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Fast-Learning Adaptive-Subspace Self-Organizing
Map: An Application to Saliency-Based Invariant

Image Feature Construction
Huicheng Zheng,Member, IEEE,Grégoire Lefebvre and Christophe Laurent

Abstract— The Adaptive-Subspace Self-Organizing Map (AS-
SOM) is useful for invariant feature generation and visualization.
However, the learning procedure of the ASSOM is slow. In this
paper, two fast implementations of the ASSOM are proposed
to boost ASSOM learning based on insightful discussions of
the basis rotation operator of ASSOM. We reveal the objective
function approximately maximized by the classical rotation
operator. We then explore a sequence of two schemes to apply the
proposed ASSOM implementations to saliency-based invariant
feature construction for image classification. In the first scheme,
a cumulative activity map computed from a single ASSOM is
used as descriptor of the input image. In the second scheme, we
use one ASSOM for each image category and a joint cumulative
activity map is calculated as the descriptor. Both schemes are
evaluated on a subset of the Corel photo base with10 classes.
The multi-ASSOM scheme is favored. It is also applied to adult
image filtering and shows promising results.

Index Terms— Adaptive-Subspace Self-Organizing Map, fea-
ture construction, adult image filtering, image classification.

I. I NTRODUCTION

T HE Adaptive-Subspace Self-Organizing Map (ASSOM)
proposed by Kohonen [1], [2] is basically a combination

of the SOM [3] and the subspace method. By setting filters to
correspond to basis vectors that span pattern subspaces, some
transformation groups can be taken into account automatically.
The ASSOM is an alternative to the standard Principal Compo-
nent Analysis (PCA) method of feature generation. An earlier
neural approach for PCA can be found in [4]. Equivalence
between probabilistic PCA and a typical subspace method
for Gaussian density estimation has been established [5]. The
ASSOM can generate spatially ordered feature filters thanks
to interactions among processing modules [2]. The input to an
ASSOM array is typically an episode, i.e. a sequence of pattern
vectors supposed to approximately span certain subspace.
Typical examples of episodes include sequences of temporally
consecutive speech signals or of image patches subject to
transformations. By learning the episode as a whole, the
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ASSOM is able to capture the transformation coded therein.
The simulation results in [1] and [2] have demonstrated that
the ASSOM can induce ordered filter banks to account for
translation, rotation and scaling. The relationship between the
neurons in the ASSOM and their biological counterparts are
reported in [2]. The ASSOM has been successfully applied
to speech processing [6], texture segmentation [7], image
retrieval [8] and image classification [8], [9]. A supervised
ASSOM was proposed by Ruiz-del-Solar in [7].

The traditional learning procedure of the ASSOM involves
computations related to a rotation operator matrix, which not
only is memory demanding, but also has a computational load
quadratic to the input dimension, i.e. the dimension of input
vectors. Therefore, this algorithm in its original form is costly
for practical applications, especially for image processing,
where input patterns are often high dimensional. In order to
reduce the learning time, the Adaptive Subspace Map (ASM)
proposed by De Ridderet al. [8] drops topological ordering
and performs a batch-mode updating of the subspaces with
PCA. However, without topological ordering, it is no longer
ASSOM. López-Rubioet al. [10] proposed the PCASOM
by combining PCA with ASSOM, which runs about twice
faster than the basic ASSOM under similar classification
performance. Ĺopez-Rubio et al. [11] proposed two new
learning rules of the ASSOM based on a gradient-based
approach or on the Levenberg-Marquardt method. The new
rules converge faster than the traditional ASSOM. However,
the gradient-based approach showed obvious oscillations in
the learning curve. The Levenberg-Marquardt method, on the
other hand, has a computational load cubic with the input
dimension, which excludes its use for high-dimensional inputs.
McGlinchey et al. [12] replaced the traditional basis vector
updating formula with one proposed by Oja [13], where the
computational load is only linear to the input dimension, but
quadratic to the subspace dimension. The above-mentioned
methods can beat the ASSOM realized in the traditional way
in terms of learning speed, but not the fast implementations
of the ASSOM to be discovered in this paper.

