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ABSTRACT

In this paper, we analyse and solve a source separation problem based on a
mixing model that is nonlinear and non-invertible at the space of mixtures.
The model is relevant considering it may represent the data obtained from ion-
selective electrode arrays. We apply a new approach for solving the problems of
local stability of the recurrent network previously used in the literature, which
allows for a wider range of source concentration. In order to achieve this, we
utilize a second-order recurrent network which can be shown to be locally stable
for all solutions. Using this new network and the priors that chemical sources
are continuous and smooth, our proposal performs better than the previous
approach.

1 PROBLEM STATEMENT

The general blind source separation (BSS) problem consists in estimating sources,
represented by the vector s = [s1, s2, ..., sn]

T , that have been mixed by an un-
known function F(.), given only the mixtures x = [x1, x2, ..., xn]

T and prior
information on the model or the sources.

x = F(s). (1)

For a linear function F(.), the problem can be uniquely solved – up to scale and
permutation ambiguities – by formulating a criterion of statistical independence,
but this is no longer possible for a generic nonlinear mapping. [2, 5, 6]. It is well
known that the nonlinear BSS problem is very difficult to solve, since the generic
nonlinearities can cause multiple statistical independent solutions that are still
mixtures of the sources.

In the literature, we can find several approaches for dealing with specific
nonlinear mixtures, such as the Post-Nonlinear (PNL) [2, 7] and the Linear-
Quadratic (LQ) [4]. For the latter, a recurrent network has been proposed as
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part of the solving system, and, with some modifications, can also be used for
a different mixing model which shall be analyzed in this paper, represented as
follows:

x1 = s1 + a1s
2
2

x2 = s2 + a2
√
s1

(2)

This model describes data obtained from ion-selective-electrodes (ISEs), where
we have two sources (i.e. chemical species) and two sensors. More details about
the suitability of model (2) to the problem can be found in [3].

Fig. 1. Illustration of the folding of the
source space
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Fig. 2. Increase of the folded area with
the selectivity coefficients

Our main goal in this paper is to obtain an estimate y = (y1, y2) of the
sources s = (s1, s2), when the exact selectivity coefficients aij and the mixtures
x = (x1, x2) are known. For the mixing model (2), the nonlinearity creates a
difficulty for being non-invertible, since two distinct source points can be mapped
onto the same mixture. Indeed, as can be seen in Fig. 1, the model effectively
“folds” the source space, and this folding depends on the selectivity coefficients,
as seen in Fig. 2. For a given point in the mixture space x = (x1, x2), it can be
seen that the possible solutions are the sources y = (s1, s2) and a mixture of the
sources, given by:

y∗ =

(

(√
s1
(

a1a
2
2 − 1

)

+ 2a1a2s2
)2

(a1a22 + 1)
2 ,

−a1a
2
2s2 + 2a2

√
s1 + s2

a1a
2
2 + 1

)

(3)

The folding frontier (i.e., the locus of the points for which y = y∗) is given by:

a1a2s2 =
√
s1. (4)

Since we are dealing with aqueous ionic solutions, we can restrict the sources
concentrations to si ∈ [0, 1]. In this region of interest, we shall henceforth call
the points below and above the folding frontier regions 1 and 2 respectively,
as seen in Fig. 3. It can also be seen that while some of the points in region
1 are mapped to an invertible area (i.e., y∗ is outside the region of interest,
and therefore no ambiguity ensues), all points from region 2 are mapped to the
non-invertible area.



Fig. 3. Mapping of the frontiers in the source and
mixture spaces

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Y
1

Y
2

Fig. 4. Direction of network step
based on the initialization point

2 RECURRENT NETWORK ANALYSIS

The use of recurrent networks to solve this problem has already been considered
before by Duarte and Jutten [3], who achieved good but limited results since the
network used is not locally stable for all possible ionic concentrations. In order
to solve this issue, a new approach that implements a second-order recurrent
network based on the Newton-Raphson’s method has been proposed [1]. The
goal in using a recurrent network is to obtain the solutions of the model (2)
numerically, since obtaining the analytical solution is not always straightforward.

