Generalized Multipath Load Sharing Using Vectorized Routing Model
Résumé
In this paper, we present a generalized multipath load sharing framework for Internet. Under the hypothesis that edge networks are fully independent in establishing Internet routing policies, we use game theory and a vectorized utility function to solve the Internet multipath routing problem. We first briefly review the existing techniques that apply game theory to improve the Internet routing resiliency. We propose a vectorized routing cost model to consider multiple routing metrics in the network setting, along with a universal refinement method to quantify the profile performance and predict the behavior of the vectorized routing game. Based on the universal refinement method as well as a linear traffic distribution algorithm, we define a generalized multipath load sharing framework to improve the routing resiliency in traffic exchange between two distant edge networks. Running simulations with real measured Internet metrics, we find that the proposed generalized edge-to-edge multipath load sharing framework is able to offer far more resilient solutions than legacy and alternative protocols such as standard BGP and BGP with LISP-based traffic engineering.