In this paper, we shall show that in the ASSOM learning, the
increment of each basis vector is a scaling of the component
vectors of the input episode, which leads to a computational
load linear to both the input dimension and the subspace
dimension. We reveal that the rotation operator proposed inthe
original ASSOM approximately maximizes another objective
function. The related in-depth analysis leads to a batch-mode

0000–0000/00$00.00c© 2008 IEEE



2

updating of the basis vectors, where the increment of each
basis vector is a linear combination of component vectors
in the episode. This modified operator further accelerates the
learning procedure.

In this paper, we are also interested in applying the fast
implementations of ASSOM to saliency-based invariant fea-
ture construction for image classification. Saliency-based ap-
proaches are driven by psychovisual works [14], [15], which
have shown that the sensitivity of the human visual system
(HVS) is not uniformly distributed across the image content.
Such local methods can focus on different “concepts” in the
image. Research has become very active on saliency-based
approaches [16], [17], [18], [19], [20], [21]. Salient features
can be represented by salient regions resulting from an image
segmentation step [22], [23], by non-connected image zones
resulting from the construction of saliency maps [24], by edges
[25], or by special points [26], [27]. In this paper, we are
mainly interested in salient points, which provide the most
compact representation of the image content by limiting the
correlation and redundancy [28]. The corner detector proposed
by Harris and Stephens [26] is one of the most used and the
most known point detectors. It is based on the computation
of a local auto-correlation function at each pixel location.
Eigenvalues of the Hessian matrix of this function are used
as indicator of presence of corners. In [28], Laurentet al.
proposed a wavelet-based salient point detector, which aims to
address the following two observations: 1) contours are more
perceptually important than other point related features such
as corners; 2) salient points detected by a corner detector may
be gathered in small image regions in the case of textured
or noisy images, resulting in a very local image description.
This wavelet-based detector reaches photometric invariance by
incorporating a color invariance method proposed in [29].

Various descriptors have been studied for saliency-based
approaches [30], [21]. Lowe proposed the Scale Invariant Fea-
ture Transform (SIFT) for transform of image data into scale-
invariant local features [30]. The SIFT descriptor was used
in [31] for image classification, where images are represented
by “bags of keypoints” through clustering the SIFT descriptors
and the Support Vector Machine (SVM) is finally implemented
for classification. Ideally, salient features should be robust to
geometric transformations, slight changes of viewpoint and
variations of imaging conditions, which is hard for handcrafted
feature extractors. The ASSOM is a suitable tool to deal with
transformations by learning pattern subspaces. The previous
applications of the ASSOM to invariant feature extraction [7],
[8], [9] were not based on saliency approaches. In this paper,
we explore a sequence of two schemes to apply the ASSOM
to invariant feature construction for image classificationunder
a saliency framework. In the first scheme, a single ASSOM is
trained on all image patches extracted at the salient pointsfrom
the training set by using the wavelet-based detector proposed
in [28]. An image is represented by a cumulative activity map
through projecting the patches extracted from the image on
this ASSOM. In the second scheme, one ASSOM per class is
trained and an image is represented by a joint cumulative ac-
tivity map calculated from these ASSOMs. For both schemes,
the SVM will then be implemented for classification. It may
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Fig. 1. (a) An ASSOM lattice with a hexagonal neighborhood. Each empty
circle in the lattice represents a neural module as shown in (b). The gray
region represents the neighborhood area of the winning module indexed byc
at some learning step. (b) Neural architecture of a module in the ASSOM.

be interesting that in [31], feature invariance is obtainedby
using SIFT descriptors before feature clustering, whereasin
this paper, feature invariance is achieved at the clustering stage,
by using the ASSOM.

This paper is organized as follows. In Section II, we discuss
the traditional ASSOM learning algorithm and present the
alternative fast-learning implementations. The performance in
terms of learning speed will be demonstrated by experiments.
In Section III, we will apply the ASSOM to saliency-based
invariant feature construction for image classification. The
experimental results will be presented in Section IV. This
paper will be concluded by Section V, which summarizes main
points in the paper and give some perspectives.

