
k ’s are chords of AB and since in the frame R0 = (A, e1, e2), AB is

the graph of a function, none of the chords CN
k are vertical, i.e., directed by e2.

Since the chords C
N
k are not vertical, for k ∈ {1, ..., 2N}, we may define νCN

k
as the unit vector

orthogonal to C
N
k s.t. νCN

k
= αe1 + βe2 with β > 0.

(2) Since the function f ∈ C2([0, η],R+) is strictly concave, considering a chord C
N
k and a straight line D

perpendicular to CN
k , the straight line D intersect KN

k at exactly one points.

This fact may be easily checked by letting Γ∗ be the range of AB with respect to the symmetry of

axe [AB] and by noting that the compact set delimited by AB ∪Γ∗ is a strictly convex domain.

Heredity rules. From Step N ≥ 0 to Step N + 1 we follow the following rules:

(1) For each k ∈ {1, ..., 2N}, we let ηNk be the length of CN
k . Inside the chord CN

k we center a segment INk
of length (ηNk )2.

(2) With the help of Remark 1.2, we may define two distinct points of KN
k as the intersection of KN

k with
straight lines perpendicular to CN

k which pass by the extremities of INk .

(3) These intersection points are the extremities of a curve K̃N
k included in KN

k . We let KN+1
2k−1 and KN+1

2k

the connected components of KN
k \ K̃N

k . We let also

• C
N+1
2k−1 and C

N+1
2k their chords;

• KN+1 = ∪2N+1

k=1 KN+1
k .

Notation 2. A natural terminology consists in defining the father and the sons of a chord or a curve:

• F(CN+1
2k−1) = F(CN+1

2k ) = CN
k is the father of the chords C

N+1
2k−1 and C

N+1
2k .

F(KN+1
2k−1) = F(KN+1

2k ) = KN
k is the father of the curves KN+1

2k−1 and KN+1
2k .

• S(CN
k ) = {CN+1

2k−1 ,C
N+1
2k } is the set of sons of the chord CN

k , i.e., F(CN+1
2k−1) = F(CN+1

2k ) = CN
k .

S(KN
k ) = {KN+1

2k−1,K
N+1
2k } is the set of sons of the curve KN

k , i.e., F(KN+1
2k−1) = F(KN+1

2k ) = KN
k .

The heredity step is represented in Figure 1.

(ηkN )2

ηkN

Figure 1. Heredity

In Figure 2&3 the two first iterations of the process are represented.

Figure 2. First iteration of the process Figure 3. Second iteration of the process

We now define the Cantor set

(12) K =
⋂

N≥0

KN .

The Cantor set K is fat:
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Proposition 3. We have H 1(K) > 0.

This proposition is proved in Appendix A.

5. Construction of a sequence of functions used in conjuction with Coarea Formula

A key argument in the proof of Theorem 1 is the use of the coarea formula to calculate a lower bound for
(2). The coarea formula is applied to a function adapted to the set K.

For N = 0 we let

• D+
0 be the compact set delimited by K0 =AB and C 0

1 := [AB] the chord of K0.

• We recall that we fixed a frame R0 = (A, e1, e2) where e1 =
−−→
AB/|

−−→
AB|. For σ = (σ1, 0) ∈ C

0
1 , we define:

(13) Iσ is the connected component of {(σ1, t) ∈ Ω | t ≤ 0} which contains σ.

[Iσ is a vertical segment included in Ω].
• D−

0 = ∪σ∈C 0
1
Iσ.

• We now define the maps

Ψ̃0 : D−
0 → C 0

1

x 7→ ΠC 0
1
(x)

and

Ψ0 : D−
0 ∪D+

0 → C 0
1

x 7→

®
Π∂Ω(x) if x ∈ D+

0

Π∂Ω[Ψ̃0(x)] if x ∈ D−
0

where Π∂Ω is the orthogonal projection on ∂Ω and ΠC 0
1

is the orthogonal projection on C 0
1 . Note that,

in the frame R0, for x = (x1, x2) ∈ D−
0 , we have ΠC 0

1
(x) = (x1, 0).

For N = 1 and k ∈ {1, 2} we let:

• D1
k be the compact set delimited by K1

k and C 1
k ;

• T 1
k be the compact right-angled triangle (with its interior) having C 1

k as side adjacent to the right angle
and whose hypothenuse is included in C 0

1 ;
• H1

k be the hypothenuse of T 1
k .

We now define D−
1 = Ψ̃−1

0 (H1
1 ∪H1

2 ), T1 = T 1
1 ∪ T 1

2 and D+
1 = D1

1 ∪D1
2.

We first consider the map

Ψ̃1 : T1 ∪D−
1 → C

1
1 ∪ C

1
2

x 7→

®
ΠC 1

k
(x) if x ∈ T 1

k

ΠC 1
k
[Ψ̃0(x)] if x ∈ D−

1

.