2.1 Recurrent Network

The main idea to obtain a separating system is to represent (2) as

G(s) =

[

s1 + a1s
2
2 − x1

s2 + a2
√
s1 − x2

]

= 0 (5)

Then, the source separation problem can be interpreted as a homogeneous non-
linear equation system and can be solved by root-finding algorithms such as the
Newton-Raphson’s method [1]. This leads to the following equation:

y(m+ 1) = y(m) − µJG
−1G(y(m)) (6)

where y is the estimate of the sources, µ ∈ (0, 1] is an adjustment scale factor,
m is the iteration index of the network and JG is the Jacobian matrix of G. To
avoid discontinuities in the derivatives when extending (2) to R

2, we can use:

x1 = y1 + a1y
2
2

x2 = y2 + a2
√

|y1|sign(y1)
(7)

which is the same model as (2) in the region of interest [0, 1]× [0, 1].
When the network converges, we obtain y(m + 1) = y(m), which is defined

as a fixed point of the network. From (6), we can show that this happens if and
only if G = 0, since JG

−1 is non-singular.



2.2 Stability of Solutions

We can calculate the stability condition of Eq. (6), for all fixed points. It is well
known that for discrete dynamic systems, if all eigenvalues λi of the Jacobian
matrix of the recurrence evaluated at the fixed point satisfy |λi| < 1, the system
is locally stable. Computing the Jacobian matrix at the fixed points, leads to:

J|G=0 =

[

∂y1(m+1)
∂y1(m)

∂y1(m+1)
∂y2(m)

∂y2(m+1)
∂y1(m)

∂y2(m+1)
∂y2(m)

]

G=0

=

[

1− µ 0
0 1− µ

]

(8)

From (8) we conclude that for µ ∈ (0, 1], the fixed points are always locally
stable. According to this result, the stability problem found in [3] no longer
exists, since the solution (s1, s2) is stable for all source concentrations. However,
we now have to deal with a non-separating solution (3) that is also stable. Since
the two solutions are always in different regions, it is important to know how
to control which solution we want the network to obtain. Given a sufficiently
small step for the network in (6) – e.g., µ = 0.1 –, if we initialize in (0.9, 0.1) and
(0.1, 0.9) we converge to solutions in regions 1 and 2 respectively, as seen in Fig.
4. As a result, specifying the initial point can be used to reach the separating
solution of the model.
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Fig. 5. Trajectories near the folding frontier.

2.3 Pivot Points

To have more knowledge about the solutions’ trajectories near the folding fron-
tier, we can look at Fig. 5. In Fig. 5a, we see the trajectory of the sources when
it crosses the frontier. In Fig. 5b, we see two different trajectories in the (y1, y2)
plane: the one represented by squares, corresponding to the estimate when we
initialize in region 1, and one represented by circles when we initialize in region
2.

From the initial point of the trajectory, we can see that the solution corre-
sponds to the square estimate before crossing the frontier, and the circle one



afterwards. Let us define the point when the solution crosses the frontier as the
pivot. Moreover, the pivot is also the point at which the initialization should be
changed.

After observing the behaviour of the trajectory of the sources and the esti-
mates in several simulations, it was suggested that the correct solution should
combine the estimates in such a way that the resulting signal would be as smooth
as possible near the folding frontier. As can also be seen in Fig. 5, we can ver-
ify that, near the border, the correct solution is smoother than the alternative
in which no change of initialization occurs. Therefore, using as priors that the
source are continuous and smooth, we propose an algorithm that determines
which initialization should be applied to the points at the non-bijective region
in order to obtain the correct solution.

3 PROPOSED ALGORITHM

In this section, we propose an algorithm that identifies the pivots and the ini-
tializations that should be used to recover the signal. In the following sections,
we will present the technical aspects of the proposed algorithm.

3.1 Identification of Potential Pivots

In order to identify the pivots, we calculate the entire estimate with only the
initialization in region 1 and make a system that predicts, at a given point of
the calculated signal, if the next point would cross the border. The prediction
does not have to be very accurate, since it only identifies potential pivots. After
identifying all pivots, we segment the signal into blocks in which all the points
are either initialized in region 1 or 2. In Fig. 6 we can see two signals in each
graph, a thin one representing the estimated sources obtained with initialization
at region 1, and a thick one representing the real sources. The vertical lines
represent potential pivots given by the algorithm, and as we can see, all points
where the initialization should be changed were identified.

For the prediction of the next point, a factor based on the curvature of
the trajectory of the estimates was included. This is because when the sources
cross the border, the trajectories of the estimates tend to rapidly change their
direction, yielding high curvature. The algorithm therefore considers such abrupt
variations as an indicative that the next point is a probable pivot. For more
details about how the prediction is done, one can look at the pseudocode in
Table 1.