II. BASIS LEARNING RULES OF THEASSOM

A. Basic ASSOM Learning

An ASSOM is composed of an array of modules with
each one being realized by a two-layer neural network [2],
as shown in Fig. 1. In the two dimensional case, a lattice with
a rectangular or hexagonal neighborhood is often used as the
layout of modules, as in the SOM. Fig. 1(a) shows an ASSOM
lattice with a hexagonal neighborhood. The architecture of
a neural module of ASSOM is illustrated in Fig. 1(b). Let
L be a subspace spanned byH orthonormal basis vectors
{b1,b2, . . . ,bH} and x be an input vector. The neurons in
the first layer compute the orthogonal projectionsxTbh of
x on the individual basis vectorsbh, for h = 1, . . . ,H. The
only quadratic neuron of the second layer sums up the squared
outputs of the first-layer neurons. The output of the module is
then‖x̂L‖

2, with x̂L being the orthogonal projection ofx on
L. It can be regarded as a measure of the matching between
the input vectorx and the subspaceL. For an input episode
X = {x(s), s ∈ S}, whereS is the index set of vectors in the
episode, Kohonen proposed to use theenergy

∑

s∈S ‖x̂L(s)‖2

as the measure of matching betweenX andL [2].
Modules in the ASSOM compete with each other based

on their output energies. Once the winner of the modules is
determined, the winning module and its neighbors update their
subspaces to better represent the input subspace. A neighbor-
hood functionh(i)

c is defined on the lattice of modules, where
c indicates the index of the winning module andi the index
of an arbitrary module.h(i)

c is a function of learning step and
the area of neighborhood shrinks with the learning step.
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The classical Kohonen’s ASSOM learning algorithm can be
summarized as follows. At the learning stept,

1) Input the episodex(s), s ∈ S. Locate the winning
module indexed byc = arg maxi∈I

∑

s∈S ‖x̂Li
(s)‖2,

whereI is the set of indices of modules in the ASSOM.
2) For each modulei in the neighborhood ofc, including

c itself, and for each input vectorx(s), update the basis
vectorsb(i)

h , according to the following procedure:
a) Rotate each basis vector according to:

b
(i)
h = P(i)

c (s, t)b
′(i)
h , (1)

whereb(i)
h is the new basis vector after rotation and

b
′(i)
h the old one.P(i)

c (s, t) is a rotation operator
matrix defined by:

P(i)
c (s, t) = I+λ(t)h(i)

c (t)
x(s)xT(s)

‖x̂Li
(s)‖‖x(s)‖

. (2)

λ(t) is a learning-rate factor that diminishes witht.
For the algorithm to converge,λ(t) should satisfy
∑

t λ(t) = ∞ and
∑

t λ2(t) < ∞ [32].
b) Dissipate the componentsb(i)

hj of the basis vectors

b
(i)
h to improve the stability of the results [2]:

b
∼(i)
hj = sgn(b

(i)
hj )max(0, |b

(i)
hj | − ε), whereε is a

small positive value.
c) Orthonormalize the basis vectors in modulei.

A naive implementation of (1) and (2) requires a matrix mul-
tiplication which needs not only a large amount of memory,
but also a computational load quadratic to the input dimension.
It would be costly for practical applications.