In Appendix B [Proposition 12], it is proved that the triangles T 1
1 and T 1

2 are disjoint. Thus the map Ψ̃1 is well
defined

By projecting C 1
1 ∪ C 1

2 on ∂Ω we get

Ψ1 : T1 ∪D−
1 ∪D+

1 → K1

x 7→

®
Π∂Ω(x) if x ∈ D+

1

Π∂Ω[Ψ̃1(x)] if x ∈ T1 ∪D−
1

.



8 MICKAËL DOSSANTOS

σ

D1
2

T 1
2

ψ̃
−1

0
(H1

2 )

D1
1 ∪ T1 ∪ Ψ̃−1

0
(H1

1 )

Figure 4. The sets defined at Step N = 1 and the level line [in dash] of Ψ1 associated to σ

For N ≥ 1, we first construct Ψ̃N+1 and then ΨN+1 is obtained from Ψ̃N+1 and Π∂Ω.
For k ∈ {1, ..., 2N+1}, we let

• DN+1
k be the compact set delimited by KN+1

k and C
N+1
k [recall that C

N+1
k is the chord associated to

KN+1
k ] ;

• TN+1
k be the right-angled triangle (with its interior) having C

N+1
k as side adjacent to the right angle

and whose hypothenuse is included in F(CN+1
k ). Here F(CN+1

k ) is the father of C
N+1
k (see Notation

2);

• HN+1
k ⊂ F(CN+1

k ) be the hypothenuse of TN+1
k .

We denote TN+1 =

2N+1

⋃

k=1

TN+1
k , D−

N+1 = Ψ̃−1
N

Ñ
2N+1

⋃

k=1

HN+1
k

é

and D+
N+1 =

2N+1

⋃

k=1

DN+1
k .

K
N+1

2k−1
D

N+1

2k−1 K
N+1

2k
T

N+1

2k−1
H

N+1

2k−1 DN
k

Figure 5. Heredity. The bold lines correspond to the new iteration

Remark 4. It is easy to check that for N ≥ 0:

(1) TN+1 ⊂ D+
N ,

(2) if x ∈
◦

TN then x /∈ TN ′ for N ′ ≥ N + 1 [here T0 = ∅].
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We now define

Ψ̃N+1 : TN+1 ∪D−
N+1 → ∪2N+1

k=1 C
N+1
k

x 7→

{

Π
C

N+1

k

(x) if x ∈ TN+1
k

Π
C

N+1

k

[Ψ̃N (x)] if x ∈ Ψ̃−1
N (∪2N+1

k=1 HN+1
k )

.

In Appendix B [Proposition 12], it is proved that for N ≥ 1, the triangles TNk for k = 1, ..., 2N are mutually

disjoint. Thus the map Ψ̃N+1 is well defined is Ψ̃N makes sense.

And, as in the Initialization Step, we get ΨN+1 from Ψ̃N+1 by projecting ∪2N+1

k=1 C
N+1
k on ∂Ω:

ΨN+1 : TN+1 ∪D−
N+1 ∪D+

N+1 → KN+1

x 7→

®
Π∂Ω[Ψ̃N+1(x)] if x ∈ TN+1 ∪D−

N+1

Π∂Ω(x) if x ∈ D+
N+1

.

It is easy to see that ΨN+1(TN+1 ∪D−
N+1 ∪D+

N+1) = KN+1.

6. Basic properties for B∞ and ΨN

We first state some fundamental claims on the sets BN = TN ∪D+
N ∪D−

N . It is easy to check that for N ≥ 0
we have BN+1 ⊂ BN and K ⊂ ∂BN . Therefore we may define

B∞ = ∩N≥0BN

which is compact and it satisfies K ⊂ ∂B∞.
We are going to prove:

Lemma 5. The interior of B∞ is empty.

Proof of Lemma 5. From Proposition 12 in Appendix B combined with Hypothesis (10), we get two fundamental
facts:

(1) The triangles TN1 , ... ,TN2N+1 are mutually disjoint.
(2) We have:

(14) H
1(HN+1

k ) <
H 1(F(CN

k ))

2
.

For a non empty set A ⊂ R
2 we let

rad(A) = sup{r ≥ 0 | ∃x ∈ A s.t. B(x, r) ⊂ A}.

Note that the topological interior of A is empty if and only if rad(A) = 0.
On the one hand, it is not difficult to check that

(15) rad(BN ) = rad(BN ∩D−
N).

On the other hand, using (14) and the Incidence Theorem applied in a recursive way, we get that for N ≥ 1:

(16) rad(BN+1 ∩D−
N+1) ≤

rad(BN ∩D−
N )

2
.

Consequently, by combining (15)&(16) we get the existence of C0 > 1 s.t.

(17) rad(BN ) ≤
C0

2N
.

Since B∞ = ∩N≥0BN , from (17) we get that rad(B∞) = 0. The last estimate implies the expected result.
�

We now prove the key estimate for ΨN :

Lemma 6. The function ΨN is (1 + oN (1))-Lipschitz.

