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We are interested in a time harmonic acoustic problem in a waveguide containing flies. The flies are modelled by small sound soft obstacles. We explain how they should arrange to become invisible to an observer sending waves from -∞ and measuring the resulting scattered field at the same position. We assume that the flies can control their position and/or their size. Both monomodal and multimodal regimes are considered. On the other hand, we show that any sound soft obstacle (non necessarily small) embedded in the waveguide always produces some non exponentially decaying scattered field at +∞ for wavenumbers smaller than a constant that we explicit. As a consequence, for such wavenumbers, the flies cannot be made completely invisible to an observer equipped with a measurement device located at +∞.

Introduction

Recently, questions of invisibility in scattering theory have drawn much attention. In particular, hiding objects is an activity in vogue. In this direction, the development of metamaterials with exotic physical parameters has played a fundamental role allowing the realization of cloaking devices. One of the most popular techniques which has been proposed consists of surrounding the object to hide by a well-chosen material so that waves go through as if there was no scatterer. In this approach, simple concepts of transformation optics allow one to determine the ad hoc material constituting the cloaking device (see e.g. [START_REF] Cummer | Full-wave simulations of electromagnetic cloaking structures[END_REF][START_REF] Greenleaf | Invisibility and inverse problems[END_REF][START_REF] Chen | Transformation optics and metamaterials[END_REF]). It is important to emphasize that complex materials whose physical parameters exhibit singular values are required to build the device. From a practical point of view, constructing such materials is a challenging problem that people have not yet been able to solve.

For some applications, one may want to build invisible objects. But for others, it is better if they do not exist. In particular, for imaging methods, it is preferable that two different settings provide two different sets of measurements so that one can hope to recover features of the probed medium. In this field, invisible objects are interesting to study to understand the limits of a given technique. Indeed, it is important to have an idea of which objects can be reconstructed and which one cannot to assess how robust the existing algorithms are. Let us mention also that some techniques, like the Linear Sampling Method in inverse scattering theory, work only when invisible scatterers do not exist [START_REF] Colton | A simple method for solving inverse scattering problems in the resonance region[END_REF][START_REF] Colton | A simple method using morozov's discrepancy principle for solving inverse scattering problems[END_REF][START_REF] Bourgeois | The linear sampling method in a waveguide: a modal formulation[END_REF][START_REF] Arens | Direct and inverse medium scattering in a threedimensional homogeneous planar waveguide[END_REF][START_REF] Cakoni | Transmission eigenvalues in inverse scattering theory inverse problems and applications[END_REF].

In the present article, we consider a scattering problem in a closed waveguide, that is in a waveguide which has a bounded transverse section. In such a geometry, at a given frequency, only a finite number of waves can propagate. We are interested in a situation where an observer wants to detect the presence of defects in some reference waveguide from far-field backscattering data. Practically, the observer sends waves, say from -∞, and measures the amplitude of the resulting scattered field at the same position. It is known that at -∞, the scattered field decomposes as the sum of a finite number of propagative waves plus some exponentially decaying remainder. We shall say that the defects are invisible if for all incident propagative waves, the resulting scattered field is exponentially decaying at -∞. In this setting, examples of invisible obstacles, obtained via numerical simulations, can be found in literature. We refer the reader to [START_REF] Evans | Transparency of structures in water waves[END_REF] for a water waves problem and to [START_REF] Alù | Transmission-line analysis of ε-near-zero-filled narrow channels[END_REF][START_REF] Edwards | Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects[END_REF][START_REF] Nguyen | Total transmission and total reflection by zero index metamaterials with defects[END_REF][START_REF] Ourir | Tunneling of electromagnetic energy in multiple connected leads using ε-near-zero materials[END_REF][START_REF] Fu | Additional modes in a waveguide system of zero-index-metamaterials with defects[END_REF] for strategies using new "zero-index" and "epsilon near zero" metamaterials in electromagnetism (see also [START_REF] Fleury | Extraordinary sound transmission through density-near-zero ultranarrow channels[END_REF] for an application to acoustics). The technique that we propose in this article differs from the ones presented in the above mentioned works because it is exact in the sense that it is a rigorous proof of existence of invisible obstacles.

We will work with small sound soft obstacles of size ε (as in the so-called MUSIC algorithm [START_REF] Therrien | Discrete random signals and statistical signal processing[END_REF][START_REF] Cheney | The linear sampling method and the music algorithm[END_REF][START_REF] Kirsch | The music-algorithm and the factorization method in inverse scattering theory for inhomogeneous media[END_REF]) that we call flies in the rest of the paper. To simplify the presentation, we assume here1 that the frequency is such that the observer can send only one wave and measures one reflection coefficient s ε- (the amplitude of the scattered field at -∞). With this notation, our goal is to impose s ε-= 0. The approach we propose to help flies to become invisible is based on the following basic observation: when there is no obstacle in the waveguide, the scattered field is null so that s 0-= 0. When flies of size ε are located in the waveguide, we can prove that the reflection coefficient s ε-is of order ε. Our strategy, which is inspired from [START_REF] Nazarov | Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide[END_REF][START_REF] Bonnet-Ben Dhia | Obstacles in acoustic waveguides becoming "invisible" at given frequencies[END_REF], consists in computing an asymptotic (Taylor) expansion of s ε-as ε tends to zero. In this expansion, the first terms have a relatively simple and explicit dependence with respect to the features of the flies (position and shape). This is interesting because it allows us to use theses parameters as control terms to cancel the whole expansion of s ε-(and not only the first term obtained with the Born approximation). More precisely, slightly perturbing the position or the size of one or several flies, it is possible to introduce some new degrees of freedom that we can tune to impose s ε-= 0. We underline that in principle, the sound soft obstacles have to be small compared to the wavelength. This explains the introduction of diptera terminology. The technique described above mimics the proof of the implicit function theorem. It has been introduced in [START_REF] Nazarov | Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide[END_REF][START_REF] Nazarov | Eigenvalues of the laplace operator with the Neumann conditions at regular perturbed walls of a waveguide[END_REF][START_REF] Nazarov | Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle[END_REF][START_REF] Nazarov | Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide[END_REF][START_REF] Cardone | Asymptotic behaviour of an eigenvalue in the continuous spectrum of a narrowed waveguide[END_REF][START_REF] Nazarov | Trapped waves in a cranked waveguide with hard walls[END_REF] with the concept of "enforced stability for embedded eigenvalues". In these works, the authors develop a method for constructing small regular and singular perturbations of the walls of a waveguide that preserve the multiplicity of the point spectrum on a given interval of the continuous spectrum. The approach has been adapted in [START_REF] Bonnet-Ben Dhia | Obstacles in acoustic waveguides becoming "invisible" at given frequencies[END_REF][START_REF] Bonnet-Ben Dhia | A method to build nonscattering perturbations of two-dimensional acoustic waveguides[END_REF] (see also [START_REF] Bonnet-Ben Dhia | Underwater topography "invisible" for surface waves at given frequencies[END_REF][START_REF] Bonnet-Ben Dhia | Non-scattering wavenumbers and far field invisibility for a finite set of incident/scattering directions[END_REF][START_REF] Chesnel | Construction of indistinguishable conductivity perturbations for the point electrode model in electrical impedance tomography[END_REF] for applications to other problems) to prove the existence of regular perturbations of a waveguide, for which several waves at given frequencies pass through without any distortion or with only a phase shift. In the present article, the main novelty lies in the fact that we play with small obstacles and not with regular perturbations of the wall of the waveguide to achieve invisibility. This changes the asymptotic expansion of the reflection coefficient s ε-and we can not cancel it exactly as in [START_REF] Bonnet-Ben Dhia | Obstacles in acoustic waveguides becoming "invisible" at given frequencies[END_REF]. In particular, as we will observe later (see Remark 5.1), the flies have to act as a team to become invisible: a single fly cannot be invisible. To some extent, our work shares similarities with the articles [START_REF] Nazarov | Opening of a gap in the continuous spectrum of a periodically perturbed waveguide[END_REF][START_REF] Cardone | A gap in the essential spectrum of a cylindrical waveguide with a periodic aperturbation of the surface[END_REF][START_REF] Nazarov | The asymptotic analysis of gaps in the spectrum of a waveguide perturbed with a periodic family of small voids[END_REF] where the authors use singular perturbations of the geometry to open gaps in the spectrum of operators considered in periodic waveguides.

In this article, we consider a scattering problem in a closed waveguide with a finite number of propagative waves. Note that the analysis we will develop can be easily adapted to construct sound soft obstacles in freespace which are invisible to an observer sending incident plane waves and measuring the far field pattern of the resulting scattered field in a finite number of directions (setting close to the one of [START_REF] Bonnet-Ben Dhia | Non-scattering wavenumbers and far field invisibility for a finite set of incident/scattering directions[END_REF]).

The text is organized as follows. In the next section, we describe the setting and introduce adapted notation. In Section 3 we compute an asymptotic expansion of the field u ε , the solution to the scattering problem in the waveguide containing small flies of size ε, as ε tends to zero. There is a huge amount of literature concerning scattering by small obstacles (see, among other references, [START_REF] Foldy | The multiple scattering of waves. i. general theory of isotropic scattering by randomly distributed scatterers[END_REF][START_REF] Maz'ya | Asymptotic theory of elliptic boundary value problems in singularly perturbed domains[END_REF][START_REF] Kamotskii | Spectral problems in singularly perturbed domains and selfadjoint extensions of differential operators[END_REF][START_REF] Ramm | Wave scattering by small bodies of arbitrary shapes[END_REF][START_REF] Martin | Multiple scattering: interaction of time-harmonic waves with N obstacles[END_REF][START_REF] Cassier | Multiple scattering of acoustic waves by small sound-soft obstacles in two dimensions: mathematical justification of the foldy-lax model[END_REF][START_REF] Bendali | Approximation by multipoles of the multiple acoustic scattering by small obstacles in three dimensions and application to the foldy theory of isotropic scattering[END_REF]) and what we will do in this section is rather classical. Then in Section 4, from the expression of u ε , we derive an asymptotic expansion of the reflection coefficient s ε-appearing in the decomposition of u ε at -∞. In Section 5, slightly modifying the position of one fly and solving a fixed point problem we explain how to cancel all the terms in the asymptotic expansion of s ε-to impose s ε-= 0. Proposition 5.1 is the first main result of the paper. In Section 6, we study the question of invisibility assuming that the observer can send waves from -∞ and measure the resulting scattered field at +∞. More precisely, we show that it is impossible that the scattered field produced by the defect in the waveguide decays exponentially at +∞ for wavenumbers k smaller than a constant that can be explicitly computed. This result holds for all sound soft obstacles (not necessarily small) embedded in the waveguide. Proposition 6.1 is the second main result of the paper. In Section 7, we come back to backscattering invisibility for flies and instead of playing with their position, we modify slightly their size. With this degree of freedom, we explain how to cancel the reflection coefficient. In a first step, we consider the case where there is only one propagative wave. Then we work at higher frequency with several propagative waves. In this setting, the higher the frequency is, the more information the observer can get. Quite logically, in our approach, we shall need more and more flies to cancel the different reflection coefficients as the number of propagative waves increases. We provide a short conclusion in Section 8. Finally, Appendix 9 is dedicated to proving technical results needed in the justification of asymptotic expansions obtained formally in Section 5. 