B. Insight on the Basis Vector Rotation

In this section, we propose an alternative implementation
of the basis updating rule in the ASSOM learning. In the first
place we propose to reformulate (1) and (2). The termb

′(i)
h

in (1) can be distributed to the right side of (2), leading to:

b
(i)
h = b

′(i)
h + ∆b

(i)
h , (3)

where

∆b
(i)
h = λ(t)h(i)

c (t)
x(s)xT(s)b

′(i)
h

‖x̂Li
(s)‖‖x(s)‖

. (4)

xT(s)b
′(i)
h is in fact a scalar value. The equation becomes:

∆b
(i)
h = α

(i)
c,h(s, t)x(s) . (5)

Hereα
(i)
c,h(s, t) is a scalar value defined by:

α
(i)
c,h(s, t) = λ(t)h(i)

c (t)
xT(s)b

′(i)
h

‖x̂Li
(s)‖‖x(s)‖

. (6)

This shows that the increment∆b
(i)
h is in fact a scaling

of the component vectorx(s), as illustrated in Fig. 2, which
seems to have been ignored by many practitioners. Careful
examination of (5) would reveal similarity of this formula with
a recursive PCA suggested in [33]. The main difference here
is that the gain of stochastic approximation is modulated by
a neighborhood function dependent on module competition.
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Fig. 2. An alternative view of the basis vector updating ruleof ASSOM.

Note that in (6),xT(s)b
′(i)
h is the projection of the component

vector on the basis vectors represented by the neurons of the
first layer, which we have already when computing the pro-
jection‖x̂Li

(s)‖ (cf. Fig. 1). If we calculate the scaling factor
α

(i)
c,h(s, t) first, and then scale the component vectorx(s) with

this factor, the computations associated with the basis vector
updating will be dramatically reduced. This implementation
will be referred to as FL-ASSOM for fast-learning ASSOM.
It is completely equivalent to the basic ASSOM in terms of
generating topologically ordered invariant-feature filters.

Now we compare the computational loads of the basis
vector updating in the basic ASSOM and in the FL-ASSOM.
Let N be the input dimension. It is not hard to verify
that a naive implementation of the updating rule defined by
the matrix multiplications in (1) and (2) would need about
HN2 +N2 scalar multiplications and about the same number
of scalar additions. So the computational load is approximately
O(HN2), i.e. quadratic to the input dimension and linear
to the subspace dimension. The replacement proposed by
McGlinchey et al. [12] leads to a computational load of
O(H2N), i.e. linear to the input dimension but quadratic to
the subspace dimension. Now with the proposed updating rule,
the computations of‖x̂Li

(s)‖ and ‖x(s)‖ in (6) need about
HN + 2N multiplications, andα

(i)
c,h(s, t)x(s) in (5) about

HN multiplications. In all (5)and (6) need about2HN +2N
multiplications. Similarly, the number of additions can be
shown to be about2HN + 2N . So with (5)and (6), the
computational load is approximatelyO(HN), i.e. linear to
both the input dimension and the subspace dimension. The
methods proposed in [8], [10], [11], [12] can beat the classical
implementation of the ASSOM, but not the implementation
proposed here.

C. Discussion on the OperatorP(i)
c (s, t)

The objective function of the ASSOM is defined as:

E =

∫

∑

i

h(i)
c

∑

s∈S

‖x̃Li
(s)‖2

‖x(s)‖2
P (X)dX (7)

whereP (X) is the distribution function of the random episode
X. x̃Li

(s) = x(s)−x̂Li
(s) is the residual ofx(s) after projec-

tion onLi. In the following we review briefly the main steps in
the derivation ofP(i)

c (s, t) from (7) and prove thatP(i)
c (s, t)

approximately maximizes another objective function.
By using the Robbins-Monro stochastic approximation [32],

a sample objective functionhas been aimed at:

Es(t) =
∑

i

h(i)
c (t)

∑

s∈S

‖x̃Li
(s)‖2

‖x(s)‖2
(8)



4

Kohonen showed in [2] that

∂Es

∂b
(i)
h

(t) = −2h(i)
c (t)

∑

s∈S

x(s)xT(s)

‖x(s)‖2
b

(i)
h . (9)

Moving b
(i)
h by a step length12λ(t) in the negative direction

of this gradient, sinceλ(t) is small, we have:

b
(i)
h =

[

I + λ(t)h(i)
c (t)

∑

s∈S

x(s)xT(s)

‖x(s)‖2

]

b
′(i)
h (10)

≈
∏

s∈S

[

I + λ(t)h(i)
c (t)

x(s)xT(s)

‖x(s)‖2

]

b
′(i)
h . (11)

This approximation amounts to a successive rotation of the
basis for each component vector in the episode.