Proof. The functions Ψ̃N are obtained as compositions of orthogonal projections on straight lines and thus are
1-Lipschitz.

The projection PN := Π∂Ω defined in D+
N is (1 + oN (1))-Lipschitz. The functions ΨN are either the compo-

sition of Ψ̃N with PN or ΨN = PN . Consequently ΨN is (1 + oN (1))-Lipschitz. �
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7. Proof of Theorem 1

We are now in position to prove Theorem 1. It is clear that we may assume that Ω is a connected set.
The proof of Theorem 1 is done arguing by contradiction. We assume that there exists a map u0 ∈ BV (Ω)

which is a solution of (2).

7.1. Upper bound. The first step in the demonstration is

(18)

∫

Ω

|Du0| ≤ ‖1IK‖L1(∂Ω) = |K|.

Estimate (18) is obtained by proving that for all ε > 0 there is uε ∈ W 1,1(Ω) s.t. tr∂Ωuε = 1IK and

(19) ‖∇uε‖L1(Ω) ≤ (1 + ε)‖tr∂Ωuε‖L1(Ω) = (1 + ε)|K|.

The last estimate is obtained by Theorem 2.16 & Remark 2.17 in [Giu84]. The proof of this result is done for
special domains Ω. We sketch its adaptation for a C2 domain in Appendix C.

With the help of (19), it suffices to use the minimality of u0 to get (18).

7.2. Saturation of the upper bound. In order to have a contradiction we follow the strategy of Spradlin
and Tamasan in [ST14]. We fix a sequence (un)n ⊂ C∞(Ω) defined by the convolution of u0 and a Friedrichs
mollifiers [with compact support]. This sequence of functions is defined in [Giu84]-Theorem 1.17. It satisfies

un
BV
→ u0 and tr∂Ωun = tr∂ΩuO.

Here un
BV
→ u0 means un

L1

→ u0 and
∫

Ω
|∇un| →

∫

Ω
|Du0|.

For x ∈ B0 we let

(20) V0(x) =

®
νΠ∂Ω(x) if x ∈ D+

0

(0, 1) if x ∈ D−
0

,

and for N ≥ 0, x ∈ BN+1:

(21) VN+1(x) =







VN (x) if x ∈ BN\
◦

T N+1

ν
C

N+1

k

if x ∈
◦

T
N+1
k

,

where νσ is the normal outward of Ω in σ ∈ ∂Ω and ν
C

N+1

k

is defined in Remark 1.1.

We now prove the following lemma.

Lemma 7. When N → ∞ we may define

(22)
V∞ : B∞ → R

2

x 7→ limN→∞ VN (x)
.

Moreover, from the Dominated Convergence Theorem, we have:

(23) VN1IBN
→ V∞1IB∞

in L1(Ω).

Proof. Let x ∈ B∞. Then x ∈ BN for all N ≥ 1. In order to prove that V∞(x) is well defined it suffices to

note that, from Remark 4.2, if x ∈
◦

TN0
for some N0 ≥ 1, then x /∈ TN for N > N0. Consequently, there is a

dichotomy:

• x ∈ B∞ \ ∪N≥1

◦

TN ,

• ∃!N0 ≥ 1 s.t. x ∈
◦

TN0
.

If x ∈ B∞ \ ∪N≥1

◦

TN , then we have VN (x) = V0(x) for all N ≥ 1. Thus limN→∞ VN (x) = V0(x). Otherwise

there exists a unique N0 ≥ 1 s.t. x ∈
◦

TN0
. Therefore for all N > N0 we have VN (x) = VN0

(x). Consequently
limN→∞ VN (x) = VN0

(x). �

This section is dedicated for the proof of the lemma:

Lemma 8. For all w ∈ C∞ ∩BV (Ω) s.t. tr∂Ωw = 1IK we have
∫

B∞∩Ω

|∇w · V∞| ≥ |K|

where V∞ is the vectorial field defined in (22).
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Remark 9. Since |V∞(x)| = 1 for x ∈ B∞, it is clear that Lemma 8 implies that for all n we have
∫

B∞∩Ω

|∇un| ≥ |K|.

Therefore, from the BV-convergence of un to u0 we get
∫

B∞∩Ω

|Du0| ≥ |K|.

Section 7.3 is dedicated to a sharper argument than above to get
∫

B∞∩Ω

|∇un| ≥

∫

B∞∩Ω

|∇un · V∞|+ δ

with δ > 0 is independent of n. The last estimate will imply
∫

B∞∩Ω
|Du0| ≥ |K| + δ which will be the

contradiction in the argumentation.