Setting of the problem

Ω 0 Γ 0 = ∂Ω 0 O ε 1 O ε 2 Ω ε Γ ε = ∂Ω ε O
O ε n := {x ∈ R 3 | ε -1 (x -M n ) ∈ O}. Let ε 0 > 0 denote a positive parameter such that O ε n ⊂ Ω 0 for all ε ∈ (0; ε 0 ], n = 1, 2.
We call perturbed waveguide (see Figure 1 on right) the set

Ω ε := Ω 0 \ 2 n=1 O ε n . ( 1 
)
The sets O ε 1 and O ε 2 model the flies located in the waveguide. To begin with, and to simplify the exposition we assume that there are only two of them and not a "swarm". For the latter configuration, we refer the reader to §7.2. We are interested in the propagation of acoustic waves in time harmonic regime in Ω ε . Imposing soft wall boundary condition, it reduces to the study of the Dirichlet problem for the Helmholtz equation

-∆u = k 2 u in Ω ε u = 0 on Γ ε := ∂Ω ε . ( 2 
)
Here, u represents for example the pressure in the medium filling the waveguide, k corresponds to the wavenumber proportional to the frequency of harmonic oscillations, ∆ is the Laplace operator. Using separation of variables in the unperturbed waveguide Ω 0 , it is easy to compute the solutions of the problem

-∆u = k 2 u in Ω 0 u = 0 on Γ 0 := ∂Ω 0 . ( 3 
)
To provide their expression, let us introduce λ j and ϕ j the eigenvalues and the corresponding eigenfunctions of the Dirichlet problem for the Laplace operator on the cross-section ω

0 < λ 1 < λ 2 ≤ λ 3 ≤ • • • ≤ λ j ≤ • • • → +∞, (ϕ j , ϕ j ) ω = δ j,j , j, j ∈ N * := {1, 2, . . . }. (4) 
Here, δ j,j stands for the Kronecker symbol. In this paper, for any measurable set O ⊂ R r , r ≥ 1, we make no distinction between the complex inner products of the Lebesgue spaces L 2 (O) and L 2 (O) r , just using the notation (•, •) O . The fact that the first eigenvalue λ 1 is simple is a consequence of the Krein-Rutman theorem. Moreover, we know that ϕ 1 has a constant sign on ω (see e.g. [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]Thm. 1.2.5]). Assume that k ∈ R is such that k 2 = λ j for all j ∈ N * . Then, the solutions of (3), the modes of the waveguide defined up to a multiplicative constant, are given by

w ± j (y, z) = (2|β j |) -1/2 e ±iβ j z ϕ j (y) with β j := k 2 -λ j . ( 5 
)
All through the paper, the complex square root is chosen so that if c = re iγ for r ≥ 0 and γ

∈ [0; 2π), then √ c = √ re iγ/2
. With this choice, there holds m √ c ≥ 0 for all c ∈ C. According to the value of k 2 with respect to the λ j , the modes w ± j adopt different behaviours. For j ∈ N exp := {j ∈ N * | λ j > k 2 }, the function w + j (resp. w - j ) decays exponentially at +∞ (resp. -∞) and grows exponentially at -∞ (resp. +∞). For j ∈ N pro := {j ∈ N * | λ j < k 2 }, the functions w ± j are propagating waves in Ω 0 . In the present paper, except in §7.2, we shall assume that the wavenumber k verifies

λ 1 < k 2 < λ 2 . ( 6 
)
In this case, there are only two propagating waves w ± 1 and to simplify, we denote w ± := w ± 1 . In the perturbed waveguide Ω ε , the wave w + travels from -∞, in the positive direction of the (Oz) axis and is scattered by the obstacles. In order to model this phenomenon, classically, it is necessary to supplement equations (2) with proper radiation conditions at ±∞. Let us denote H 1 loc (Ω ε ) the set of measurable functions whose H 1 -norm is finite on each bounded subset of Ω ε . We will say that a function v ∈ H 1 loc (Ω ε ) which satisfies equations ( 2) is outgoing if it admits the decomposition v = χ + s + w + + χ -s -w -+ ṽ , [START_REF] Bonnet-Ben Dhia | Underwater topography "invisible" for surface waves at given frequencies[END_REF] for some constants s ± ∈ C and some ṽ ∈ H 1 (Ω ε ). In [START_REF] Bonnet-Ben Dhia | Underwater topography "invisible" for surface waves at given frequencies[END_REF],

χ + ∈ C ∞ (Ω 0 ) (resp. χ -∈ C ∞ (Ω 0 )
) is a cut-off function equal to one for z ≥ (resp. z ≤ -) and equal to zero for z ≤ /2 (resp. z ≥ -/2). The constant > 0 is chosen large enough so that Ω ε coincides with Ω 0 for x = (y, z) such that |z| ≥ /2. Using Fourier decomposition, we can show that the remainder ṽ appearing in [START_REF] Bonnet-Ben Dhia | Underwater topography "invisible" for surface waves at given frequencies[END_REF] is exponentially decaying at ±∞. Now, the scattering problem we consider states

Find u ε ∈ H 1 loc (Ω ε ) such that u ε -w + is outgoing and -∆u ε = k 2 u ε in Ω ε u ε = 0 on Γ ε . ( 8 
)
It is known that Problem [START_REF] Bourgeois | The linear sampling method in a waveguide: a modal formulation[END_REF], in an appropriate framework, satisfies the Fredholm alternative (see e.g.

[46, Chap. 5, §3.3, Thm. 3.5 p. 160]). Moreover, working by contradiction, adapting for example the proof of [START_REF] Claeys | On the theoretical justification of Pocklington's equation[END_REF]Lem. 3.1], one can show that (8) admits a unique solution u ε for ε small enough. In particular, there are no trapped modes for ε small enough. In the following, u ε -w + (resp. u ε ) will be referred to as the scattered (resp. total) field associated with the incident field w + . We emphasize that in [START_REF] Bourgeois | The linear sampling method in a waveguide: a modal formulation[END_REF], w + is the source term. The coefficients s ± appearing in [START_REF] Bonnet-Ben Dhia | Underwater topography "invisible" for surface waves at given frequencies[END_REF] with v replaced by u ε -w + will be denoted s ε± , so that there holds

u ε -w + = χ + s ε+ w + + χ -s ε-w -+ ũε , ( 9 
)
where ũε ∈ H 1 (Ω ε ) is a term which is exponentially decaying at ±∞. With this notation, the usual reflection and transmission coefficients are respectively given by

R ε = s ε- and T ε = 1 + s ε+ . ( 10 
)
Our goal is to explain how the flies O ε n , n = 1, 2, should arrange so that there holds R ε = 0. In our analysis, we shall assume that the flies can play with their position or with their size. Note that when s ε-= 0 (or equivalently when R ε = 0), the scattered field u ε -w + defined from [START_REF] Bourgeois | The linear sampling method in a waveguide: a modal formulation[END_REF] is exponentially decaying at -∞. As a consequence, an observer located at z = -L, with L large, sending the wave w + and measuring the resulting scattered field is unable to detect the presence of the flies.

Asymptotic expansion of the total field

In this section, we compute an asymptotic expansion of the solution u ε to Problem [START_REF] Bourgeois | The linear sampling method in a waveguide: a modal formulation[END_REF] as ε tends to zero. The method to derive such an expansion is classical (see for example [36, §2.2]) but we detail it for the sake of clarity. In accordance with the general theory of asymptotic analysis, we make the ansatz

u ε = u 0 + 2 n=1 ζ n (x) v 0, n (ε -1 (x -M n )) +ε u 1 + 2 n=1 ζ n (x) v 1, n (ε -1 (x -M n )) +ε 2 u 2 + 2 n=1 ζ n (x) v 2, n (ε -1 (x -M n )) + . . . ( 11 
)
where the dots stand for terms of high order unnecessary in the study. In this ansatz, the functions v k, n correspond to boundary layer terms. They depend on the rapid variables ε -1 (x -M n ) and compensate the residual of the principal asymptotic terms u k in a neighbourhood of

M n , n = 1, 2. Moreover, for n = 1, 2, ζ n ∈ C ∞ 0 (R 3 , [0; 1]
) denotes a cut-off function which is equal to one in a neighbourhood of M n and whose support is a compact set sufficiently small so that ζ n = 0 on Γ 0 , ζ n (M m ) = 0 in a neighbourhood of M m = M n . Now, we explain how to define each term in [START_REF] Cardone | Asymptotic behaviour of an eigenvalue in the continuous spectrum of a narrowed waveguide[END_REF]. For justification of the asymptotic expansion and error estimates, we refer the reader to Section 9.

At order ε 0 , the incident wave w + does not see the small obstacles and there is no scattered field. Therefore, we take u 0 = w + . For n = 1, 2, the function v 0, n allows us to impose the Dirichlet boundary condition on ∂O ε n at order ε 0 . For x ∈ ∂O ε n , computing a Taylor expansion, we find u 0 (x) = u 0 (M n ) + (x -M n ) • ∇u 0 (M n ) + . . . . Note that x -M n is of order ε. To simplify notations, for n = 1, 2, we introduce the fast variable ξ n = ε -1 (x -M n ). For the correction terms v k, n , in a neighbourhood of M n (remember that the cut-off function ζ n is equal to one in this region), we obtain

(∆ x + k 2 Id) v 0, n (ε -1 (x -M n )) + ε v 1, n (ε -1 (x -M n )) + ε 2 v 2, n (ε -1 (x -M n )) + . . . = ε -2 ∆ ξn v 0, n (ξ n ) + ε -1 ∆ ξn v 1, n (ξ n ) + ε 0 (∆ ξn v 2, n (ξ n ) + k 2 v 0, n (ξ n )) + . . . .
Since there is no term of order ε -2 in the expansion [START_REF] Cardone | Asymptotic behaviour of an eigenvalue in the continuous spectrum of a narrowed waveguide[END_REF], we impose ∆ ξn v 0, n = 0 in R 3 \ O. This analysis leads us to take

v 0, n (ξ n ) = -u 0 (M n ) W (ξ n ). ( 12 
)
Here, W is the capacity potential for O (i.e. W is harmonic in R 3 \ O, vanishes at infinity and verifies W = 1 on ∂O). In the sequel, the asymptotic behaviour of W at infinity will play a major role. As |ξ| → +∞, we have (see e.g. [START_REF] Landkof | Foundations of modern potential theory[END_REF])

W (ξ) = cap(O) |ξ| + q • ∇Φ(ξ) + O(|ξ| -3 ),
where Φ := ξ → -1/(4π|ξ|) is the fundamental solution of the Laplace operator in R 3 and q is some given vector in R 3 . The term cap(O) corresponds to the harmonic capacity [START_REF] Pólya | Isoperimetric Inequalities in Mathematical Physics[END_REF] of the obstacle O. Let us translate the position of the origin, making the change of variable ξ → ξ θ := ξ + θ, for a given θ ∈ R 3 .

When |ξ| → +∞, we can write [START_REF] Pólya | Isoperimetric Inequalities in Mathematical Physics[END_REF], this shows that there is exactly one value of θ ∈ R 3 such that W , in the new system of coordinates, admits the asymptotic expansion

W (ξ) = cap(O) |ξ| + q • ∇Φ(ξ) + O(|ξ| -3 ) = cap(O) |ξ θ -θ| + q • (ξ θ -θ) 4π|ξ θ -θ| 3 + O(|ξ θ -θ| -3 ) = cap(O) |ξ θ | + q 4π + cap(O)θ • ξ θ |ξ θ | 3 + O(|ξ θ | -3 ). (13) Since cap(O) = R 3 \O |∇W | 2 d ξ > 0
W (ξ θ ) = cap(O) |ξ θ | + O(|ξ θ | -3 ). ( 14 
)
In the following, we shall always assume that W is defined in the system of coordinates centered at O + θ and to simplify, we shall denote ξ instead of ξ θ .

Remark 3.1. This trick to obtain a simple expansion for W at infinity is not a necessary step in our procedure. However, it allows one to shorten the calculus. Now, we turn to the terms of order ε in the expansion of u ε . After inserting

u 0 (x)+ 2 n=1 ζ n (x) v 0, n (ε -1 (x- M n )) into (8), we get the discrepancy 2 2 n=1 (∆ x +k 2 Id) (ζ n (x) v 0, n (ε -1 (x-M n ))).
Remark that this discrepancy is defined only in Ω ε and not in Ω 0 . However, using ( 14), we replace it by its main contribution at infinity and we choose u 1 as the solution to the problem

Find u 1 ∈ H 1 loc (Ω 0 ) such that u 1 is outgoing and -∆u 1 -k 2 u 1 = - 2 n=1 [∆ x , ζ n ] + k 2 ζ n Id w + (M n ) cap(O) |x -M n | in Ω 0 u 1 = 0 on Γ 0 . ( 15 
)
In ( 15)

, [∆ x , ζ n ] denotes the commutator such that [∆ x , ζ n ]ϕ := ∆ x (ζ n ϕ) -ζ n ∆ x ϕ = 2∇ϕ • ∇ζ n + ϕ∆ζ n .
Since ζ n is equal to one in a neighbourhood of M n and compactly supported, note that the right hand side of ( 15) is an element of L2 (Ω 0 ). As a consequence, by elliptic regularity results (see e.g. [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]), u 1 belongs to H 2 (K) for all bounded domains K ⊂ Ω 0 . A Taylor expansion at M n gives, for x ∈ ∂O ε n ,

(u 0 + 2 n=1 ζ n (x) v 0, n (ε -1 (x -M n )) + εu 1 )(x) = ε(u 1 (M n ) + (ε -1 (x -M n )) • ∇u 0 (M n )) + . . . = ε(u 1 (M n ) + (ε -1 (x -M n )) • ∇w + (M n )) + . . . .
In order to satisfy the Dirichlet boundary condition on the obstacles at order ε, we find that

v 1, n must verify v 1, n (ξ n ) = -(u 1 (M n ) W (ξ n ) + ∇w + (M n ) • -→ W (ξ n )). (16) 
In ( 16), the vector valued function

