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ABSTRACT post-nonlinea(PNL) [2, 3], in which linear mixtures are fur-

. . . her distorted by nonlinear functions before the measun¢me
In this paper we propose a blind source separation method 10 : . .
i . . and thelinear quadratic(LQ) [4, 5] model, which represents
process the data acquired by an array of ion-selective ele

) L L . . %ﬁe mixtures as a second-order polynomial on the sources.
trodes in order to measure the ionic activity of differemtso poly

. . . : In this work, we shall focus on the problem of source sep-
in an aqueous solution. While this problem has already been . . .

. . aration for ion-selective electrode (ISE) arrays [6—8]E$S
studied in the past, the method presented differs from tke on : . . g L

. R - . are simple devices which are used for measuring the ionic ac-
previously analyzed by approximating the mixing functign b

. ; Hvity (essentially the effective concentration of an iagm)an
a second-degree polynomial, and using 2 method based on taeueous solution. An ISE consists of a sensitive membrane
differential of the mutual information to adjust the parame q j

ter values. Experimental results, both with synthetic arad r for which the electrochemical potential varies accordiag t

data. suggest that the algorithm proposed is more accur he concentration of a specific ion. A well-known example of
» SUg9 - aigort prop RIS= is the glass electrode used for measuring the pH value [9]
than the other models in the literature.

The problem of the ISEs, however, is that the membranes
Index Terms— Blind source separation, chemical sensorare not perfectly selective, which means that when trying to
arrays, ion-selective electrodes, quadratic mixing model  estimate the activity of a certain ion, the measuremenimill
clude an interference from ions different from the targes on
which are also present in the same chemical solution. Be-
1. INTRODUCTION cause the measurements are a mixture of the activities, a BSS
paradigm can be used to separate the signals from each ion by
The problem of blind source separation (BSS) is an importarﬂising an array of multiple ISEs.
cornerstone in signal processing theory [1], with appi@&  The problem of estimating the ionic activities based on
including audio signal processing, telecommunications, i |SE arrays has already been studied in the past, with the use
age processing, brain-computer interface design, asalfsi of 53 Bayesian source separation method [10], sparsityebase
seismic data, among others. To put simply, the BSS prolyyethods [11] and a PNL model [3, 8]. In this paper, we will
lem consists of estimating some signals, which we shall Ca%ropose a different algorithm for the problem, in which we
sources, using measurements which are effectively a reixtuyij| model the data by a second-degree polynomial, and com-
of them, and possibly songepriori information on the nature - pare this approach with the PNL model previously mentioned.
of the desired signals and mixing process. In the paper, we will initially present, in section 2, a de-
The common approach for solving the BSS problem startgcription of the BSS problem statement and how it relates to
with the hypothesis that the mixing process is linear antl thaneasurements with chemical sensor arrays. In section 3, we
the source signals are statistically independent, in wbést® || then propose a solution to the problem, and present ex-
successful algorithms such as thelependent component perimental results in section 4, as well as comparisons with

analysis(ICA) [1] have been proposed and extensively studpreviously analyzed methods. Finally, in section 5 a conclu
ied over the last years. However, there are applications fofjon and future plans shall be presented.

which the linear model is insufficient, and a nonlinear mixin
model is required. Among the nonlinear BSS mixing models

that have been studied so far, it is important to mention the 2. PROBLEM STATEMENT
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ful to Karin Chumbimuni-Torres and Lauro Kubota for provigithe data L€t US consider a set o sourcess(n) = [s1(n), 52(n), ...
used in the paper. sy (n)]T and M mixturesx(n) = F[s(n)] = [z1(n), z2(n),



.2 (t)])T, wheren is the temporal index and[.] is the  whereA is such that;; = azs = 1, d is the vector contain-
mixing function. The goal of the source separation problem iing the estimates of the slope for each ISE, am#notes the

to obtain the sourcegn) given the mixtures(n), and possi- Hadamard (entrywise) matrix prodécWhile the slopes rep-

bly somea priori information on the properties of the sourcesresented byl can be theoretically calculated directly by (2),
(e.g. independence, sparsity, non-negativity, etc) anafio the empirical nature of the NE equation cannot always accu-
the mixing process. The problem is said torfom-blindif the  rately model the data, and better results can be obtained by
mixing functionF[.] is known, and it is otherwise said to be giving the model an additional degree of freedom, allowing i
blind. If the functionF[] is linear, the mixing function can to vary the slope.

be represented by a matrix:

3. PROPOSED SOLUTION

x(n) = As(n) (1)
whereA is a N x M matrix. For the linear case, there are Starting from (3), it can be seen that by calculating
several classical methods in the literature that can sdige t vi—e
BSS problem under different priors for the sources. A very r; =10 & 4

well-known class of methods is thedependent component \ye obtain the modified mixture sgt= As, which is a linear
analysis(ICA), which can successfully separate the sourcegixture of the two sources and can then be solved by classical
provided they are statistically independent, at most one ofnear BSS algorithms. This results in the classical PNL ap-
them has a Gaussian distribution, and the mixing function i%roach in which the difficult part is to estimate the paramsete
invertible [1]. that correctly cancel the nonlinearity - in this case th@eto