Proof. We first get that for w ∈ C∞ ∩BV (Ω) s.t. tr∂Ωw = 1IK we have

(24)

∫

BN∩Ω

|∇w · VN | ≥
|K|

|ΨN |2Lip(BN)

where

|ΨN |Lip(BN) = sup

ß
|ΨN(x) −ΨN(x)|

|x− y|
|x, y ∈ BN , x 6= y

™
,

is the Lipischitz semi-norm of ΨN and VN is the vectorial field defined in (20)&(21).
Once we get this estimate, we claim that for a fixed map w ∈ C∞ ∩BV (Ω) s.t. tr∂Ωw = 1IK, from (23) and

the Dominated Convergence Theorem, we have ∇w · VN1IBN∩Ω → ∇w · V∞1IB∞∩Ω in L1(Ω).
Thus, with the help of Lemma 6 [|ΨN |Lip(BN) = 1 + oN (1)] we have

∫

B∞∩Ω

|∇w · V∞| ≥ |K|.

We thus prove (24). We fix w ∈ C∞ ∩BV (Ω) s.t. tr∂Ωw = 1IK. Using the Coarea Formula we have

|ΨN |2Lip(BN)

∫

BN∩Ω

|∇w · VN | ≥

∫

BN∩Ω

|jacΨN ||∇w · VN |

=

∫

AB

dσ

∫

Ψ−1

N
({σ})∩Ω

|∇w · VN |.

Here Ψ−1
N ({σ}) is a polygonal chain:

Ψ−1
N ({σ}) = Iσ̃ ∪ I1N,σ ∪ · · · ∪ IN+1

N,σ

where

• σ̃ is s.t. [AB] ∩ Ψ̃−1
N ({σ}) = {σ̃},

• Iσ̃ is defined in (13),
• for l = 1, ..., N we have I lN,σ = Ψ−1

N ({σ}) ∩ TN+1−l,

• IN+1
N,σ = Ψ−1

N ({σ}) ∩D+
N .

From the Fundamental Theorem of calculus and from the definition of VN , denoting

• Iσ̃ = [α0, α1] (where α0 ∈ ∂Ω and α1 = σ̃),
• I lN,σ = [αl, αl+1], l = 1, ..., N + 1 and αN+2 = σ,

we have for a.e. σ ∈AB:
∫

[αl,αl+1]

|∇w · VN | ≥ |w(αl+1)− w(αl)|.

Here we used a little abuse of notation writing for l = 0&N + 2 w(αl) instead of tr∂Ωw(αl).
Therefore for a.e σ ∈ KN we have

∫

Ψ−1

N
({σ})∩Ω

|∇w · VN | ≥ |tr∂Ωw(σ) − tr∂Ωw(α0)| = 1IK(σ).
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We may thus deduce that

|ΨN |
2
Lip(BN)

∫

BN∩Ω

|∇w · VN | ≥

∫

AB

1IK = |K|.

The last estimate clearly implies (24) and it ends the proof of Lemma 8. �

7.3. Transverse argument. We assumed that there exists a map u0 which solves Problem (2).
We make the following dichotomy:

• u0 6≡ 0 in Ω \B∞;
• u0 ≡ 0 in Ω \B∞.

We are going to prove that both cases give a contradiction.

7.3.1. The case u0 6≡ 0 in Ω \ B∞. We assume that

∫

Ω\B∞

|u0| > 0. In this case, since (tr∂Ωu0)|∂Ω\∂B∞
≡ 0,

we have

δ :=

∫

Ω\B∞

|Du0| > 0.

Recall that we fixed a sequence (un)n ⊂ C∞ ∩BV (Ω) s.t. un
BV
→ u0 &tr∂Ωun = tr∂Ωu0.

Therefore, for sufficiently large n, we have
∫

Ω\B∞

|∇un| >
δ

2
.

Thus, from Lemma 8 we get [we use also |V∞(x)| = 1 for all x ∈ B∞]
∫

Ω

|∇un| ≥

∫

B∞

|∇un · V∞|+

∫

Ω\B∞

|∇un| ≥ |K|+
δ

2
.

This implies
∫

Ω

|Du0| = lim
n

∫

Ω

|∇un| ≥ |K|+
δ

2

which is in contradiction with (18).

7.3.2. The case u0 ≡ 0 in Ω \ B∞. We first note that, since tr∂D+

0

u0 6≡ 0, there exists a triangle TN0

k s.t.
∫

T
N0
k

|u0| > 0. We fix such a triangle TN0

k and we let α be its right-angle.

We let R̃ = (α, ẽ1, ẽ2) be the direct orthonormal frame centered in α where ẽ2 = ν
C

N0
k

[ν
C

N0
k

is defined

Remark 1.1],i.e., the directions of the new frame are given by the side of the right-angle of TN0

k ].

It is clear that for N ≥ N0 we have VN ≡ ẽ2 in
◦

TN0

k .

By construction of B∞, TN0

k ∩B∞ is a union of segments directed by ẽ2, i.e. 1IB∞ |T
N0
k

(s, t) depends only on

the first variable "s" in the frame R̃.
Since

∫

T
N0
k

|u0| > 0, in the frame R̃, we may find a, b, c, d ∈ R s.t., considering the rectangle (whose sides are

parallel to the direction of R̃)

P := {α+ sẽ1 + tẽ2 | (s, t) ∈ [a, b]× [c, d]} ⊂ TN0

k

we have
∫

P

|u0| > 0.