-→ W = (W 1 , W 2 , W 3 ) is such that, for j = 1, 2, 3, W j is harmonic in R 3 \ O,
vanishes at infinity and verifies W j = ξ j on ∂O (we use the notaton ξ = (ξ 1 , ξ 2 , ξ 3 ) ). At |ξ| → +∞ , the asymptotic behaviours of W and -→ W are related via the formula (see e.g. [46, §6.4.3])

W (ξ) -→ W (ξ) = M Φ(ξ) ∇Φ(ξ) + O(|ξ| -3 ), where M := -4π cap(O) p p P .
We remind the reader that Φ = ξ → -1/(4π|ξ|) is the fundamental solution of the Laplace operator in R 3 . The matrix M is called the polarization tensor [START_REF] Pólya | Isoperimetric Inequalities in Mathematical Physics[END_REF]Appendix G]. It is symmetric and with our special choice of the origin of the system of coordinates (see ( 13)), the vector p is equal to zero. Therefore, for j = 1, 2, 3, we have

W j (ξ) = O(|ξ| -2 ), when |ξ| → +∞. (17) 
Finally, we consider the expansion of u ε at order ε 2 . After inserting 8), using formulas ( 14), ( 12) and ( 17), we get the discrepancy

u 0 (x) + 2 n=1 ζ n (x) v 0, n (ε -1 (x - M n )) + ε(u 1 + 2 n=1 ζ n (x) v 1, n (ε -1 (x -M n ))) into (
2 n=1 [∆ x , ζ n ] + k 2 ζ n Id u 1 (M n ) cap(O) |x -M n | ε 2 + O(ε 3 ).
This leads us to define u 2 as the solution to the problem Find u 2 ∈ H 1 loc (Ω 0 ) such that u 2 is outgoing and

-∆u 2 -k 2 u 2 = - 2 n=1 [∆ x , ζ n ] + k 2 ζ n Id u 1 (M n ) cap(O) |x -M n | in Ω 0 u 2 = 0 on Γ 0 . ( 18 
)
The derivation of the problems satisfied by the terms v 2, n , n = 1, 2, will not be needed in the rest of the analysis. Therefore we do not describe it. In the next section, from the asymptotic expansion of u ε , solution to (8), we deduce an asymptotic expansion of the coefficients s ε± appearing in the decomposition (9).

Asymptotic expansion of the transmission/reflection coefficients

In accordance with the asymptotic expansion of u ε (11), for s ε± , we consider the ansatz

s ε± = s 0± + ε s 1± + ε 2 s 2± + . . . . (19) 
Now, we wish to compute s 0± , s 1± , s 2± . First, we give an explicit formula for s ε± . For ±z > (we remind the reader that > 0 is chosen so that Ω ε coincides with Ω 0 for x = (y, z) such that |z| ≥ /2), using Fourier series we can decompose u ε -w + as

(u ε -w + )(y, z) = s ε± w ± (y, z) + +∞ n=2 α ± n w ± n (y, z)
where α ± n are some constants and where w ± n are defined in [START_REF] Bonnet-Ben Dhia | A method to build nonscattering perturbations of two-dimensional acoustic waveguides[END_REF]. Set Σ := (ω × {-}) ∪ (ω × { }). A direct calculation using the orthonormality of the family (ϕ n ) n≥1 and the expression of the w ± (see [START_REF] Bonnet-Ben Dhia | A method to build nonscattering perturbations of two-dimensional acoustic waveguides[END_REF]) yields the formulas

i s ε± = Σ ∂(u ε -w + ) ∂ν w ± -(u ε -w + ) ∂w ± ∂ν dσ, ( 20 
)
where

∂ ν = ±∂ z at z = ± .
Observe that the correction terms ζ n v k, n appearing in the expansion of u ε (11) are compactly supported. As a consequence, they do not influence the coefficients s ε± . In particular, this implies s 0± = 0.

To compute s 1± , we plug [START_REF] Cardone | Asymptotic behaviour of an eigenvalue in the continuous spectrum of a narrowed waveguide[END_REF] in [START_REF] Cummer | Full-wave simulations of electromagnetic cloaking structures[END_REF] and identify with [START_REF] Colton | A simple method using morozov's discrepancy principle for solving inverse scattering problems[END_REF] the powers in ε. This gives

i s 1± = Σ ∂u 1 ∂ν w ± -u 1 ∂w ± ∂ν dσ.
Integrating by parts in ω × (-; ) and using the equation ∆w ± + k 2 w ± = 0 as well as [START_REF] Chesnel | Spectrum of a diffusion operator with coefficient changing sign over a small inclusion[END_REF], we find

i s 1± = ω×(-; ) ∆u 1 w ± -u 1 ∆w ± dx = Ω 0 (∆u 1 + k 2 u 1 ) w ± dx = 2 n=1 Ω 0 ([∆, ζ n ] + k 2 ζ n Id) u 0 (M n ) cap(O) |x -M n | w ± dx = 2 n=1 u 0 (M n ) cap(O) Ω 0 w ± [∆, ζ n ] 1 |x -M n | - ζ n ∆w ± |x -M n | dx. (21) Denote B δ d (M n ) the ball of R d centered at M n of radius δ. Noticing that [∆, ζ n ](|x -M n | -1
) vanishes in a neighbourhood of M n , n = 1, 2 (see the discussion after [START_REF] Chesnel | Spectrum of a diffusion operator with coefficient changing sign over a small inclusion[END_REF]) and using the estimate

B δ 3 (Mn) ∆w ± |x -M n | dx = k 2 B δ 3 (Mn) w ± |x -M n | dx ≤ C k 2 δ 2 w ± L ∞ (B δ 3 (Mn)) ,
C > 0 being a constant independent of δ, we deduce from the last line of (21) that

i s 1± = lim δ→0 2 n=1 u 0 (M n ) cap(O) Ω 0δ w ± [∆, ζ n ] 1 |x -M n | - ζ n ∆w ± |x -M n | dx. ( 22 
)
In ( 22), the set Ω 0δ is defined by

Ω 0δ := Ω 0 \ ∪ n=1,2 B δ 3 (M n ). Remark that [∆, ζ n ](|x -M n | -1 ) = ∆(ζ n |x -M n | -1
) in Ω 0δ . Using again that ζ n is equal to one in a neighbourhood of M n and integrating by parts in [START_REF] Evans | Transparency of structures in water waves[END_REF], we get

i s 1± = lim δ→0 2 n=1 u 0 (M n ) cap(O) ∂B δ 3 (Mn) w ± ∂ ν (|x -M n | -1 ) -|x -M n | -1 ∂ ν w ± dσ. ( 23 
)
In this expression, ν stands for the normal unit vector to ∂B δ 3 (M n ) directed to the interior of B δ 3 (M n ). Then, a direct computation using the relations

u 0 (M n ) = w + (M n ) = w -(M n ) gives s 1+ = 4iπ cap(O) 2 n=1 |w + (M n )| 2 and s 1-= 4iπ cap(O) 2 n=1 w + (M n ) 2 . ( 24 
)
Working analogously from the formulas

i s 2± = Σ ∂u 2 ∂ν w ± -u 2 ∂w ± ∂ν dσ,
we obtain

s 2+ = 4iπ cap(O) 2 n=1 u 1 (M n )w -(M n ) and s 2-= 4iπ cap(O) 2 n=1 u 1 (M n )w + (M n ). ( 25 
)

Perturbation of the position of one fly

In this section, we explain how to choose the position of the flies so that the reflection coefficient s ε-in the decomposition of u ε -w + vanishes. In the previous analysis, we obtained the formula

(4iπ cap(O)) -1 s ε-= 0 + ε 2 n=1 w + (M n ) 2 + ε 2 2 n=1 u 1 (M n )w + (M n ) + O(ε 3 ). ( 26 
)
First observe, that it is easy to cancel the term of order ε in the expansion [START_REF] Greenleaf | Invisibility and inverse problems[END_REF]. Indeed, remembering that w + (x) = (2β 1 ) -1/2 e iβ 1 z ϕ 1 (y), we obtain

2 n=1 w + (M n ) 2 = 0 ⇔ e 2iβ 1 z 1 ϕ 1 (y 1 ) 2 + e 2iβ 1 z 2 ϕ 1 (y 2 ) 2 = 0. ( 27 
)
In order to satisfy [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF], for example we choose y 1 , y 2 ∈ ω such that ϕ 1 (y 1 ) = ϕ 1 (y 2 ). Then we take z 1 = 0 and z 2 = (2m + 1)π/(2β 1 ) for some m ∈ N = {0, 1, 2, . . . }.

However, this is not sufficient since we want to impose s ε-= 0 at all orders in ε. The terms of orders ε 2 , ε 3 . . . in ( 26) have a less explicit dependence with respect to M 1 , M 2 . In particular, this dependence is non linear. Therefore, it is not obvious that we can find an explicit formula for the positions of the flies ensuring s ε-= 0. To cope with this problem, we will introduce new degrees of freedom slightly changing the position of one fly. To set ideas, we assume that the fly situated at M 1 moves from M 1 to M τ 1 = M 1 + ετ . Here, τ is an element of R 3 to determine which offers a priori three degrees of freedom. In the following, for a given ε > 0, we show how τ can be chosen as the solution of a fixed point problem to cancel the reflection coefficient.

We define O ε 1 (τ ) := {x ∈ R 3 | ε -1 (x -M τ 1 ) ∈ O} and Ω ε (τ ) := Ω 0 \ (O ε 1 (τ ) ∪ O ε 2 ). Problem Find u ε (τ ) ∈ H 1 loc (Ω ε (τ )) such that u ε (τ ) -w + is outgoing and -∆u ε (τ ) = k 2 u ε (τ ) in Ω ε (τ ) u ε (τ ) = 0 on Γ ε (τ ) := ∂Ω ε (τ ), (28) 
has a unique solution u ε (τ ) for ε small enough. It admits the decomposition

u ε (τ ) -w + = χ + s ε+ (τ )w + + χ -s ε-(τ )w -+ ũε (τ ), (29) 
where s ε± (τ ) ∈ C and where ũε (τ ) ∈ H 1 (Ω ε (τ )) is a term which is exponentially decaying at ±∞. From the previous section (see formulas [START_REF] Foldy | The multiple scattering of waves. i. general theory of isotropic scattering by randomly distributed scatterers[END_REF], ( 25)), we know that

(4iπ cap(O)) -1 s ε-(0) = 0 + ε 2 n=1 w + (M n ) 2 + ε 2 2 n=1 u 1 (M n )w + (M n ) + O(ε 3 ).
Formally, we also have (we will justify this expansion in Section 9)

(4iπ cap(O)) -1 s ε-(τ ) = 0 + ε (w + (M τ 1 ) 2 + w + (M 2 ) 2 ) + ε 2 (u 1 (M τ 1 )w + (M τ 1 ) + u 1 (M 2 )w + (M 2 )) + O(ε 3 ). ( 30 
)
To remove the ε dependence hidden in the term w + (M τ 1 ), we use the Taylor expansion

w + (M τ 1 ) = w + (M 1 + ετ ) = w + (M 1 ) + ετ • ∇w + (M 1 ) + O(ε 2 ). This gives w + (M τ 1 ) 2 = w + (M 1 ) 2 + 2w + (M 1 ) τ • ∇w + (M 1 ) ε + O(ε 2 ). (31) 
Plugging [START_REF] Kirsch | The music-algorithm and the factorization method in inverse scattering theory for inhomogeneous media[END_REF] and using the relation

u 1 (M τ 1 )w + (M τ 1 ) = u 1 (M 1 )w + (M 1 ) + O(ε) in (30) lead to (4iπ cap(O)) -1 s ε-(τ ) = 0 + ε 2 n=1 w + (M n ) 2 + ε 2 2w + (M 1 ) τ • ∇w + (M 1 ) + 2 n=1 u 1 (M n )w + (M n ) + ε 3 sε-(τ ). (32) 
In [START_REF] Kondratiev | Boundary-value problems for elliptic equations in domains with conical or angular points[END_REF], sε-(τ ) denotes an abstract remainder (see §9.1 for its definition). With this new parameterization, for a given ε, our goal is to find

