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ABSTRACT

In this paper we propose a blind source separation method to
process the data acquired by an array of ion-selective elec-
trodes in order to measure the ionic activity of different ions
in an aqueous solution. While this problem has already been
studied in the past, the method presented differs from the ones
previously analyzed by approximating the mixing function by
a second-degree polynomial, and using a method based on the
differential of the mutual information to adjust the parame-
ter values. Experimental results, both with synthetic and real
data, suggest that the algorithm proposed is more accurate
than the other models in the literature.

Index Terms— Blind source separation, chemical sensor
arrays, ion-selective electrodes, quadratic mixing model

1. INTRODUCTION

The problem of blind source separation (BSS) is an important
cornerstone in signal processing theory [1], with applications
including audio signal processing, telecommunications, im-
age processing, brain-computer interface design, analysis of
seismic data, among others. To put simply, the BSS prob-
lem consists of estimating some signals, which we shall call
sources, using measurements which are effectively a mixture
of them, and possibly somea priori information on the nature
of the desired signals and mixing process.

The common approach for solving the BSS problem starts
with the hypothesis that the mixing process is linear and that
the source signals are statistically independent, in whichcase
successful algorithms such as theindependent component
analysis(ICA) [1] have been proposed and extensively stud-
ied over the last years. However, there are applications for
which the linear model is insufficient, and a nonlinear mixing
model is required. Among the nonlinear BSS mixing models
that have been studied so far, it is important to mention the
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post-nonlinear(PNL) [2,3], in which linear mixtures are fur-
ther distorted by nonlinear functions before the measurement,
and thelinear quadratic(LQ) [4, 5] model, which represents
the mixtures as a second-order polynomial on the sources.

In this work, we shall focus on the problem of source sep-
aration for ion-selective electrode (ISE) arrays [6–8]. ISEs
are simple devices which are used for measuring the ionic ac-
tivity (essentially the effective concentration of an ion)in an
aqueous solution. An ISE consists of a sensitive membrane
for which the electrochemical potential varies according to
the concentration of a specific ion. A well-known example of
ISE is the glass electrode used for measuring the pH value [9].

The problem of the ISEs, however, is that the membranes
are not perfectly selective, which means that when trying to
estimate the activity of a certain ion, the measurement willin-
clude an interference from ions different from the target one
which are also present in the same chemical solution. Be-
cause the measurements are a mixture of the activities, a BSS
paradigm can be used to separate the signals from each ion by
using an array of multiple ISEs.

The problem of estimating the ionic activities based on
ISE arrays has already been studied in the past, with the use
of a Bayesian source separation method [10], sparsity-based
methods [11] and a PNL model [3, 8]. In this paper, we will
propose a different algorithm for the problem, in which we
will model the data by a second-degree polynomial, and com-
pare this approach with the PNL model previously mentioned.

In the paper, we will initially present, in section 2, a de-
scription of the BSS problem statement and how it relates to
measurements with chemical sensor arrays. In section 3, we
will then propose a solution to the problem, and present ex-
perimental results in section 4, as well as comparisons with
previously analyzed methods. Finally, in section 5 a conclu-
sion and future plans shall be presented.

2. PROBLEM STATEMENT

2.1. Blind Source Separation

Let us consider a set ofN sourcess(n) = [s1(n), s2(n), ...,
sN (n)]T andM mixturesx(n) = F [s(n)] = [x1(n), x2(n),



..., xM (t)]T , wheren is the temporal index andF [.] is the
mixing function. The goal of the source separation problem is
to obtain the sourcess(n) given the mixturesx(n), and possi-
bly somea priori information on the properties of the sources
(e.g. independence, sparsity, non-negativity, etc) and/or on
the mixing process. The problem is said to benon-blindif the
mixing functionF [.] is known, and it is otherwise said to be
blind. If the functionF [.] is linear, the mixing function can
be represented by a matrix:

x(n) = As(n) (1)

whereA is aN × M matrix. For the linear case, there are
several classical methods in the literature that can solve the
BSS problem under different priors for the sources. A very
well-known class of methods is theindependent component
analysis(ICA), which can successfully separate the sources
provided they are statistically independent, at most one of
them has a Gaussian distribution, and the mixing function is
invertible [1].

For the nonlinear case, however, no general solution ex-
ists, and the problem has to be analyzed on a case-by-case
basis [1], depending on the nature of the mixing function.
Among the commonly studied nonlinear models are the post
nonlinear (PNL) [3] and the polynomial model [12].

2.2. Chemical Sensor Arrays

For the problem of chemical sensor arrays, let us consider a
solution in which we haveN different ions andM ion selec-
tive electrodes (ISE) to measure their activity, which are our
sources. However, due to the interference problem, the values
measured are actually a nonlinear mixture of the activitiesof
each ion. According to the Nicolsky-Eisenman (NE) equa-
tion [13], this interference can be approximately modeled by
the equation below:

yi(n) = ei +
RT

ziF
ln



si(n) +

N
∑

j=1,j 6=i

aijs
zi/zj
j (n)



 (2)

whereei is the standard electrode potential (a scalar constant),
R is the universal gas constant,T is the temperature,F is
the Faraday constant,zi is the valence of theith ion, andaij
are the selectivity coefficients. TheRT

ziF
slope is called the

Nernst slope, and at room temperature of25◦C, it is approx-
imately26mV, or 59mV if the logarithm is converted to base
10 (which is the standard practice in chemical applications).