Since from Lemma 5 the set B∞ has an empty interior [and that 1IB∞ |T
N0
k

(s, t) depends only on the first variable

in the frame R̃], we may find a′, b′ s.t.

• [a′, b′]× [c, d] ⊂ [a, b]× [c, d],
• S ∩B∞ = ∅ with S := {α+ sẽ1 + tẽ2 | (s, t) ∈ {a′, b′} × [c, d]}

• δ :=

∫

P′

|u0| > 0 with P ′ := {α+ sẽ1 + tẽ2 | (s, t) ∈ [a′, b′]× [c, d]}.
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Moreover, since B∞ is a compact set, we may find an open neighborhood of S which do not intersect B∞.

Noting that u ≡ 0 in Ω \ B∞ and that the sequence (un)n is obtained by the convolution of u0 with a
C∞-mollifier with compact support, it follows that for sufficiently large n we have

• un ≡ 0 in S,

•

∫

P′

|un| >
δ

2
.

Consequently, from Lemma 3.2 in [ST14], we get [for sufficiently large n]
∫

P′

|∂ẽ1
un| ≥

2

b′ − a′

∫

P′

|un| >
δ

b′ − a′
=: δ′.

Therefore
∫

P′
|∂ẽ1

un| > δ′,
∫

P′
|∂ẽ2

un| ≤ 2|K| and then by Lemma 3.3 in [ST14] we obtain:

∫

P′

|∇un| ≥

∫

P′

|∂ẽ2
un|+

δ′2

4|K|+ δ′
.

Thus, from Lemma 8, for sufficiently large n:
∫

Ω

|∇un| ≥ |K|+
δ′2

4|K|+ δ′
− on(1).

From the convergence in BV -norm of un to u0 we have
∫

Ω

|Du0| ≥ |K|+
δ′2

4|K|+ δ′
.

Clearly this last assertion contradicts (18) and ends the proof of Theorem 1.

Appendices

Appendix A. Results related with the Cantor set K

A.1. Two preliminary results. We first prove a standard result which states that the length of a small chords
is a good approximation for the length of a curve.

Lemma 10. Let 0 < η < 1 and let f ∈ C2([0, η],R+). We fix an orthonormal frame and we denote Cf the
graph of f in the orthonormal frame. Let A = (a, f(a)), B = (b, f(b)) ∈ Cf (with 0 ≤ a < b ≤ η) and let

C = [AB] be the chord of Cf joining A and B. We denote ÃB the arc of Cf with extremities A and B.
We have

H
1(C ) ≤ H

1(ÃB) ≤ H
1(C ) {1 + (b− a)‖f ′′‖L∞ [2‖f ′‖L∞ + ‖f ′′‖L∞(b − a)]} .

Proof. The estimate H 1(C ) ≤ H 1(ÃB) is standard, we thus prove the second inequality.
On the one hand

H
1(C ) =

»
(a− b)2 + [f(a)− f(b)]2 = (b − a)

√

1 +

Å
f(a)− f(b)

a− b

ã2
.

On the other hand

H
1(ÃB) =

∫ b

a

√

1 + f ′2.

With the help of the Mean Value Theorem, there is c ∈]a, b[ s.t.

f(a)− f(b)

a− b
= f ′(c).

Applying once again the Mean Value Theorem [to f ′], for x ∈ [a, b] there is cx between c and x s.t.

f ′(x) = f ′(c) + f ′′(cx)(x − c).
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Consequently for x ∈ [a, b] we have:
»
1 + f ′(x)2 =

»
1 + [f ′(c) + f ′′(cx)(x − c)]2

=
»
1 + f ′(c)2

�
1 +

2f ′(c)f ′′(cx)(x− c) + f ′′(cx)
2(x− c)2

1 + f ′(c)2

≤

√

1 +

Å
f(a)− f(b)

a− b

ã2
[

1 + 2‖f ′‖L∞‖f ′′‖L∞(b − a) + ‖f ′′‖2L∞(b− a)2
]

.

Thus we have

H
1(ÃB) =

∫ b

a

»
1 + f ′(x)2 dx

≤ (b − a)

√

1 +

Å
f(a)− f(b)

a− b

ã2
[

1 + 2‖f ′‖L∞‖f ′′‖L∞(b− a) + ‖f ′′‖2L∞(b− a)2
]

= H
1(C ) {1 + (b− a)‖f ′′‖L∞ [2‖f ′‖L∞ + ‖f ′′‖L∞(b− a)]} .

�

We now state another technical lemma which give an upper bound for the height of the curve w.r.t. its chord.

Lemma 11. Let 0 ≤ a < b ≤ η, f ∈ C2([0, η],R+) be a strictly concave function and let Cf be the graph of f
in an orthonormal frame. Let A = (a, f(a)) and B = (b, f(b)) be two points of Cf .