τ ∈ R 3 such that s ε-(τ ) = 0. Set τ = (τ y , τ z ) with τ y ∈ R 2 , τ z ∈ R. Since w + (y, z) = (2β 1 ) -1/2 e iβ 1 z ϕ 1 (y), we find 2w + (M 1 ) τ • ∇w + (M 1 ) = ϕ 1 (y 1 ) β -1 1 (τ y • ∇ y ϕ 1 (y 1 ) + iβ 1 τ z ϕ 1 (y 1 )) . ( 33 
)
Now, choose y 1 such that ∇ y ϕ 1 (y 1 ) = 0. Remark that it is possible since for the moment, we have only imposed that y 1 , y 2 are such that ϕ 1 (y 1 ) = ϕ 1 (y 2 ). Let us look for τ under the form

τ = ϕ 1 (y 1 ) -1 β 1 κ y -e 2 n=1 u 1 (M n )w + (M n ) (∇ y ϕ 1 (y 1 )/|∇ y ϕ 1 (y 1 )| 2 , 0) +ϕ 1 (y 1 ) -1 β 1 κ z -m 2 n=1 u 1 (M n )w + (M n ) (0, 0, (β 1 ϕ 1 (y 1 )) -1 ) , ( 34 
)
where κ y , κ z are some real parameters to determine. Here, we emphasize that it is sufficient to parameterize the unknown τ ∈ R 3 with only two real degrees of freedom (and not three) because we want to cancel one complex coefficient. To impose s ε-(τ ) = 0, plugging [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF] in [START_REF] Kondratiev | Boundary-value problems for elliptic equations in domains with conical or angular points[END_REF], we see that we have to solve the problem Find

κ = (κ y , κ z ) ∈ R 2 such that κ = F ε (κ), (35) 
with

F ε (κ) := -ε ( e sε-(τ ), m sε-(τ )) . ( 36 
)
Proposition 5.2 hereafter ensures that for any given parameter γ > 0, there is some ε 0 > 0 such that for all ε ∈ (0;

ε 0 ], the map F ε is a contraction of B γ 2 (O) := {κ ∈ R 2 |κ| ≤ γ}.
Therefore, the Banach fixed-point theorem guarantees the existence of some ε 0 > 0 such that for all ε ∈ (0; ε 0 ], Problem [START_REF] Martin | Multiple scattering: interaction of time-harmonic waves with N obstacles[END_REF] has a unique solution in B γ 2 (O). Note that for a given γ > 0, ε 0 > 0 can be chosen small enough so that there holds O ε 1 (τ ) ⊂ Ω 0 (the first fly stays in the reference waveguide). From the previous analysis we deduce the following proposition. Proposition 5.1. There exists ε 0 > 0 such that for all ε ∈ (0; ε 0 ], we can find [START_REF] Kamotskii | Spectral problems in singularly perturbed domains and selfadjoint extensions of differential operators[END_REF] of the function u ε (τ ) vanishes. More precisely, we can take

M τ 1 = M 1 + ετ , M 2 ∈ Ω 0 such that the reflection coefficient s ε-(τ ) in the decomposition
M 1 = (y 1 , z 1 ), M 2 = (y 2 , z 2 ) satisfying • z 1 = 0, z 2 = (2m + 1)π/(2β 1 ), m ∈ N;
• y 1 , y 2 ∈ ω such that ϕ 1 (y 1 ) = ϕ 1 (y 2 ), ∇ y ϕ 1 (y 1 ) = 0; [START_REF] Nazarov | The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes[END_REF] and τ defined by [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF], where (κ y , κ z ) is a solution of the fixed point problem [START_REF] Maz'ya | Asymptotic theory of elliptic boundary value problems in singularly perturbed domains[END_REF].

Remark 5.1. Note that it is necessary to play with at least two small flies to cancel the reflection coefficient s ε-. Indeed, if there is only one fly, the first term 4iπ cap(O)w + (M 1 ) 2 in the asymptotic expansion [START_REF] Greenleaf | Invisibility and inverse problems[END_REF] of s ε-cannot be made equal to zero playing with the position M 1 . Therefore, the incoming wave w + generates a scattered field whose amplitude is of order ε. The flies really have to act as partners to become invisible. Remark 5.2. Assume that the waveguide Ω 0 contains N flies, located at M 1 , . . . , M N (N distinct points of Ω 0 ), which coincide with the sets

O ε n = {x ∈ R 3 | ε -1 (x -M n ) ∈ O}, n = 1, . . . , N . For n = 1, . . . , N , introduce y n ∈ ω, z n ∈ R such that M n = (y n , z n ).
We can hide these N flies positioning cleverly N other flies in Ω 0 . Indeed, for n = 1, . . . , N , define M N +n := (y n , z n + (2m + 1)π/(2β 1 )) and

O ε N +n = {x ∈ R 3 | ε -1 (x -M N +n ) ∈ O}.
Here m ∈ N is set so that the points M 1 , . . . , M 2N are all distinct. With this choice, we have

2N n=1 w + (M n ) 2 = (2β 1 ) -1 N n=1 (e 2iβ 1 zn ϕ 1 (y n ) 2 + e 2iβ 1 zn+(2mn+1)iπ ϕ 1 (y n ) 2 ) = 0.
Therefore, we can cancel the term of order ε in the asymptotic expansion of s ε-(see [START_REF] Greenleaf | Invisibility and inverse problems[END_REF]). Then, if there is one fly which is not located at an extremum of the first eigenfunction ϕ 1 (so that ∇ y ϕ 1 (y) = 0), we can proceed as above slightly perturbing the position of this fly to achieve s ε-= 0.

Before proceeding further, we show that the map F ε is a contraction as required by the analysis preceding Proposition 5.1. Proposition 5.2. Let γ > 0 be a given parameter. Then, there exists ε 0 > 0 such that for all ε ∈ (0; ε 0 ], the map F ε defined by [START_REF] Maz'ya | Asymptotic theory of elliptic boundary value problems in singularly perturbed domains[END_REF] 

is a contraction of B γ 2 (O) = {κ ∈ R 2 |κ| ≤ γ}. Proof. For κ = (κ y , κ z ) ∈ R 2 , we have F ε (κ) = -ε ( e sε-(τ ), m sε-(τ ))
where τ is defined from κ according to [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF] and where sε-(τ ) is the remainder appearing in [START_REF] Kondratiev | Boundary-value problems for elliptic equations in domains with conical or angular points[END_REF]. In Section 9, we will prove that for all ϑ > 0, there is some ε 0 > 0 such that for all ε ∈ (0; ε 0 ], there holds

|s ε-(τ ) -sε-(τ )| ≤ C |τ -τ |, ∀τ, τ ∈ B ϑ 3 (O) = {τ ∈ R 3 |τ | ≤ ϑ}. ( 38 
)
Here and in what follows, C > 0 is a constant which may change from one occurrence to another but which is independent of ε and κ, κ ∈ B γ 2 (O). Since τ belongs to a bounded set of R 3 when κ ∈ B γ 2 (O), [START_REF] Nazarov | Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains[END_REF] yields

|F ε (κ) -F ε (κ )| ≤ C ε |κ -κ |, ∀κ, κ ∈ B γ 2 (O). ( 39 
)
Taking κ = 0 in [START_REF] Nazarov | Opening of a gap in the continuous spectrum of a periodically perturbed waveguide[END_REF] and remarking that

|F ε (0)| ≤ C ε, we find |F ε (κ)| ≤ C ε for all κ ∈ B γ 2 (O)
. With [START_REF] Nazarov | Opening of a gap in the continuous spectrum of a periodically perturbed waveguide[END_REF], this allows us to conclude that the map F ε is a contraction of B γ 2 (O) for ε small enough.

Remark 5.3. Let us denote κ sol ∈ B γ 2 (O) the unique solution to Problem [START_REF] Martin | Multiple scattering: interaction of time-harmonic waves with N obstacles[END_REF]. The previous proof ensures that there exists a constant c 0 > 0 independent of ε such that

|κ sol | = |F ε (κ sol )| ≤ c 0 ε, ∀ε ∈ (0; ε 0 ]. ( 40 
)
Introduce τ sol , τ 0 the vectors of R 3 respectively defined from κ sol , κ = 0 using formula [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]. In particular, we have

τ 0 = -ϕ 1 (y 1 ) -1 β 1 e 2 n=1 u 1 (M n )w + (M n ) (∇ y ϕ 1 (y 1 )/|∇ y ϕ 1 (y 1 )| 2 , 0) -ϕ 1 (y 1 ) -1 β 1 m 2 n=1 u 1 (M n )w + (M n ) (0, 0, (β 1 ϕ 1 (y 1 )) -1 ) . ( 41 
)
We know (see [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]) that

|M τ sol 1 -M τ 0 1 | = ε|τ sol -τ 0 | ≤ C ε |κ sol |.
From estimate [START_REF] Nazarov | Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide[END_REF], we deduce that

|M τ sol 1 -M τ 0 1 | ≤ C ε 2 .
As a consequence, we can say that M τ sol 1 is equal to M τ 0 1 = M 1 + ετ 0 at order ε.

Obstruction to transmission invisibility

Let us consider again u ε the solution to Problem [START_REF] Bourgeois | The linear sampling method in a waveguide: a modal formulation[END_REF]. We have introduced the coefficients s ε± such that the scattered field u ε -w + admits the expansion

u ε -w + = χ + s ε+ w + + χ -s ε-w -+ ũε , ( 42 
)
where ũε ∈ H 1 (Ω ε ) is a term exponentially decaying at ±∞. With this notation, the usual reflection and transmission coefficients are respectively given by R ε = s ε-and T ε = 1 + s ε+ . Up to now, we have explained how to cancel s ε-so that the flies are invisible to an observer sending the incident waves w + and measuring the resulting scattered field at -∞. Now, assume that the observer can also measure the scattered field at +∞. Can we hide the flies in this setting? Equivalently, can we impose s ε+ = 0 (or T ε = 1) so that the scattered field is also exponentially decaying at +∞? First, remark that the approach of Section 5 can not be implemented to impose s ε+ = 0. And more generally, it is easy to see that the latter relation cannot be obtained when there are small flies in the reference waveguide. Indeed, from [START_REF] Colton | A simple method using morozov's discrepancy principle for solving inverse scattering problems[END_REF], [START_REF] Foldy | The multiple scattering of waves. i. general theory of isotropic scattering by randomly distributed scatterers[END_REF], we know that s ε+ admits the asymptotic expansion

s ε+ = 4iπ cap(O) 2 n=1 |w + (M n )| 2 ε + O(ε 2 ).
Since cap(O) > 0, we have m s ε+ > 0 for ε small enough. Now, we prove another result showing that it is impossible to hide any (not necessarily small) sound soft obstacle for wavenumvers k smaller than a constant that we explicit. Since the result that we will prove holds in a more general setting than the one described at the beginning of the paper, we need to modify a bit the notation. Let O be a bounded domain with Lipschitz boundary verifying O ⊂ Ω 0 . We define the perturbed waveguide Ω := Ω 0 \ O and make the assumption that O is such that Ω is connected with a Lipschitz boundary (see Figure 2 for examples of geometries fulfilling these criteria). We consider the scattering problem Find u ∈ H 1 loc (Ω) such that u -w + is outgoing and

-∆u = k 2 u in Ω u = 0 on Γ := ∂Ω. ( 43 
)
Problem [START_REF] Nazarov | The asymptotic analysis of gaps in the spectrum of a waveguide perturbed with a periodic family of small voids[END_REF] always admits a solution u with the decomposition

u -χ -w + = χ + T w + + χ -Rw -+ ũ, (44) 
where R, T ∈ C are uniquely defined and where ũ ∈ H 1 (Ω) is exponentially decaying at ±∞. In [START_REF] Nazarov | Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle[END_REF], as in ( 7), χ ± ∈ C ∞ (Ω 0 ) are cut-off functions equal to one for ±z ≥ and equal to zero for ±z ≤ /2. Moreover, the constant > 0 is chosen large enough so that Ω coincides with Ω 0 for x = (y, z) verifying |z| ≥ /2. We wish to prove that for k < k with k 2 ∈ (λ 1 ; λ 2 ], we cannot have T = 1 so that perfect transmission invisibility cannot be imposed. We denote u i := w + and u s := u -u i . We also introduce the coefficients s ± such that s -= R and s + = T -1. With this definition, according to (44), we have u s = χ + s + w + + χ -s -w -+ û for some û ∈ H 1 (Ω) which is exponentially decaying at ±∞. Lemma 6.1. Assume that the transmission coefficient T in the decomposition [START_REF] Nazarov | Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle[END_REF] satisfies T = 1.