In this paper, we will treat the case in which we have two
sources and two electrodes, and the ions have the same va-
lence (for example, Na+ and K+). In this case, (2) becomes1

y = e+ d ◦ log (As) (3)

1The argument (n) has been omitted for clarity.

whereA is such thata11 = a22 = 1, d is the vector contain-
ing the estimates of the slope for each ISE, and◦ denotes the
Hadamard (entrywise) matrix product2. While the slopes rep-
resented byd can be theoretically calculated directly by (2),
the empirical nature of the NE equation cannot always accu-
rately model the data, and better results can be obtained by
giving the model an additional degree of freedom, allowing it
to vary the slope.

3. PROPOSED SOLUTION

Starting from (3), it can be seen that by calculating

xi = 10
yi−ei

di (4)

we obtain the modified mixture setx = As, which is a linear
mixture of the two sources and can then be solved by classical
linear BSS algorithms. This results in the classical PNL ap-
proach in which the difficult part is to estimate the parameters
that correctly cancel the nonlinearity - in this case the slopes
d. The electrode potentialse becomes only a scalar factor on
each mixture, and is therefore unimportant. This amplitude
ambiguity can usually be ignored in the BSS paradigm, since
it is usually impossible to obtain the correct amplitude of each
source without some additional information (because sources
with different amplitudes can produce the same mixture set
by adjusting the unknown coefficients).

An algorithm for estimating the Nernst slope has been
proposed [10, 14] and was able to successfully separate the
sources, though not perfectly. We propose here a different
algorithm, in which instead of estimating the slopesd, we
simply use the theoretical value of the Nernst slope given by
(2) of d∗ = 59mV. Since the actual slope is close, but actu-
ally different from the theoretical value, by usingd∗ in (4) we
obtain:

xi = 10
yi−ei

di

di
d∗ (5)

which leads tox = (As)d/d
∗

, where the exponential is per-
formed entrywise. We can see then that the mixture is no
longer linear; but it should have a small measure of nonlin-
earity, sincedi/d∗ ≈ 1. Therefore, a promising idea is that
by modeling it by a second-order polynomial, the approxima-
tion would be very close to the actual model. The quadratic
terms of this new mixing model would also be able to eventu-
ally correct small flaws in the actual NE model (2). Thus, our
modified mixture setx can be modeled as:

x = As+Bs◦2 + cs1s2 (6)

wherea11 = a22 = 1 and s◦2 = [s21, s
2
2]

T . This mix-
ing model encompasses the class known as linear-quadratic
model, for which one can find several methods to deal with
[12]. Since the mixing model is not as simple as the linear

2The logarithm operation is also performed entrywise.



case, inverting it is no longer trivial, and a recurrent network
seems indicated solve even in the non-blind case [12].

3.1. Recurrent Network for Non-blind Model

The idea is that by rewriting the equation as

G[s] = As +Bs◦2 + cs1s2 − x = 0̄ (7)

wheres◦2 = s ◦ s and◦ is the Hadamard product, we are able
to use classical root-finding algorithms for nonlinear equa-
tion systems to solve the problem. One of the most popu-
lar such algorithm is theNewton-Raphson method[5], which
converges to the solution by applying the following iteration

yk+1 = yk − J−1

G (yk)G[yk] (8)

whereJG is the Jacobian of the system, which in our case is

JG = A+ 2B ◦

([

1
1

]

sT
)

+ csT
[

0 1
1 0

]

(9)

3.2. Parameters Estimation

For the blind case, we need a method for estimating the pa-
rameters of the model. We used a gradient-based ICA method
for this: starting with random parameters, we vary them ac-
cording to the gradient of a cost function that should be min-
imized for the correct parameters. For independent sources,
we can use the mutual information (MI) as cost function and
will therefore need an estimate of the differential of the MI, as
proposed in [15]. Let us start by defining what can be roughly
interpreted as the “gradient” of the MI with respect toy:

βyi
(y) =

(

−
∂ log p(y)

∂yi

)

−

(

−
d log p(yi)

dyi

)

(10)

which is the difference between theith component of the joint
score function ofy and the marginal score function ofyi. It
can be proven thaty has independent components if, and only
if, βy = 0, ∀i [15]. It is interesting to note that the score
functions (i.e., the derivatives of the MI), and, by extension,
theβy(y) defined in (10) can be accurately computed by effi-
cient methods as described, for instance, in [16]. The “gradi-
ent” of the MI with respect to the parameter vectorw, can be
therefore calculated:

∂I

∂w
= E

{

∂y

∂w

T

βy(y)

}

(11)

and the iteration to find the parameters can be written as:

wk+1 = wk − µ
∂I

∂wk

(12)

whereµ denotes the learning rate3. When applied specifically
to the case of the second order model, andw = [w1, ..., w8]

T

the coefficients that appear in

x =

[

s1 + w1s2 + w2s
2
1 + w3s

2
2 + w4s1s2

w5s1 + s2 + w6s
2
1 + w7s

2
2 + w8s1s2

]

(13)

the matrix of partial derivatives can be calculated as

∂y

∂w
= J−1

G (y)

[

y2 y21 y22 y1y2 0 0 0 0
0 0 0 0 y1 y21 y22 y1y2

]

(14)
Our proposed algorithm alternates between the iteration to

estimate the parameters (12) and the recurrent network capa-
ble of solving the non-blind problem (8), until the parameters
converge.

4. EXPERIMENTAL RESULTS

In order to measure the quality of the estimated solutions, the
signal-to-intereference ratio(SIR) was used, which is defined
as (in decibels):

SIR= 10 log10
E{s2}

E{(s− y)2}
(15)

4.1. Simulated Data

For the simulated data, the sources were uniformly distributed
in the [0, 1] interval and the first one was sorted, to make it
easier to see on the time domain. This does not affect the
statistical properties of the sources. We usedei = 100mV
(typical electrode potential values),d = [55, 65]T (typical
slopes estimated by the PNL), and mixing parametersa12 =
a21 = 0.5. The ion valences are both equal to1.

The algorithm was presented with the mixtures as given in
(3), and after using standard values of100mV for the poten-
tial and59mV for the Nernst slope, we obtain a modified mix-
ture set which can be separated with the described network.
The sources, mixtures and estimates obtained in this simula-
tion can be seen in Fig. 1. The SIR values obtained were
22.9 dB and27.8 dB respectively, which can be considered
good enough for our source separation simulation, especially
in view of the fact that the model only approximates the data.

Another simulation can be done with the addition of white
noise to the data, where we incrementally change the noise
variation and calculate the obtained SIR as a function of the
SNR for the proposed method, and the PNL, which is the
method that best performed in the comparisons analyzed in
[7]. The results obtained can be seen in Fig. 2.

We can see that for high SNR (i.e., low noise) both meth-
ods obtain similarly accurate estimates, whereas for lower

3Smaller learning rates improve the algorithm’s robustnessat the expense
of longer convergence times. In our simulations we usedµ ∈ [0.001; 0.01].
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Fig. 1. Sources (left), mixtures (center) and estimates (right) for our simulation with synthetic data
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Fig. 2. SNR and SIR of each source for both methods
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Fig. 3. Sources obtained in the FIA experiment

SNR the PNL obtains better result, though neither can be said
to successfully separate the sources. This is expected, since in
this simulation the PNL model characterizes the data exactly,
unlike the quadratic network which just approximates it.

4.2. Real Data

For the real data, one of the limitations is that the set con-
tains only41 samples. Together with the fact that the NE
equation used in the model is only empirical, it follows that
the estimates will not be as good as the ones obtained for the
synthetic data.
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Fig. 4. Mixtures obtained for the FIA experiment
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In Fig. 3, we can see the actual sources as the concentra-
tions of Na+ and K+, in mol/L, measured during an experi-
ment based on the FIA method for mixing the ions [7]. We
can also see in Figs. 4 and 5 the mixture signals (as measured
by the ISEs) and the modified version of the mixtures, after
applying (4).

After using our algorithm on the modified mixture set, we
obtain the estimates shown in Figs. 6 and 7. The SIR ob-
tained were16.3 dB and11.1 dB, respectively. For compari-
son, the PNL network obtains SIR values of11.0 dB and10.6
dB [7], which shows a significant improvement for our pro-
posed method on the first estimate, and a similar result for the
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second one. Again, the better performance can be explained
by the fact that the NE equation does not accurately model the
real data, emphasizing the importance of the additional de-
grees of freedom yielded by our method. Indeed, in [9] it has
been discussed that the mixing coefficients can vary depend-
ing on the concentrations of the ions, unlike what is described
by the NE equation.

5. CONCLUSION

In this paper, we have presented a new algorithm for solv-
ing the BSS problem associated with the estimation of ionic
activity with an array of ion-selective electrodes. We have
compared our proposed network with the previous solutions
based on a PNL modeling, and experimental results seem to
show an improvement in accuracy.

In the future, we would like to further study the quadratic
model theoretically used in this algorithm, by investigating its
separability conditions and stability of the solutions. Another
interesting line of research is to include a method in the algo-
rithm to estimate the Nernst sloped as well as the quadratic
parameters, resulting in possibly better results. Finally, it is
also possible to expand the proposed network for a greater
number of sources and electrodes, or sources that have differ-
ent valences, allowing the proposed network to be used in a

wider variety of experiments.
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