For C ∈ [AB] we denote by C̃ the intersection point of Cf with the line orthogonal to [AB] passing by C

[from Remark 1.2, C̃ is well defined].
We have

H
1([CC̃]) ≤ (b− a)2‖f ′′‖L∞ .

Proof. We first note that if we let x̃ be the abscissa of C̃ and if we let P be the point of [AB] having x̃ for

abscissa, then H 1([PC̃]) ≥ H 1([CC̃]) since the triangle CPC̃ is right-angled in C.
From the Mean Value Theorem, there exist

• cx ∈]a, x̃[ s.t. f ′(cx) =
f(x̃)− f(a)

x̃− a

• c ∈]a, b[ s.t. f ′(c) =
f(b)− f(a)

b− a

• c̃ between c and cx s.t. f ′′(c̃) =
f ′(cx)− f ′(c)

cx − c

Moreover

H
1([PC̃]) =

∣

∣

∣

∣

f(x̃)−

ï
(x̃− a)

f(b)− f(a)

b− a
+ f(a)

ò∣
∣

∣

∣

= |x̃− a|

∣

∣

∣

∣

f(x̃)− f(a)

x̃− a
−

f(b)− f(a)

b− a

∣

∣

∣

∣

= |x̃− a| |f ′(cx)− f ′(c)|

= |x̃− a||cx − c| |f ′′(c̃)|

≤ (b− a)2‖f ′′‖L∞

which gives the result. �

A.2. Proof of Proposition 12. We prove that

(25) lim inf
N→∞

H
1(KN ) > 0.

Step 1. We prove that max
k=1,...,2N

H
1(CN

k ) ≤

Å
2

3

ãN

For N ≥ 1 we let {KN
k | k = 1, ..., 2N} be the set of the connected components of KN . We let CN

k be the
chord of KN

k and we define µN = maxk=1,...,2N H 1(CN
k ). Note that by (10) we have µ0 < 1.
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We first prove that for N ≥ 0 we have

(26) µN+1 ≤
2

3
µN .

With the help of a standard recursive argument, we may prove that (26) implies [because µ0 < 1]

(27) µN ≤

Å
2

3

ãN
.

In order to get (26), we prove that for N ≥ 1 and KN
k a connected component of KN and CN

k its chord, we
have

(28) H
1[C ] ≤

2H 1(CN
k )

3
for C ∈ S(CN

k )

[see Notations 2 for S(·), the set of sons of a chord].

Let N ≥ 1, for k ∈ {1, ..., 2N} we let KN
k be a connected component of KN . We let KN+1

2k−1,K
N+1
2k ∈ S(KN

k )

be the curve obtained from KN
k in the heredity step.

For k̃ ∈ {2k − 1, 2k}, we let C
N+1

k̃
be the chord of KN+1

k̃
.

In the frame R0, we may define four points of Γ, (a1, f(a1)), (b1, f(b1)), (a2, f(a2)), (b2, f(b2)), with 0 < a1 <
b1 < a2 < b2 < η s.t.:

• the extremities of KN+1
2k−1 are (a1, f(a1))&(b1, f(b1));

• the extremities of KN+1
2k are (a2, f(a2))&(b2, f(b2));

• the extremities of KN
k are (a1, f(a1))&(b2, f(b2)).

In the frame R0 we let also (α1, β1), (α2, β2) be the coordinates of the points of CN
k s.t. for l ∈ {1, 2}, the

triangles whose vertices are {(al, f(al)); (bl, f(bl)); (αl, βl)} are right angled in (αl, βl).
We denote

• I1 the segment [(b1, f(b1)); (α1, β1)];
• I2 the segment [(a2, f(a2)); (α2, β2)].

From the construction of KN+1
2k−1&KN+1

2k and from Pythagore theorem we have for l = 1, 2

H
1(CN+1

2k−2+l)
2 = H

1(Il)
2 +

Å
H 1(CN

k )− H 1(CN
k )2

2

ã2
.

Using Lemma 11 we get that

H
1(Il) ≤ (b2 − a1)

2‖f ′′‖L∞ .

On the other hand we have obviously b2 − a1 ≤ H 1(CN
k ). Consequently we get

H
1(CN+1

2k−2+l)
2 ≤ H

1(CN
k )4‖f ′′‖2L∞ +

Å
H 1(CN

k )− H 1(CN
k )2

2

ã2

≤ H
1(CN

k )4‖f ′′‖2L∞ +
H 1(CN

k )2

4
.

Therefore

H
1(CN+1

2k−2+l) ≤
H 1(CN

k )

2

»
1 + 4‖f ′′‖2L∞H 1(CN

k )2,

thus using (11) we get

H
1(CN+1

2k−2+l) ≤
2H 1(CN

k )

3
.

The last estimate gives (28) and thus (27) holds.

Step 2. We prove that lim inf
N→∞

2N
∑

k=1

H
1(CN

k ) > 0

For N ≥ 1, we let

cN =
2N
∑

k=1

H
1(CN

k ).
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The main ingredient in this step consists in noting that, a son of CN
k is an hypothenuse of a right angled

triangle which admits a side with length
H 1(CN

k )− H 1(CN
k )2

2
.