Then there holds

Ω |∇u s | 2 -k 2 |u s | 2 dx + O |∇u i | 2 -k 2 |u i | 2 dx = 0. ( 45 
)
Proof. The conservation of energy ensures that

1 = |T | 2 + |R| 2 ⇔ 1 = |1 + s + | 2 + |s -| 2 ⇔ |s + | 2 + |s -| 2 = -2 e s + . ( 46 
)
Assume that T satisfies T = 1 ⇔ s + = 0. In this case, according to [START_REF] Nazarov | Elliptic problems in domains with piecewise smooth boundaries[END_REF], we must have s -= 0 and u s is exponentially decaying at ±∞. Therefore, the integrals appearing in (45) are well-defined. Denote Ω := {x = (y, z) ∈ Ω | -< z < }. From the equation ∆u s + k 2 u s = 0, multiplying by u s and integrating by parts, we find

Ω |∇u s | 2 -k 2 |u s | 2 dx - ∂Ω∩∂O ∂ ν u s u s dσ - Σ ∂ ν u s u s dσ = 0. (47) 
Here, we set Σ = (ω × {-}) ∪ (ω × { }) (as in [START_REF] Cummer | Full-wave simulations of electromagnetic cloaking structures[END_REF]) and ν stands for the normal unit vector to ∂Ω directed to the exterior of Ω . On ∂Ω, we have u = 0 which implies u s = -u i . This allows us to write

- ∂Ω∩∂O ∂ ν u s u s dσ = ∂Ω∩∂O ∂ ν u s u i dσ = ∂Ω∩∂O ∂ ν u s u i dσ - ∂Ω∩∂O u s ∂ ν u i dσ - ∂Ω∩∂O u i ∂ ν u i dσ = - Σ ∂ ν u s u i dσ + Σ u s ∂ ν u i dσ - ∂Ω∩∂O u i ∂ ν u i dσ. ( 48 
)
The third equality of ( 48) is a direct result of integrations by parts. Now, we consider the last term of the right hand side of [START_REF] Ourir | Tunneling of electromagnetic energy in multiple connected leads using ε-near-zero materials[END_REF]. On ∂Ω ∩ ∂O, remark that ν is directed to the interior of O. Therefore, integrating by parts, we obtain

- ∂Ω∩∂O u i ∂ ν u i dσ = O |∇u i | 2 -k 2 |u i | 2 dx. ( 49 
)
Finally, gathering (47), ( 48), ( 49) and using formula [START_REF] Cummer | Full-wave simulations of electromagnetic cloaking structures[END_REF], we obtain identity [START_REF] Nazarov | Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide[END_REF].

In the following, we use [START_REF] Nazarov | Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide[END_REF] to show that we cannot have Proof. Assume, by contradiction, that T = 1 so that (45) holds. Let us write

T = 1 for k < k with k 2 ∈ (λ 1 ; λ 2 ].
Ω |∇u s | 2 -k 2 |u s | 2 dx = Ω\Ω L |∇u s | 2 -k 2 |u s | 2 dx + Ω L |∇u s | 2 -k 2 |u s | 2 dx. ( 50 
)
Now, we estimate each of the two terms of the right hand side of [START_REF] Ramm | Wave scattering by small bodies of arbitrary shapes[END_REF].

Let us consider the first one. For ±z > L, using Fourier series, classically, we can decompose u s as

u s (y, z) = s ± w ± (y, z) + +∞ n=2 α ± n w ± n (y, z).
In this expression, according to (5), we have

w ± (y, z) = 1 √ 2β 1 e ±iβ 1 z ϕ 1 and, for n ≥ 2, w ± n (y, z) = 1 √
2β n e ∓βnz ϕ n (y),

where

β 1 = √ k 2 -λ 1 and, for n ≥ 2, β n = √ λ n -k 2 .
Moreover, there holds

s ± = 2β 1 e -ikL ω×{±L} u s ϕ 1 dσ and, for n ≥ 2, α ± n = 2β n e +βnL ω×{±L} u s ϕ n dσ. ( 51 
)
Define the regions Ω + = ω × (L; +∞) and Ω -= ω × (-∞; -L). A direct calculation using the orthonormality of the family (ϕ n ) n≥1 and the fact that s ± = 0 when T = 1 yields

Ω\Ω L |∇u s | 2 -k 2 |u s | 2 dx = +∞ n=2 2(λ n -k 2 ) |α + n | 2 Ω + |w + n | 2 dx + |α - n | 2 Ω - |w - n | 2 dx ≥ 2(λ 2 -k 2 ) Ω + |u s | 2 dx + Ω - |u s | 2 dx . ( 52 
)
Now, we deal with the second term of the right hand side of [START_REF] Ramm | Wave scattering by small bodies of arbitrary shapes[END_REF]. Let us extend u s to the domain

R L = ω × (-L; L) introducing the function γ such that γ = u s in Ω L -u i in O. (53) 
Since u = u i + u s and u = 0 on ∂Ω ∩ ∂O, clearly γ belongs to H 1 (R L ). Above, we have seen that s + = 0 implies s -= 0. Then, according to (51), there holds ω×{+L} u s ϕ 1 dσ = ω×{-L} u s ϕ 1 dσ = 0. Define the Hilbert space X := {ψ ∈ H 1 (R L ) | ω×{+L} ψϕ 1 dσ = ω×{-L} ψϕ 1 dσ = 0 and ψ = 0 on ∂Ω 0 ∩ ∂R L }.

Lemma 6.2. We have the Poincaré inequality

R L |ψ| 2 dx ≤ 1 µ 1 R L |∇ψ| 2 dx, ∀ψ ∈ X, ( 54 
)
with µ 1 := min(λ 1 + π 2 /(2L) 2 , λ 2 ). Proof. Set µ 1 = inf X\{0} R L |∇ψ| 2 dx/ R L |ψ| 2 dx. One can check that µ 1 coincides with the smallest eigenvalue of the problem Find (µ, ζ) ∈ R × (X \ {0}) such that -∆ζ = µζ in R L ∂ ν ζ = c + ϕ 1 on ω × {+L} ∂ ν ζ = c -ϕ 1 on ω × {-L} (55)
where c ± ∈ R are some constants. Here, ν stands for the normal unit vector to ∂R L directed to the exterior of R L . Up to some normalization multiplicative coefficients, the eigenfunctions of Problem (55) are given by ζ(y, z) = cos((2n + 1)πz/(2L))ϕ 1 (y), n ≥ 0 ζ(y, z) = cos(nπz/L)ϕ j (y), n ≥ 0, j ≥ 2.

We deduce that µ 1 = min(λ 1 + π 2 /(2L) 2 , λ 2 ).

Applied to γ ∈ X, estimate (54) gives

R L |∇γ| 2 -k 2 |γ| 2 dx ≥ (µ 1 -k 2 ) R L |γ| 2 dx. ( 56 
)
Since γ = u s in Ω L and γ = -u i in O, this implies

Ω L |∇u s | 2 -k 2 |u s | 2 dx + O |∇u i | 2 -k 2 |u i | 2 dx ≥ (µ 1 -k 2 ) Ω L |u s | 2 dx + O |u i | 2 dx . ( 57 
)
Using ( 52), ( 57) in ( 50), we obtain

0 ≥ (µ 1 -k 2 ) Ω |u s | 2 dx + O |u i | 2 dx . ( 58 
)
Therefore, for k 2 < µ 1 , since the interior of O is non empty, we are led to a contradiction and we must have T = 1.

Remark 6.3. In Section 5, we have seen how to construct sound soft obstacles (the flies) such that the reflection coefficient R in [START_REF] Nazarov | Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle[END_REF] verifies R = 0. From the conservation of energy

|R| 2 + |T | 2 = 1, this implies |T | = 1. Proposition 6.1 shows that for k 2 < min(λ 1 + π 2 /(2L) 2 , λ 2 )
, where L > 0 denotes the smallest number such that the flies are located in the region ω × (-L; L), we cannot have T = 1. This means that for such k 2 , the wave suffers a phase shift after passing the defects. Remark 6.4. For the problem considered in this article (see [START_REF] Nazarov | The asymptotic analysis of gaps in the spectrum of a waveguide perturbed with a periodic family of small voids[END_REF]), u is called a trapped mode if it satisfies -∆u = k 2 u in Ω, u = 0 on ∂Ω and u ∈ H 1 (Ω) (which implies that u is exponentially decaying both at ±∞). Following an approach similar to the proof of Proposition 6.1, we can show that that there are no trapped modes for k 2 ∈ (λ 1 ; min(λ 1 + π 2 /(2L) 2 , λ 2 )). As a consequence, for a given k 2 ∈ (λ 1 ; λ 2 ), an obstacle cannot be completely invisible (T = 1) and cannot trapped waves if it is too short in the (Ox) direction (L small).

Perturbation of the size of the flies

In Section 5, we played with the position of the flies to cancel the reflection coefficient. In this section, we change a bit the point of view considering that the flies can modify slightly their size. In §7.1, we explain how to cancel the reflection coefficient when there is only one incident wave (as in the previous sections). Then, in §7.2, we show how to impose reflection invisibility at higher frequency when there are several incident waves. To proceed, we will need more that two flies.

One incident wave

For n = 1, 2, assume that the shape of the fly located at

M n = (y n , z n ) changes from O to (1 + τ n ε)O := {ξ ∈ R 3 | (1 + τ n ε) -1 ξ ∈ O}
where ε > 0 is small and where τ n ∈ R is a parameter to tune. Then, in the model considered above, the fly located at M n coincides with the set

O ε n (τ n ) := {x ∈ R 3 | ε -1 (x -M n ) ∈ (1 + τ n ε)O}.
In order to achieve reflection invisibility, in the following, we shall also need to adjust the position (but not the size) of two additional flies. For n = 3, 4, set

O ε n := {x ∈ R 3 | ε -1 (x -M n ) ∈ O} where M n = (y n , z n ). Finally, for τ = (τ 1 , τ 2 ) ∈ R 2 , define the perturbed waveguide Ω ε (τ ) := Ω 0 \ 2 ∪ n=1 O ε n (τ n ) 4 ∪ n=3 O ε n .
We denote s ε-(τ ) the reflection coefficient for the scattering problem ( 8) considered in the geometry Ω ε (τ ). Working as in Sections 3-4, we obtain the asymptotic expansion

(4iπ) -1 s ε-(τ ) = ε 2 n=1 w + (M n ) 2 cap((1 + τ n ε)O) + 4 n=3 w + (M n ) 2 cap(O) + ε 2 2 n=1 u ε 1 (M n )w + (M n )cap((1 + τ n ε)O) + 4 n=3 u 1 (M n )w + (M n )cap(O) + O(ε 3 ), ( 59 
)
where u ε 1 , u 1 are respectively the solutions to the problems Find u ε 1 ∈ H 1 loc (Ω 0 ) such that u ε 1 is outgoing and

-∆u ε 1 -k 2 u ε 1 = - 4 n=1 [∆, ζ n ] + k 2 ζ n Id u 0 (M n ) cap((1 + τ n ε)O) |x -M n | in Ω 0 u ε 1 = 0 on Γ 0 , Find u 1 ∈ H 1 loc (Ω 0 ) such that u 1 is outgoing and -∆u 1 -k 2 u 1 = - 4 n=1 [∆, ζ n ] + k 2 ζ n Id u 0 (M n ) cap(O) |x -M n | in Ω 0 u 1 = 0 on Γ 0 .
For n = 1, 2, denote W ε τn the harmonic potential of (1 + τ n ε)O (W ε τn is the harmonic function of R 3 \ (1 + τ n ε) which vanishes at infinity and verifies W ε τn = 1 on (1 + τ n ε)∂O). Using the definition of the harmonic capacity (see e.g. [START_REF] Pólya | Isoperimetric Inequalities in Mathematical Physics[END_REF])

cap((1 + τ n ε)O) := 1 4π R 3 \(1+τnε)O |∇W ε τn (ξ)| 2 dξ, ( 60 
)
we obtain cap((1

+ τ n ε)O) = (1 + τ n ε)cap(O).
As a consequence, we deduce that u ε 1 = (1 + τ n ε)u 1 . Plugging the two latter equalities in (59) yields

s ε-(τ ) 4iπ cap(O) = ε 4 n=1 w + (M n ) 2 + ε 2 2 n=1 τ n w + (M n ) 2 + 4 n=1 u 1 (M n )w + (M n ) + ε 3 sε-(τ ), ( 61 
)
where sε-(τ ) is a remainder. Now, we explain how to choose the positions and the sizes of the flies to obtain s ε-(τ ) = 0. We remind the reader that, according to (5), we have w + (M n ) = (2β 1 ) -1/2 e iβ 1 zn ϕ 1 (y n ). First, take y 1 , y 2 , y 3 , y 4 ∈ ω such that ϕ 1 (y 1 ) = ϕ 1 (y 2 ) = ϕ 1 (y 3 ) = ϕ 1 (y 4 ). Then, set z 1 , z 2 such that e 2iβ 1 z 1 = 1, e 2iβ 1 z 2 = i and z 3 = (2m + 1)π/(2β 1 ) + z 1 , z 4 = (2m + 1)π/(2β 1 ) + z 2 . Here, m ∈ N is fixed so that the points M 1 , . . . , M 4 are all distinct. Such a choice allows one to cancel the term of order ε in (61). Let us look for τ = (τ 1 , τ 2 ) under the form

τ = 2β 1 ϕ 1 (y 1 ) -2 κ 1 -e 4 n=1 u 1 (M n )w + (M n ) (1, 0) +2β 1 ϕ 1 (y 1 ) -2 κ 2 -m 4 n=1 u 1 (M n )w + (M n ) (0, 1) , ( 62 
)
where κ 1 , κ 2 are some real parameters to determine. To impose s ε-(τ ) = 0, plugging (62) in (61), we find that (κ 1 , κ 2 ) must be a solution to the problem

Find κ = (κ 1 , κ 2 ) ∈ R 2 such that κ = F ε (κ), ( 63 
) with F ε (κ) := -ε ( e sε-(τ ), m sε-(τ )) . ( 64 
)
Working as in Section 9, we can prove that for any given parameter γ > 0, there is some ε 0 > 0 such that for all ε ∈ (0;

ε 0 ], the map F ε is a contraction of B γ 2 (O) = {κ ∈ R 2 |κ| ≤ γ}.
Therefore, the Banach fixed-point theorem guarantees the existence of some ε 0 > 0 such that for all ε ∈ (0; ε 0 ], Problem (63) has a unique solution in B γ 2 (O).