For the nonlinear case, however, no general solution X3, The electrode potentiaisbecomes only a scalar factor on
ists, and the problem has to be analyzed on a case-by-casgch mixture, and is therefore unimportant. This amplitude
basis [1], depending on the nature of the mixing functiongmpiguity can usually be ignored in the BSS paradigm, since
Among the commonly studied nonlinear models are the post s ysually impossible to obtain the correct amplitudeadte

nonlinear (PNL) [3] and the polynomial model [12]. source without some additional information (because ssurc
with different amplitudes can produce the same mixture set
2.2. Chemical Sensor Arrays by adjusting the unknown coefficients).

. . An algorithm for estimating the Nernst slope has been
For the problgm of chemlcallsensor. arrays, Iet.us Cons'derﬁ?oposed [10, 14] and was able to successfully separate the
s_olutllon n \(/jvh|ch|;v§ havev d|fferer;]t lons a}n.cM |th Shelec- sources, though not perfectly. We propose here a different
tive electrodes (ISE) to measure their activity, which aue o algorithm, in which instead of estimating the slopkswe

sources. (lj—|owever, dlllje to thel_lnterfer_ence pr?brllem, thcge?ealu simply use the theoretical value of the Nernst slope given by
measured are actually a noniinear mixture of the activdies (2) of d* = 59mV. Since the actual slope is close, but actu-

e_ach ion. /_-\c_cording to the NicoIsky-Eis_enman (NE) equa—a”y different from the theoretical value, by usiagin (4) we
tion [13], this interference can be approximately modeled b obtain:
the equation below: '

Yi—eg

P di
T; = 10 & 4~ (5)

| N e ) which leads tax = (As)9/?", where the exponential is per-
yi(n) = ei+ wF si(n) + , Z (i35 n) ] @ formed entrywise. We can see then that the mixture is no
J=Lizi longer linear; but it should have a small measure of nonlin-
wheree; is the standard electrode potential (a scalar constantz,amy' S"’?C%/ d* ~ 1. Therefore, a promising idea is that
R is the universal gas constarf, is the temperaturef’ is y modeling it by a second-order polynomial, the approxima-
the Faraday constant, is the valénce of theth ion. anda.. tion would be very close to the actual model. The quadratic
are the selectivity coefficients. ThBL slope is called ;Jhe terms of this new mixing model would also be able to eventu-
Nernst slopeand at room temperatﬁf;a B5°C, it is approx- ally correct small flaws in the actual NE model (2). Thus, our

imately26mV, or 59mV if the logarithm is converted to base modified mixture sex can be modeled as:
10 (which is the standard practice in chemical applications).
In this paper, we will treat the case in which we have two
sources and two electrodes, and the ions have the same weherea;; = ax = 1 ands®® = [s?,53]7. This mix-
lence (for example, Naand K*). In this case, (2) becomes ing model encompasses the class known as linear-quadratic
model, for which one can find several methods to deal with
y =e+dolog(As) (3) [12]. Since the mixing model is not as simple as the linear

x = As + Bs®? + cs159 (6)

1The argument (n) has been omitted for clarity. 2The logarithm operation is also performed entrywise.



case, inverting it is no longer trivial, and a recurrent rekv ~ wherey denotes the learning réteéWhen applied specifically
seems indicated solve even in the non-blind case [12]. to the case of the second order model, &ane- [wy, ..., wg]”
the coefficients that appear in

3.1. Recurrent Network for Non-blind Model

. . . . |81+ wis2 + UJQS% + wgsg + w4S152
The idea is that by rewriting the equation as = {w581 ¥ 5+ wes? + wrsd + wes12 (13)
Gls] = As + Bs°® + ¢sy50 — x = 0 (7)  the matrix of partial derivatives can be calculated as

wheres®? = sos ando is the Hadamard product, we are able P 9 o 0o 0 0 o0
to use classical root-finding algorithms for nonlinear equa 2 — J5l(y) [262 yol y02 y10y2 L ]
tion systems to solve the problem. One of the most popu-“%" yrovr Y2 i

lar such algorithm is thélewton-Raphson meth@8l], which . . (14).
converges to the solution by applying the following itevati Our proposed algorithm alternates between the iteration to
estimate the parameters (12) and the recurrent network capa

. ble of solving the non-blind problem (8), until the paranste
Yk+1 = Yk — Jg (}’k)g[}’k] (8) converge.

wherelJg is the Jacobian of the system, which in our case is
4. EXPERIMENTAL RESULTS

1] 7 rfo 1
Jg=A+2Bo (M s > +cs [1 0] () In order to measure the quality of the estimated solutidres, t
signal-to-intereference rati(5IR) was used, which is defined