Consequently we have

H
1(CN+1

2k−1) + H
1(CN+1

2k ) ≥ H
1(CN

k )− H
1(CN

k )2.

Thus, summing the previous inequality for k = 1, ..., 2N we get

cN+1 =

2N
∑

k=1

H
1(CN+1

2k−1) + H
1(CN+1

2k )

≥
2N
∑

k=1

H
1(CN

k )[1 − H
1(CN

k )]

≥ cN (1− µN )

≥ cN

ñ
1−

Å
2

3

ãNô
.

By a standard recursive argument we obtain for N ≥ 2

cN ≥ c1

N−1
∏

k=1

ñ
1−

Å
2

3

ãkô

= c1 × exp

[

N−1
∑

k=1

ln

ñ
1−

Å
2

3

ãkô]
.

It is clear that lim infN
∑N−1

l=1 ln
î
1−

(

2
3

)k
ó
> −∞, thus lim infN cN > 0.

Step 3. We prove (25).
Since for KN

k , a connected component of KN , and CN
k its chord, we have H 1(KN

k ) ≥ H 1(CN
k ), from Step

2 we get (25).

Appendix B. Results related with the set B∞

In this section we use the notations of Section 4.

Proposition 12. Let γ ⊂AB be a curve and let C be its chord. We let γ1, γ2 be the curves included in γ
obtained by the heredity construction represented Figure 1 [section 4.2]. For l = 1, 2, we denote also by Cl the
chord of γl and by Tl the right-angled triangle having Cl as side of the right-angle and having its hypothenuse
included in C .

If H 1(C ) < (4‖f ′′‖2L∞)−2, then the hypothenuses of the triangles T1 and T2 have their length strictly lower

than
H 1(C )

2
. And in particular the triangles T1 and T2 are disjoint.

Proof. We model the statement by denoting M and Q the extremities of γ and N and P are points s.t.:

• M,N are the extremities of γ1
• P,Q are the extremities of γ2.

We denote δ = H 1([MQ]).

We fix an orthonormal frame R̃ with the origin in M , with the x-axe (MQ) and s.t. N,P,Q have respectively
for coordinates (x1, y1), (x2, y2) and (x3, 0) where 0 < x1 < x2 < x3 and y1, y2 > 0.

By construction we have

x1 =
δ − δ2

2
, x2 =

δ + δ2

2
and x3 = δ.

Moreover, from Lemma 11 we have [recall that AB is the graph of a function f in an other orthonormal
frame]:

0 < y1, y2 ≤ δ2‖f ′′‖L∞ .
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b
(0, 0)

b
(x1, y1 = ax1)

b
(x2, y2 = αx2 + β)

b
(x3, 0)

y = ax

y = αx + β

b

(x4, 0)

b

(x5, 0)

Figure 6. Modelisation of the situation

From these points, in Section 4.2, we defined two right-angled triangles having their hypothenuses included
in the x-axes.

The first triangle admits for vertices the origin (0, 0), (x1, y1) and a point of the x-axis (x4, 0). This triangle

is right angled in (x1, y1). In the frame R̃, one of the side of the right-angle is included in the line parametrized
by the cartesian equation y = ax. Since δ ≤ 1/2

|a| =

∣

∣

∣

∣

y1
x1

∣

∣

∣

∣

≤
2δ2‖f ′′‖L∞

δ − δ2
≤ 4‖f ′′‖L∞δ.

The second triangle admits for vertices (x2, y2), (x3, 0) and a point of the x-axes (x5, 0). This triangle is

right-angled in (x2, y2). In the frame R̃, one of the side of the right-angle is included in the line parametrized
by the cartesian equation y = αx+ β where

|α| =

∣

∣

∣

∣

y2
x2 − x3

∣

∣

∣

∣

≤
2δ2‖f ′′‖L∞

δ − δ2
≤ 4‖f ′′‖L∞δ.

The proof of the proposition consists in obtaining

x4 <
x3

2
and x3 − x5 <

x3

2
.

We get the first estimate. With the help of Pythagore Theorem we have

x2
1 + y21 + (x1 − x4)

2 + y21 = x2
4.

By noting that y1 = ax1 we have

x4 = (1 + a2)x1.

Thus:

x4 <
x3

2
⇐⇒ (1 + a2)

δ − δ2

2
<

δ

2

⇐= (1 + 16‖f ′′‖2L∞δ2)(1− δ) < 1

⇐⇒ δ − δ2 <
1

16‖f ′′‖2L∞

⇐= δ <
1

16‖f ′′‖2L∞

.

Following the same strategy we get that if δ <
1

16‖f ′′‖2L∞

then x3 − x5 <
x3

2
. �

Appendix C. Adaptation of a result of Giusti in [Giu84]

In this appendix we present briefly the proof of Theorem 2.16&Remark 2.17 in [Giu84]. The argument we
present below follows the proof of Theorem 2.15 in [Giu84].