Remark 7.1. With two flies only, one can check that it is impossible in (59) to both cancel the term of order ε and to use the one of order ε 2 to compensate the whole expansion. This is the reason why we need to add at least one passive fly. Note that here, we disposed two passive flies in the waveguide (the ones located at M 3 , M 4 ) only to obtain a simple fixed point equation in (64). The scheme can also be implemented with one passive fly. For example, take y 1 , y 2 , y 3 ∈ ω such that ϕ 1 (y 1 ) = ϕ 1 (y 2 ) = ϕ 1 (y 3 ) and z 1 , z 2 , z 3 ∈ R such that e 2iβ 1 z 1 = 1, e 2iβ 1 z 2 = e 2iπ/3 , e 2iβ 1 z 3 = e 4iπ/3 . With such a choice, first we cancel the term of order ε in (61). Then proceeding like in ( 62), (63), we can derive a fixed point equation which admits a solution and from this solution we can find values for the parameters τ 1 , τ 2 in (61) to achieve s ε-(τ ) = 0.

Several incident waves

Assume that the wavenumber k verifies

λ J < k 2 < λ J+1 .
for some J ∈ N * . In this case, there are 2J propagating waves w ± 1 , . . . , w ± J in the waveguide. Let Ω ε be a waveguide obtained from Ω 0 adding a finite number of flies. For j = 1, . . . , J, denote u ε j the solution to the following scattering problem

Find u ε j ∈ H 1 loc (Ω ε ) such that u ε j -w + j is outgoing and -∆u ε j = k 2 u ε j in Ω ε u ε j = 0 on Γ ε (65)
for ε small enough. In this paragraph, the sentence "u ε j -w + j ∈ H 1 loc (Ω ε ) is outgoing" means that there holds the decomposition

u ε j -w + j = χ + J j =1 s ε+ jj w + j + χ - J j =1 s ε- jj w - j + ũε j , (66) 
where s ε± jj ∈ C and where ũε j ∈ H 1 (Ω ε ) is a term exponentially decaying at ±∞. Our goal is to find a domain Ω ε such that there holds s ε- jj = 0 for j, j = 1, . . . , J. In such a situation, for any combination of the incident plane waves w + 1 , . . . , w + J , the resulting scattered field is exponentially decaying at -∞ so that the flies are invisible to an observer measuring the scattered field at z = -R for large R.

It is known that the matrix made of the s ε- jj is symmetric. Therefore, there are P := J(J + 1)/2 degrees of freedom and we have to cancel 2P real coefficients. To proceed, we will play with the size of 2P flies. For n = 1, . . . , 2P , assume that the fly located at M n = (y n , z n ) coincides with the set

O ε n (τ n ) := {x ∈ R 3 | ε -1 (x -M n ) ∈ (1 + τ n ε)O},
where ε > 0 is small and where τ n ∈ R is a parameter to tune. In order to achieve reflection invisibility, as in the previous paragraph, we also need to adjust the position (but not the size) of additional flies.

For

n = 2P + 1, . . . , N , set O ε n := {x ∈ R 3 | ε -1 (x -M n ) ∈ O} where M n = (y n , z n ).
The choice of the parameter N will be clarified later. Then, for τ := (τ 1 , . . . , τ 2P ) ∈ R 2P , define the perturbed waveguide

Ω ε (τ ) := Ω 0 \ 2P ∪ n=1 O ε n (τ n ) N ∪ n=2P +1 O ε n .
Finally, we denote s ε- jj (τ ) the reflection coefficient for the scattering problem (65) considered in the geometry Ω ε (τ ). Working as in Sections 3-4 and §7.1, we obtain the asymptotic expansion

(4iπ cap(O)) -1 s ε- jj (τ ) = ε N n=1 w + j (M n )w + j (M n ) + ε 2 2P n=1 τ n w + j (M n )w + j (M n ) + N n=1 u j, 1 (M n )w + j (M n ) + ε 3 sε- jj (τ ), (67) 
where sεjj (τ ) is a remainder and where u j, 1 is the solution to the problem Find u j, 1 ∈ H 1 loc (Ω 0 ) such that u j, 1 is outgoing and

-∆u j, 1 -k 2 u j, 1 = - N n=1 [∆, ζ n ] + k 2 ζ n Id w + j (M n ) cap(O) |x -M n | in Ω 0 u j, 1 = 0 on Γ 0 .
Now, we explain how to choose the positions and the sizes of the flies to obtain s ε- jj (τ ) = 0. To proceed, as in the previous paragraph, we need to find positions for the flies such that the term of order ε in (67) vanishes. But in the same time, we also wish to use the term of order ε 2 to cancel the complete expansion. Let us translate this into equations. We remind the reader that there holds w + j (M n ) = (2β j ) -1/2 e iβ j zn ϕ j (y n ) with β j = (k 2 -λ j ) 1/2 (see ( 5)). First, take y 1 , . . . , y N ∈ ω such that

y 1 = • • • = y N . We want to impose N n=1 w + j (M n )w + j (M n ) = 0 ⇔ N n=1 e i(β j +β j )zn = 0, for 1 ≤ j ≤ j ≤ J. ( 68 
)
To simplify, we assume that the wavenumber k ∈ (λ J ; λ J+1 ) is such that the numbers

β j + β j = (k 2 -λ j ) 1/2 + (k 2 -λ j ) 1/2 , 1 ≤ j ≤ j ≤ J, are all distinct.
Remark that, using the principle of isolated zeros, we can prove that wavenumbers such that this assumption is not verified form a set which is discrete or empty. Introduce

γ 1 < • • • < γ P such that {γ p } 1≤p≤P = {β j + β j } 1≤j≤j ≤J .
In order to use the parameters τ 1 , . . . , τ 2P to cancel the whole expansion in (67), we need to find z 1 , . . . , z 2P ∈ R (distinct) such that the matrix

B :=           cos(γ 1 z 1 ) cos(γ 1 z 2 ) . . . cos(γ 1 z 2P ) sin(γ 1 z 1 ) sin(γ 1 z 2 ) . . . sin(γ 1 z 2P ) . . . . . . . . . . . . cos(γ P z 1 ) cos(γ P z 2 ) . . . cos(γ P z 2P ) sin(γ P z 1 ) sin(γ P z 2 ) . . . sin(γ P z 2P )           (69) 
is invertible. Assume for a moment that we have constructed z 1 , . . . , z N ∈ R such that (68) holds and such that the matrix B is invertible. Then, let us look for τ under the form τ = (τ 1 , . . . , τ 2P ) with, for n = 1, . . . , P ,

τ 2n-1 = 2(β j β j ) 1/2 (ϕ j (y 1 )ϕ j (y 1 )) -1 κ 2n-1 -e N n=1 u j, 1 (M n )w + j (M n ) , τ 2n = 2(β j β j ) 1/2 (ϕ j (y 1 )ϕ j (y 1 )) -1 κ 2n -m N n=1 u j, 1 (M n )w + j (M n ) . (70) 
Here, κ 1 , . . . κ 2P are some real parameters to determine and j ≤ j are the indices such that γ n = β j +β j (note that there is a one-to-one correspondence between the index n and the pair (j, j ) for j ≤ j ). To impose s ε- jj (τ ) = 0 for 1 ≤ j ≤ j ≤ J, plugging (70) in (67), we obtain that κ := (κ 1 , . . . , κ 2P ) must be a solution to the problem

Find κ ∈ R 2P such that κ = F ε (κ), (71) 
with

F ε (κ) := -ε B -1 U. ( 72 
)
In (72), U ∈ R 2P denotes the vector such that, for n = 1, . . . , P , U 2n-1 = e sε-(τ ) jj and U 2n = m sε-(τ ) jj . Again, here j ≤ j are the indices such that γ n = β j + β j . Working as in Section 9, we can prove that for any given parameter γ > 0, there is some ε 0 > 0 such that for all ε ∈ (0; ε 0 ], the map F ε is a contraction of B γ 2P (O) := {κ ∈ R 2P |κ| ≤ γ}. Therefore, the Banach fixed-point theorem guarantees the existence of some ε 0 > 0 such that for all ε ∈ (0; ε 0 ], Problem (71) has a unique solution in B γ 2P (O). Now we explain how to construct z 1 , . . . , z 2P ∈ R such that the matrix B is invertible. We use a recursive approach. First, take z 1 , z 2 such that

B 2 := cos(γ 1 z 1 ) cos(γ 1 z 2 ) sin(γ 1 z 1 ) sin(γ 1 z 2 )
is invertible. Then, let us show that we can find z 3 ∈ R such that

B 3 :=     cos(γ 1 z 1 ) cos(γ 1 z 2 ) cos(γ 1 z 3 ) sin(γ 1 z 1 ) sin(γ 1 z 2 ) sin(γ 1 z 3 ) cos(γ 2 z 1 ) cos(γ 2 z 2 ) cos(γ 2 z 3 )    
is invertible. The map z 3 → det(B 3 ) is analytic in C. Since γ 2 > γ 1 and since det(B 2 ) = 0, using Cramer's rule, we can prove that det(B 3 ) = 0 for z 3 = iL with L > 0 large enough. According to the principle of isolated zeros, we deduce that there is some z 3 ∈ R (different from z 1 , z 2 ) such that B 3 is invertible. Then, define

B 4 :=       cos(γ 1 z 1 ) cos(γ 1 z 2 ) cos(γ 1 z 3 ) cos(γ 1 z 4 ) sin(γ 1 z 1 ) sin(γ 1 z 2 ) sin(γ 1 z 3 ) sin(γ 1 z 4 ) cos(γ 2 z 1 ) cos(γ 2 z 2 ) cos(γ 2 z 3 ) cos(γ 2 z 4 ) sin(γ 2 z 1 ) sin(γ 2 z 2 ) sin(γ 2 z 3 ) sin(γ 2 z 4 )      
.

The map z 4 → det(B 4 ) is analytic in C. Take z 4 = iL with L > 0 and pick the last column of B 4 to compute det(B 4 ) with Cramer's rule. Observe that sin(γ 2 iL) is purely imaginary whereas cos(γ 2 iL) is purely real. Using also that γ 2 > γ 1 and that det(B 3 ) is a non zero real number, we can prove that m (det(B 4 )) = 0 for L large enough. According to the principle of isolated zeros, we deduce that there is some z 4 ∈ R (different from z 1 , . . . , z 3 ) such that B 4 is invertible. Continuing the process, we can find z 1 , . . . , z 2P such that the matrix B defined in (69) is invertible.

Then, we want to determine z 2P +1 , . . . , z N (N can be chosen as we wish) such that N n=1 e iγpzn = 0, for p = 1, . . . , P . (

For n = 1, . . . , 2P , set z 2P +n = z n +(2m 1 +1)π/γ 1 where m 1 is chosen so that z 1 , . . . , z 4P are all distinct. With this choice, we have

4P n=1
e iγ 1 zn = 0.