L as (in decibels):
3.2. Parameters Estimation

2
For the blind case, we need a method for estimating the pa- SIR=10log;, L}z (15)
rameters of the model. We used a gradient-based ICA method E{(s —y)?}
for this: starting with random parameters, we vary them ac-

cording to the gradient of a cost function that should be min#-1- Simulated Data

imized for the correct parameters. For independent sourcegor the simulated data, the sources were uniformly disteithu
we can use the mutual information (MI) as cost function andp the [0, 1] interval and the first one was sorted, to make it
will therefore need an estimate of the differential of the B8  gasier to see on the time domain. This does not affect the
proposed in [15]. Let us start by defining what can be roughlytatistical properties of the sources. We used= 100mV
interpreted as the “gradient” of the MI with respectyto (typical electrode potential values), = [55, 65| (typical
slopes estimated by the PNL), and mixing parameigss=
dlog p(y) dlog p(ys) as1 = 0.5. The ion valences are both equallto
By (y) = (—7> - (— 7’) (10) The algorithm was presented with the mixtures as givenin
9y dyi (3), and after using standard valueslofmV for the poten-
tial and59mV for the Nernst slope, we obtain a modified mix-
ture set which can be separated with the described network.
The sources, mixtures and estimates obtained in this simula
tion can be seen in Fig. 1. The SIR values obtained were

which is the difference between tith component of the joint
score function ofy and the marginal score function gf. It
can be proven that has independent components if, and only

if, = 0,Vi [15]. Itis int ting t te that th . : .
i, By ¢ [19] 'S Interesting 1o note that the score 22.9 dB and27.8 dB respectively, which can be considered

functions (i.e., the derivatives of the MI), and, by extemsi . ) i ;
the3, (y) defined in (10) can be accurately computed by effi_good enough for our source separation simulation, especial

cient methods as described, for instance, in [16]. The ‘igrad in view of the fact that the model only approximates the data.

ent” of the MI with respect to the parameter vectorcan be _An?thtﬁr s&mtjlatlor? canb e_done W'thttme aﬂd't'on (t)P: Wh't_e
therefore calculated: noise to the data, where we incrementally change the noise

variation and calculate the obtained SIR as a function of the
T SNR for the proposed method, and the PNL, which is the
ol {8y 6 (y)}
Yy

(11) method that best performed in the comparisons analyzed in
[7]. The results obtained can be seen in Fig. 2.

We can see that for high SNR (i.e., low noise) both meth-
ods obtain similarly accurate estimates, whereas for lower

ow

ow

and the iteration to find the parameters can be written as:

_ ol 12 3Smaller learning rates improve the algorithm’s robustresise expense
Wk+1 = Wk — u@wk (12) o longer convergence times. In our simulations we yseg[0.001; 0.01].
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SNR the PNL obtains better result, though neither can be said In Fig. 3, we can see the actual sources as the concentra-
to successfully separate the sources. This is expecte#,isin tions of Na~ and K, in mol/L, measured during an experi-
this simulation the PNL model characterizes the data exactlment based on the FIA method for mixing the ions [7]. We
unlike the quadratic network which just approximates it. can also see in Figs. 4 and 5 the mixture signals (as measured

by the ISEs) and the modified version of the mixtures, after
4.2. Real Data applying (4).

After using our algorithm on the modified mixture set, we

For the real data, one of the limitations is that the set conebtain the estimates shown in Figs. 6 and 7. The SIR ob-
tains only41 samples. Together with the fact that the NEtained werel6.3 dB and11.1 dB, respectively. For compari-
equation used in the model is only empirical, it follows thatson, the PNL network obtains SIR valueslaf0 dB and10.6
the estimates will not be as good as the ones obtained for thiB [7], which shows a significant improvement for our pro-
synthetic data. posed method on the first estimate, and a similar result ér th
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second one. Again, the better performance can be explained
by the fact that the NE equation does not accurately model the
real data, emphasizing the importance of the additional de{9]
grees of freedom yielded by our method. Indeed, in [9] it has
been discussed that the mixing coefficients can vary depenEL—O]
ing on the concentrations of the ions, unlike what is desctib

by the NE equation.
[11]

5. CONCLUSION

In this paper, we have presented a new algorithm for solv-lz]
ing the BSS problem associated with the estimation of ionié
activity with an array of ion-selective electrodes. We have
compared our proposed network with the previous solutions
based on a PNL modeling, and experimental results seem {3l
show an improvement in accuracy.

In the future, we would like to further study the quadratic[14
model theoretically used in this algorithm, by investiggtits
separability conditions and stability of the solutions.oftmer
interesting line of research is to include a method in the-alg
rithm to estimate the Nernst slopkas well as the quadratic
parameters, resulting in possibly better results. Findll
also possible to expand the proposed network for a great§r6]
number of sources and electrodes, or sources that have diffe
ent valences, allowing the proposed network to be used in a

(19]

wider variety of experiments.
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