Proposition 13. Let Ω ⊂ R
n be a bounded open set of class C2 and let h ∈ L1(∂Ω). For all ε > 0 there exists

uε ∈ W 1,1(Ω) s.t. tr∂Ωuε = h and

‖uε‖W 1,1(Ω) := ‖uε‖L1(Ω) + ‖∇uε‖L1(Ω) ≤ (1 + ε)‖h‖L1(Ω).
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Proof. We sketch the proof of Proposition 13. Let h ∈ L1(∂Ω) and let ε > 0 be sufficiently small s.t.

(1 + ε2)2 + ε2 + ε4 < 1 +
ε

2
and (1 + ε2)ε2 <

ε

2
.

.
Step 1. We may consider η > 0 sufficiently small s.t. in Ωη := {x ∈ Ω | dist(x, ∂Ω) < η} we have:

(1) The function

d : Ωη → ]0, η[
x 7→ dist(x, ∂Ω)

is of class C2 and satisfy |∇d| ≥ 1/2.
(2) The orthogonal projection on ∂Ω, Π∂Ω, is Lipschitz.

We now fix a sequence (hk)k ⊂ C∞(∂Ω) s.t. hk
L1

→ h. We may assume that (up to replace the first term and
to consider an extraction):

(1) h0 ≡ 0
(2)

∑

k≥0 ‖hk+1 − hk‖L1 ≤ (1 + ε2)‖h‖L1 .

And finally we fix a decreasing sequence (tk)k ⊂ R
∗
+ s.t.

(1) t0 < min(η, ε2) is sufficiently small s.t.
• 4t0 max(1; ‖∇Π∂Ω‖L∞)×max(1, supk ‖hk‖L1) < min(ε2, ε2‖h‖L1),
• for ϕ ∈ L1(∂Ω) we have for s ∈]0, t0[

∫

d−1({s})

|ϕ ◦Π∂Ω(x)| ≤ (1 + ε2)

∫

∂Ω

|ϕ(x)|.

(2) For k ≥ 1 we have tk ≤
t0‖h‖L1

2k(1 + ‖∇hk‖L∞ + ‖∇hk+1‖L∞)
.

Step 2. We define

uε : Ω → R

x 7→







d(x)− tk+1

tk − tk+1
hk ◦Π∂Ω(x) +

tk − d(x)

tk − tk+1
hk+1 ◦Π∂Ω(x) if d(x) ∈ [tk+1, tk[

0 otherwise

.

We may easily check that uε is locally Lipschitz and thus weakly differentiable.
From the coarea formula and a standard change of variable we have

‖uε‖L1 ≤ 2

∫

{d≤t0}

|uε||∇d|dx

= 2

∫ t0

0

∫

d−1({s})

|uε|dx

≤ 2
∑

k≥0

∫ tk

tk+1

ds

∫

d−1({s})

|uε|dx

≤ 2
∑

k≥0

∫ tk

tk+1

ds

∫

d−1({s})

[|hk ◦Π∂Ω(x)|+ |hk+1 ◦Π∂Ω(x)|]dx

≤ 2(1 + ε2)
∑

k≥0

∫ tk

tk+1

ds

∫

∂Ω

[|hk(x)| + |hk+1(x)|]dx

≤ 2(1 + ε2)
∑

k≥0

(tk − tk+1)(‖hk‖L1 + ‖hk+1‖L1)

≤ 4(1 + ε2)t0 sup
k

‖hk‖L1

≤ (1 + ε2)ε2‖h‖L1

≤
ε

2
‖h‖L1.
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We now estimate ‖∇uε‖L1 . It is easy to check that if d(x) ∈]tk+1, tk[ then we have

|∇uε(x)| ≤ |∇d(x)|

ï
|hk ◦Π∂Ω(x)− hk+1 ◦Π∂Ω(x)|

tk − tk+1
+ 2‖∇Π∂Ω‖L∞ [|∇hk| ◦Π∂Ω(x) + |∇hk+1| ◦Π∂Ω(x)]

ò
.

Consequently we get

‖∇uε‖L1 ≤ (1 + ε2)
∑

k≥0

®
∫ tk

tk+1

‖hk+1 − hk‖L1

tk − tk+1
+ 2‖∇Π∂Ω‖L∞(tk − tk+1)(‖∇hk+1‖L1 + ‖∇hk‖L1)

´

≤ (1 + ε2)[(1 + ε2)‖h‖L1 + 2‖∇Π∂Ω‖L∞t0‖h‖L1]

≤ (1 + ε2)[(1 + ε2) + ε2]‖h‖L1

≤ (1 + ε/2)‖h‖L1.

Consequently uε ∈ W 1,1(Ω) and ‖uε‖W 1,1 ≤ (1 + ε)‖h‖L1.
In order to end the proof it suffices to check that tr∂Ω(uε) = h. The justification of this property follows the

argument of Lemma 2.4 in [Giu84]. �
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