For n = 1, . . . , 4P , set z 4P +n = z n + (2m 2 + 1)π/γ 2 , where m 2 is chosen so that z 1 , . . . , z 8P are all distinct. Then, we obtain 8P n=1 e iγpzn = 0, for p = 1, 2.

With this approach, we can find N = 2 P +1 P numbers z 1 , . . . , z N such that (73) is satisfied. The technique is attractive because it is systematic and simple to implement. However, it requires a very high number of flies. For example, with J = 5 (in this case P = J(J + 1)/2 = 15), we find N = 983040. It would be interesting to find alternative algorithms which are less flies consuming.

Remark 7.2. Above, we assumed that the wavenumber k ∈ (λ J ; λ J+1 ) is such that the numbers

β j +β j = (k 2 -λ j ) 1/2 + (k 2 -λ j ) 1/2 , 1 ≤ j ≤ j ≤ J, are all distinct.
It is an open problem to impose reflection invisibility when this assumption is not satisfied.

Conclusion

We explained how flies (small Dirichlet obstacles) should arrange to become invisible to an observer sending waves from -∞ and measuring the resulting scattered field at the same position (see in particular Proposition 5.1). In other words, we constructed waveguides where the reflection coefficient R satisfies R = 0. We investigated a 3D setting. For 2D problems, the asymptotic calculus is a bit different, with the presence of a logarithm, but the analysis should be essentially the same. A possible direction to continue this work is to work with sound hard (Neumann) obstacles. We also considered the question of imposing T = 1 (T is the transmission coefficient). We observed that with small Dirichlet obstacles, it is impossible to have T = 1. Moreover, we showed that for any sound soft obstacle (non necessarily small) embedded in the waveguide, we cannot have T = 1 for wavenumbers smaller than an explicit value (see Proposition 6.1).

It is an open question to know whether or not this bound is optimal.

Appendix: justification of asymptotics

In this appendix, we explain how to justify the asymptotic expansion derived formally in Section 4. More precisely, we wish to show estimate [START_REF] Nazarov | Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains[END_REF] which was the key ingredient to obtain Proposition 5.1. The statement of this estimate is as follows: for all ϑ > 0, there is some ε 0 > 0 such that for all ε ∈ (0; ε 0 ], there holds

|s ε-(τ ) -sε-(τ )| ≤ C |τ -τ |, ∀τ, τ ∈ B ϑ 3 (O) = {τ ∈ R 3 |τ | ≤ ϑ},
where C > 0 is a constant independent of ε. The proof will be divided into several steps and will be the concern of the next three paragraphs. We shall use the same notation as in Sections 4, 5.

Explicit expression of the coefficient sε-(τ )

First, we provide an explicit formula for the coefficient sε-(τ ). According to [START_REF] Kondratiev | Boundary-value problems for elliptic equations in domains with conical or angular points[END_REF], sε-(τ ) is defined as the remainder appearing in the decomposition

s ε-(τ ) 4iπ cap(O) = ε 2 n=1 w + (M n ) 2 + ε 2 2w + (M 1 ) τ • ∇w + (M 1 ) + 2 n=1 u 1 (M n )w + (M n ) + ε 3 sε-(τ ). ( 74 
)
From [START_REF] Cummer | Full-wave simulations of electromagnetic cloaking structures[END_REF], we know that

i s ε-(τ ) = Σ L ∂(u ε (τ ) -w + ) ∂ν w --(u ε (τ ) -w + ) ∂w - ∂ν dσ. ( 75 
)
Let us compute an asymptotic expansion of u ε (τ ), the solution to Problem [START_REF] Hille | Functional analysis and semi-groups[END_REF], as ε tends to zero. We will work as in Section 3 where we obtained an asymptotic expansion of u ε (0) = u ε . Consider the decomposition

u ε (τ ) = w + + ζ 1 (x) v 0, 1 (ε -1 (x -M τ 1 )) + ζ 2 (x) v 0, 2 (ε -1 (x -M 2 )) +ε u 1 + ζ 1 (x) v1, 1 (ε -1 (x -M τ 1 )) + ζ 2 (x) v 1, 2 (ε -1 (x -M 2 )) +ε 2 u 2 + û2 + ζ 1 (x) v2, 1 (ε -1 (x -M 1 )) + ζ 2 (x) v 2, 2 (ε -1 (x -M 2 )) + ε 3 ũε (τ ). ( 76 
)
In the above expression, the functions v 0, n , u 1 , v 1, 2 , u 2 , are respectively defined in ( 12), ( 15), ( 16), [START_REF] Colton | A simple method for solving inverse scattering problems in the resonance region[END_REF]. In particular, v 0, 1 (ε

-1 (x -M τ 1 )) = -w + (M 1 ) W (ε -1 (x -M τ 1 )). As |ε -1 (x -M 1 )| becomes large, we have W (ε -1 (x -M τ 1 )) = cap(O) |ε -1 (x -M 1 ) -τ | + O(|ε -1 (x -M 1 ) -τ | -3 ) = cap(O) |ε -1 (x -M 1 )| + cap(O) τ • ε -1 (x -M 1 ) |ε -1 (x -M 1 )| 3 + O(|ε -1 (x -M 1 )| -3 ), (77) 
where W denotes the capacity potential already introduced in ( 12). As a consequence, the term u 1 defined by ( 15) indeed cancels the discrepancy

2 n=1 [∆, ζ n ] + k 2 ζ n Id u 0 (M n ) cap(O) |x -M n |
at order ε. With v1, 1 , we impose the homogeneous Dirichlet boundary condition on ∂O ε 1 (τ ) at order ε. For x ∈ ∂O ε 1 (τ ), we have

(w + + v 0, 1 (ε -1 (x -M τ 1 )) + εu 1 )(x) = εu 1 (M 1 ) + (x -M 1 ) • ∇w + (M 1 )) + . . . = ε(u 1 (M 1 ) + (τ + ε -1 (x -M τ 1 )) • ∇w + (M 1 )) + . . . . Therefore, we take v1, 1 (ε -1 (x -M τ 1 )) = -(u 1 (M 1 ) + τ • ∇w + (M 1 )) W (ε -1 (x -M τ 1 )) + ∇w + (M 1 ) • -→ W (ε -1 (x -M τ 1 )) , (78) 
where

-→ W is introduced in (16). After inserting w + (x) + v 0, 1 (ε -1 (x -M τ 1 )) + v 0, 2 (ε -1 (x -M 2 )) + ε(u 1 + v1, 1 (ε -1 (x -M τ 1 )) + v 1, 2 (ε -1 (x -M 2 )
)) into (28), using formulas ( 12), ( 14), ( 17), ( 77) and (78), we get the discrepancy

ε 2 2 n=1 [∆, ζ n ] + k 2 ζ n Id u 1 (M n ) cap(O) |x -M n | +ε 2 [∆, ζ 1 ] + k 2 ζ 1 Id w + (M 1 ) cap(O) τ • (x -M 1 ) |x -M 1 | 3 + τ • ∇w + (M 1 ) cap(O) |x -M 1 | + O(ε 3 ). (79) 
The term u 2 , which satisfies Problem [START_REF] Colton | A simple method for solving inverse scattering problems in the resonance region[END_REF], allows one to cancel the first part (first line) of this discrepancy. In (76), to deal with the second component of (79) (second line), we introduced the function û2 . We take û2 := û2a + û2b where û2a , û2b are the solutions to the problems

Find û2a ∈ H 1 loc (Ω 0 ) such that -∆û 2a -k 2 û2a = f a (τ ) in Ω 0 û2a = 0 on Γ 0 û2a is outgoing Find û2b ∈ H 1 loc (Ω 0 ) such that -∆û 2b -k 2 û2b = f b (τ ) in Ω 0 û2b = 0 on Γ 0 û2b is outgoing. (80) 
Here, in accordance with (79), the source terms f a (τ ), f b (τ ) are defined by

f a (τ ) = -[∆, ζ 1 ] + k 2 ζ 1 Id w + (M 1 ) cap(O) τ • (x -M 1 ) |x -M 1 | 3 f b (τ ) = -[∆, ζ 1 ] + k 2 ζ 1 Id τ • ∇w + (M 1 ) cap(O) |x -M 1 | .
Since Problems (88) are linear, we obtain û2b = τ • ∇w + (M 1 )u 1 /w + (M 1 ) where u 1 refers to the function introduced in (15). Plugging (76) in (75), we obtain

i s ε-(τ ) = Σ ∂ ∂ν (εu 1 + ε 2 (u 2 + û2 ) + ε 3 ũε (τ )) w --(εu 1 + ε 2 (u 2 + û2 ) + ε 3 ũε (τ )) ∂w - ∂ν dσ. ( 81 
)
Let us focus our attention on the term involving û2 = û2a +û 2b in (81). Since û2b = τ •∇w + (M 1 )u 1 /w + (M 1 ), according to ( 21)-( 24), we have

Σ ∂ û2b ∂ν w --û2b ∂w - ∂ν dσ = 4iπ cap(O)(w + (M 1 ) τ • ∇w + (M 1 )). (82) 
Now, we compute

I := Σ ∂ û2a ∂ν w --û2a ∂w - ∂ν dσ.
Integrating by parts in ω × (-; ) and using the equation ∆w -+ k 2 w -= 0 as well as (88), we find, working exactly as in [START_REF] Edwards | Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects[END_REF],

I = ω×(-; ) ∆û 2a w --û2a ∆w -dx = Ω 0 ∆û 2a + k 2 û2a w -dx = Ω 0 [∆, ζ 1 ] + k 2 ζ 1 Id w + (M 1 ) cap(O) τ • (x -M 1 ) |x -M 1 | 3 w -dx = w + (M 1 ) cap(O) Ω 0 w -[∆, ζ 1 ] τ • (x -M 1 ) |x -M 1 | 3 - ζ 1 τ • (x -M 1 )∆w - |x -M 1 | 3 dx. ( 83 
) Noticing that [∆, ζ 1 ](τ • (x -M 1 )/|x -M 1 | 3
) vanishes in a neighbourhood of M 1 (see the discussion after (15)) and using the Lebesgue's dominated convergence theorem we can write

I = lim δ→0 w + (M 1 ) cap(O) Ω 0δ w -[∆, ζ 1 ] τ • (x -M 1 ) |x -M 1 | 3 - ζ 1 τ • (x -M 1 )∆w - |x -M 1 | 3 dx. ( 84 
)
In (84), the set Ω 0δ is defined by Ω

0δ := Ω 0 \ B δ 3 (M 1 ). Remark that [∆, ζ 1 ](τ • (x -M 1 )/|x -M 1 | 3 ) = ∆(ζ 1 τ • (x -M 1 )/|x -M 1 | 3 ) in Ω 0δ
. Therefore, we have

I = lim δ→0 w + (M 1 ) cap(O) Ω 0δ w -∆ ζ 1 τ • (x -M 1 ) |x -M 1 | 3 - ζ 1 τ • (x -M 1 )∆w - |x -M 1 | 3 dx = -lim δ→0 w + (M 1 ) cap(O) Ω 0δ w -∆ ζ 1 τ • ∇ 1 |x -M 1 | -ζ 1 τ • ∇ 1 |x -M 1 | ∆w -dx = -lim δ→0 w + (M 1 ) cap(O) Ω 0δ w -∆ τ • ∇ ζ 1 |x -M 1 | -τ • ∇ ζ 1 |x -M 1 | ∆w -dx + lim δ→0 w + (M 1 ) cap(O) Ω 0δ w -∆ 1 |x -M 1 | τ • ∇ ζ 1 - 1 |x -M 1 | τ • ∇ ζ 1 ∆w -dx. (85) 
Integrate by parts in the two terms of the right hand side of (85). Using that ζ 1 is compactly supported in Ω 0 and equal to one in a neighbourhood of M 1 (so that there holds τ • ∇ ζ 1 = 0 in this region), we deduce

I = -lim δ→0 w + (M 1 ) cap(O) Ω 0δ w -∆ τ • ∇ ζ 1 |x -M 1 | -τ • ∇ ζ 1 |x -M 1 | ∆w -dx = lim δ→0 w + (M 1 ) cap(O) Ω 0δ τ • ∇w -∆ ζ 1 |x -M 1 | - ζ 1 |x -M 1 | ∆(τ • ∇w -) dx = lim δ→0 w + (M 1 ) cap(O) ∂B δ 3 (M 1 ) τ • ∇w -∂ ν (|x -M n | -1 ) -|x -M n | -1 ∂ ν τ • ∇w -dσ. (86) 
In this expression, ν stands for the normal unit vector to ∂B δ 3 (M 1 ) directed to the interior of B δ 3 (M 1 ). Note that to obtain the second line of (86), we use the relation

lim δ→0 ∂B δ 3 (M 1 ) ζ 1 |x -M 1 | ∆w -dσ = 0.
An explicit calculus similar to [START_REF] Fleury | Extraordinary sound transmission through density-near-zero ultranarrow channels[END_REF] gives

I = 4iπ cap(O)(w + (M 1 ) τ • ∇w + (M 1 )
). Gathering this result with (82) leads to

Σ ∂ û2 ∂ν w --û2 ∂w - ∂ν dσ = 4iπ cap(O)(2w + (M 1 ) τ • ∇w + (M 1 )).
Plugging this identity into (81), using ( 24), ( 25) and identifying with [START_REF] Kondratiev | Boundary-value problems for elliptic equations in domains with conical or angular points[END_REF], we obtain

i sε-(τ ) = Σ ∂ ũε (τ ) ∂ν w --ũε (τ ) ∂w - ∂ν dσ. ( 87 
)
In this formula, ũε (τ ) refers to the function appearing in the decomposition (76) u ε (τ ) = u ε (τ )+ε 3 ũε (τ ).