3.2 Classification of each Block

After segmenting the signal, we need to identify which initialization each block
should be given. For that, we initially check for points outside the non-bijective
area. As previously mentioned, we know that such points can only come from
region 1, so we can safely initialize its corresponding block in it. For the remaining
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Fig. 6. Block segmentation of the estimates. Thick and thin curves represent the
sources and the estimate, respectively.

blocks, we select the initialization that maximizes the measure of smoothness
around the pivot. We define smoothness as:

S(y) = Var(y2(n+ 1)− y2(n)) (9)

where Var(.) is the empirical variance calculated in a N -sized window (N = 11
samples) centered around the pivot and n is the sample index of the signal. A
pseudocode of the entire algorithm can be seen in Table 1:

Table 1. Pseudocode of the proposed algorithm

1. Using (6), obtain y, the estimate from initialization point 1.
2. For each point of y, predict the next point using:

ŷ(n + 1) = y(n) + λ(n)
∆y(n)

||∆y(n)||
(10)

λ(n) =

n∑

i=n−4

||∆y(i)||

5
exp(1 − |cosθ|) (11)

where ∆y(n) = y(n)−y(n−1) is the last step, θ(n) the angle between ∆y(n+1) and ∆y(n+3),
and λ(n) a scalar factor based on the curvature of the trajectory.

3. If ŷ(n + 1) is in region 2, store it as a potential pivot.
4. Segment signal into blocks separated by potential pivots.
5. Assign non-ambiguous blocks to region 1.
6. For the remaining blocks, test initializations in both regions and select the combination that

minimizes the smoothness (9).



4 SIMULATION RESULTS

In this section, we analyse the performance of the proposed algorithm and com-
pare it to the previous methods for solving the problem [3]. We simulate sources
by filtering a uniform random signal with a high order low-pass filter, with vari-
able cut-off frequency. As one may notice, the smaller the cut-off frequency, the
smoother the estimated sources obtained. To estimate the performance of the
technique, we measure the Signal-to-Interference ratio (SIR) – defined in Eq.
(12) – for each block of the signal.

SIR = 10 log10

(

E{s2}
E{(s− y)2}

)

(12)

If a block’s SIR is lower than a certain threshold, we consider that the estimates
are wrong, otherwise we consider them correct. For our simulation, we used 15
dB as the threshold. We can then calculate the percentage of errors given by the
algorithm.
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Fig. 7. Simulation results for fixed
source smoothness and varying selec-
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ity coefficient (h = 0.8) and varying source
smoothness

4.1 First Scenario

In this simulation, we keep the sources’ smoothness constant and vary the selec-
tivity coefficients h, defined, for the sake of illustration, as a1 = a2 = h. Fig. 7
shows the average percentage of errors, for 300 trials for each h and 20 different
h ∈ [0.1, 0.95]. We can verify that for selectivity coefficients h < 0.6, results
for both the proposed network and the previous one can be considered similar.
However, for h ∈ [0.6, 0.9] our approach yields considerably better results. For
h > 0.9 (i.e. for ill-conditionned mixtures), the errors with the two methods are
above 10% and grow rapidly with h, and we can consider that both methods
fail.



4.2 Second Scenario

In the second scenario, we keep the selectivity coefficients constant (h = 0.8)
and vary the sources’ smoothness by adjusting the filter’s cutoff frequency. As
we can see in Fig. 8, for all cutoff frequencies tested, the proposed algorithm
performed better than the previous technique.

We can also see that regardless of the signal’s smoothness, the percentage
of errors in our technique remains roughly constant and very low (about 2%),
which suggests the smoothness of the sources do not interfere in the algorithm’s
performance.

5 CONCLUSION

In this paper we considered a problem of source separation in non-invertible
nonlinear mixtures derived from an application in which chemical sensor arrays
are used to measure ionic concentrations. For the simple case of two mixtures and
two sources, we proposed a new method for solving the problem which has better
stability properties. The nonlinear mapping studied presented difficulties caused
by the existence of multiple solutions, which makes the model non-invertible.
Nonetheless, our proposed method was capable of solving it using the prior
source smoothness, and experimental results attested to the efficiency of the
method even when the mixture is ill-conditioned.

Future works include extending the method to the blind case (i.e. when the
mixing coefficients are unknown) and investigating other approaches, such as how
the overdetermined scenario (i.e., with more sensors than sources), could provide
additional information which would help solve the non-invertibility problem.
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