Here, u ε (τ ) stands for the sum of the terms of orders ε 0 , ε, ε 2 in (76). With this notation, ũε (τ ) is the solution to the problem Find ũε (τ ) ∈ H 1 loc (Ω ε (τ )) such that ũε (τ ) is outgoing and

-∆ũ ε (τ ) -k 2 ũε (τ ) = f ε (τ ) in Ω ε (τ ) ũε (τ ) = g ε (τ ) on ∂Ω ε (τ ), (88) 
where f ε (τ ) = ε -3 (-∆u ε (τ ) -k 2 u ε (τ )) and g ε (τ ) = ε -3 u ε (τ ). The next step to prove estimate [START_REF] Nazarov | Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains[END_REF] consists in showing that ũε (τ ) is Lipschitz continuous with respect to the parameter τ with a constant independent of ε. To proceed, we need to recall some standard material to study problems like (88).

Solvability of the problems in weighted spaces

In the following, we will use a change of variables to compare the solutions to (88) in the geometry Ω ε (0) = Ω ε . Following the classical study [START_REF] Kondratiev | Boundary-value problems for elliptic equations in domains with conical or angular points[END_REF] (see also [START_REF] Nazarov | Elliptic problems in domains with piecewise smooth boundaries[END_REF]Chap. 3 and 5]), we introduce the weighted Sobolev space W 1 β (Ω ε ) (Kondrat'ev space) defined as the completion of

C ∞ 0 (Ω 0 \ ∪ 2 n=1 O ε n ) for the norm v W 1 β (Ω ε ) = ( e β|z| ∇v 2 L 2 (Ω ε ) + e β|z| v 2 L 2 (Ω ε ) ) 1/2 . ( 89 
)
Here C ∞ 0 (Ω 0 \ (∪ 2 n=1 O ε n )) denotes the set of infinitely differentiable functions supported in Ω 0 \ ∪ 2 n=1 O ε n and β ∈ R is the weight exponent. The space W 1 β (Ω ε ) consists of functions of H 1 loc (Ω ε ) which vanish on Γ 0 (but not necessarily on ∂O ε 1 ∪ ∂O ε 2 ) with finite norm (89) . Observe in particular that W 1 0 (Ω ε ) = {v ∈ H 1 (Ω ε ) | v = 0 on Γ 0 } and that for β > 0, the functions of W 1 β (Ω ε ) decay exponentially at z = ±∞. We also define W1

β (Ω ε ) := {v ∈ W 1 β (Ω ε ) | v = 0 on ∂O ε 1 ∪ ∂O ε 2 }.
In order to prescribe radiation conditions at z = ±∞ (as in ( 9)), for β > 0 we introduce the space with detached asymptotic (see, e.g., the reviews [START_REF] Nazarov | Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains[END_REF][START_REF] Nazarov | The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes[END_REF]) W 1 -β (Ω ε ) that consists of functions v ∈ W 1 -β (Ω ε ) that admit the representation v = χ + s + w + + χ -s -w -+ ṽ, with coefficients s ± ∈ C and remainder ṽ ∈ W 1 β (Ω ε ). This space is a Hilbert space for the inner product naturally associated with the norm

v W 1 -β (Ω ε ) = |s + | 2 + |s -| 2 + ṽ 2 W 1 β (Ω ε ) 1/2 .
We define the map A ε (0) such that A ε (0) :

W 1 β (Ω ε ) -→ W1 -β (Ω ε ) * × H 1/2 (∂O ε 1 ∪ ∂O ε 2 ) u = χ + s + w + + χ -s -w -+ ũ -→ (f, g) ( 90 
)
where g = u| ∂O ε 1 ∪∂O ε 2 and where f is the function such that

f, v Ω ε = - Ω ε (∆ + k 2 Id)(χ + s + w + + χ -s -w -)v dx + Ω ε ∇ũ • ∇v -k 2 ũv dx, ∀v ∈ W1 -β (Ω ε ).
Here, W1 -β (Ω ε ) * stands for the topological dual space to W1 -β (Ω ε ) while •, • Ω ε corresponds to the duality pairing between W1

-β (Ω ε ) * and W1 -β (Ω ε ). For all β ∈ (0; √ λ 2 -k 2 ), we can show that A ε (0) is an isomorphism for ε small enough. To obtain this result, for example one can adapt the proof of [START_REF] Chesnel | Spectrum of a diffusion operator with coefficient changing sign over a small inclusion[END_REF]Prop. 3.1] (see also [START_REF] Maz'ya | Asymptotic theory of elliptic boundary value problems in singularly perturbed domains[END_REF]Chap. 4]). Moreover, A ε (0) -1 is uniformly bounded for ε ∈ (0; ε 0 ].

As in (90), we define the operator A ε (τ ) :

W 1 β (Ω ε (τ )) → W1 -β (Ω ε (τ )) * × H 1/2 (∂O ε 1 (τ ) ∪ ∂O ε 2 )
where the spaces are the same as the ones introduced above with Ω ε replaced by Ω ε (τ ).

Error estimate

Now, we have all the tools to establish estimate [START_REF] Nazarov | Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains[END_REF]. We will work as in the classical proofs of perturbations theory for linear operators (see [START_REF] Kato | Perturbation theory for linear operators[END_REF]Chap. 7,§6.5], [START_REF] Hille | Functional analysis and semi-groups[END_REF]Chap. 4]). Let us consider some smooth diffeomorphism L (ετ ) which maps Ω ε (defined in (1)) into Ω ε (τ ). In a neighbourhood of O ε 1 , L (ετ ) coincides with the transformation x → x + ετ . We can assume that the global change of variables is equal to the identity for x such that |z| ≥ /2 and that its Jacobian matrix satisfies the relations Here, Id stands for the 3 × 3 identity matrix and ∂ α x is the standard multi-index notation used for derivatives. In other words, we assume that L is non singular and almost identical for small ε. Define Ũ ε (τ ) := ũε (τ ) • L (ετ ), F ε (τ ) := f ε (τ ) • L (ετ ), G ε (τ ) := g ε (τ ) • L (ετ ) where ũε (τ ), f ε (τ ), g ε (τ ) are the functions appearing in (88). In (76), we can choose v2, 1 , v 2, 2 so that there holds

(F ε (τ ), G ε (τ )) W1 -β (Ω ε ) * ×H (∂O ε 1 ∪∂O ε 2 ) ≤ C (92) (F ε (τ ), G ε (τ )) -(F ε (τ ), G ε (τ )) W1 -β (Ω ε ) * ×H 1/2 (∂O ε 1 ∪∂O ε 2 ) ≤ C |τ -τ | (93) 
for all ε ∈ (0; ε 0 ], τ , τ ∈ B ϑ 3 (O) = {τ ∈ R 3 |τ | ≤ ϑ}. On the other hand, under the change of variables L (ετ ), A ε (τ ) :

W 1 β (Ω ε (τ )) → W1 -β (Ω ε (τ )) * × H 1/2 (∂O ε 1 (τ ) ∪ ∂O ε 2 ) is transformed into the operator A ε (τ ) : W 1 β (Ω ε ) → W1 -β (Ω ε ) * × H 1/2 (∂O ε 1 ∪ ∂O ε 2 )
that "differs little" (in a sense similar to (91)) from A ε (0). Moreover, the coefficients of this differential operators depend smoothly on the parameter ετ ∈ (0; ε 0 ]. Therefore, we have the estimate

A ε (τ ) -A ε (0) ≤ C ετ ( 94 
)
where • refers to the usual norm for the linear operators acting from

W 1 β (Ω ε ) to W1 -β (Ω ε ) * ×H 1/2 (∂O ε 1 ∪ ∂O ε
2 ). Note that A ε (τ )ũ ε (τ ) = (f ε (τ ), g ε (τ )) ⇔ A ε (τ ) Ũ ε (τ ) = (F ε (τ ), G ε (τ ))

⇔ (A ε (0) + (A ε (τ ) -A ε (0))) Ũ ε (τ ) = (F ε (τ ), G ε (τ )).

Since A ε (0) -1 is uniformly bounded for ε ∈ (0; ε 0 ], we deduce from (92), (94) that Ũ ε (τ ) W 1 -β (Ω ε ) ≤ C for all τ ∈ B ϑ 3 (O). Now, pick some τ, τ ∈ B ϑ 3 (O). We have

A ε (τ ) Ũ ε (τ ) -A ε (τ ) Ũ ε (τ ) = (F ε (τ ) -F ε (τ ), G ε (τ ) -G ε (τ )) ⇔ A ε (τ )( Ũ ε (τ ) -Ũ ε (τ )) = (A ε (τ ) -A ε (τ )) Ũ ε (τ ) + (F ε (τ ) -F ε (τ ), G ε (τ ) -G ε (τ )).
Using (93), the estimate

A ε (τ ) -A ε (τ ) ≤ C ε|τ -τ |
as well as the fact that A ε (τ ) is uniformly invertible for ε small enough, we obtain We emphasize that the constant C > 0 appearing in the last inequality above is independent of ε ∈ (0; ε 0 ], τ , τ ∈ B ϑ 3 (O). This ends to prove Estimate [START_REF] Nazarov | Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains[END_REF].

Ũ ε (τ ) -Ũ ε (τ ) W 1 -β (Ω ε ) ≤ C |τ -τ |.

Figure 1 :

 1 Figure 1: Unperturbed waveguide (left), perturbed waveguide with two flies (middle), set O (right). Let Ω 0 := {x = (y, z) | y ∈ ω and z ∈ R} be a cylinder of R 3 . Here, ω ⊂ R 2 is a connected open set with smooth boundary. In the following, Ω 0 is called the reference or unperturbed waveguide (see Figure 1 on left). Let O ⊂ R 3 be an open set with Lipschitz boundary. Consider M 1 = (y 1 , z 1 ), M 2 = (y 2 , z 2 ) two points located in Ω 0 and define the sets, for n = 1, 2, ε > 0

Figure 2 :

 2 Figure 2: Examples of perturbed waveguides for which transmission invisibility cannot be imposed for wavenumbers smaller than a k .

L

  ετ (x) R 3×3 ≤ C p ετ, p = 0, 1, . . . . (91)

Finally, remarking

  that Ũ ε (τ ) = ũε (τ ) and Ũ ε (τ ) = ũε (τ ) for x such that |z| ≥ /2, we infer|s ε-(τ ) -sε-(τ )| = Σ ∂(ũ ε (τ ) -ũε (τ )) ∂ν w --(ũ ε (τ ) -ũε (τ )) ∂w - ∂ν dσ = Σ ∂( Ũ ε (τ ) -Ũ ε (τ )) ∂ν w --( Ũ ε (τ ) -Ũ ε (τ )) ∂w - ∂ν dσ ≤ C |τ -τ |.

  Even though this result is stated in dimension d = 3, it holds in any dimension d ≥ 2. And the proof for d = 3 is the same as the one presented below. The authors do not know if the constant min(λ 1 + π 2 /(2L) 2 , λ 2 ) is optimal.

	Remark 6.2.

Proposition 6.1. Assume that k 2 < min(λ 1 + π 2 /(2L) 2 , λ 2 ) where L > 0 denotes the smallest constant such that O ⊂ R L := ω × (-L; L). Then the transmission coefficient T appearing in the decomposition

[START_REF] Nazarov | Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle[END_REF] 

satisfies T = 1. Remark 6.1.

Actually, we will make this assumption everywhere in the article except in §7.2.

We call "discrepancy" the error on the source term in Ω ε .
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