For stability of the solution, Kohonen proposed to multiply
the learning rateλ(t) by ‖x(s)‖

‖x̂Li
(s)‖ and obtained the following

slightly modified rotation operator:

M(i)
c (t) =

∏

s∈S

[

I + λ(t)h(i)
c (t)

x(s)xT(s)

‖x̂Li
(s)‖‖x(s)‖

]

(12)

=
∏

s∈S

P(i)
c (s, t) . (13)

That is how the operatorP(i)
c (s, t) was developed in the

classical ASSOM basis updating.
In fact, the operatorP(i)

c (s, t) approximately maximizes
another objective function as we shall discover now:

Em =

∫

∑

i

h(i)
c

∑

s∈S

‖x̂Li
(s)‖

‖x(s)‖
P (X)dX . (14)

Proof: The sample function ofEm is:

Ems(t) =
∑

i

h(i)
c (t)

∑

s∈S

‖x̂Li
(s)‖

‖x(s)‖
. (15)

Taking the gradient ofEms(t), we have

∂Ems

∂b
(i)
h

(t) = h(i)
c (t)

∑

s∈S

∂
(

‖x̂Li
(s)‖

‖x(s)‖

)

∂b
(i)
h

. (16)

Moreover,

∂
(

‖x̂Li
(s)‖2

‖x(s)‖2

)

∂b
(i)
h

= 2
‖x̂Li

(s)‖

‖x(s)‖

∂
(

‖x̂Li
(s)‖

‖x(s)‖

)

∂b
(i)
h

. (17)

So,

∂Ems

∂b
(i)
h

(t) = h(i)
c (t)

∑

s∈S

1

2

‖x(s)‖

‖x̂Li
(s)‖

∂
(

‖x̂Li
(s)‖2

‖x(s)‖2

)

∂b
(i)
h

. (18)

We have

h(i)
c (t)

∑

s∈S

∂
(

‖x̂Li
(s)‖2

‖x(s)‖2

)

∂b
(i)
h

(19)

=
∂

(

∑

l h
(l)
c (t)

∑

s∈S 1 − Es(t)
)

∂b
(i)
h

(20)

= −
∂Es

∂b
(i)
h

(t) = 2h(i)
c (t)

∑

s∈S

x(s)xT(s)

‖x(s)‖2
b

(i)
h . (21)

So

∂Ems

∂b
(i)
h

(t) = h(i)
c (t)

∑

s∈S

‖x(s)‖

‖x̂Li
(s)‖

x(s)xT(s)

‖x(s)‖2
b

(i)
h (22)

= h(i)
c (t)

∑

s∈S

x(s)xT(s)

‖x̂Li
(s)‖‖x(s)‖

b
(i)
h . (23)

Taking a stepλ(t) in the direction of this gradient, we get the
rotation matrix

B(i)
c (t) = I + λ(t)h(i)

c (t)
∑

s∈S

x(s)xT(s)

‖x̂Li
(s)‖‖x(s)‖

. (24)

Whenλ(t) is small, it is equivalent toM(i)
c (t) as in (12).

D. Further Boosting: Batch-mode Basis Vector Updating

Basis vector updating can be further boosted by working
in a batch mode. We can avoid computing the value of
‖x̂Li

(s)‖ in (6) by using the value computed previously
during module competition. However, this could not be done
inside the framework of FL-ASSOM since the subspaces are
continuously changing in receiving each component vector of
the episode. To save computation of‖x̂Li

(s)‖, the batch-mode
rotation operatorB(i)

c (t) in (24) will be useful.
As was done for the FL-ASSOM, by distributingb

′(i)
h to

terms in the operatorB(i)
c (t), the basis vector updating rule

becomes:
b

(i)
h = b

′(i)
h + ∆b

(i)
h , (25)

where
∆b

(i)
h =

∑

s∈S

(

α
(i)
c,h(s, t)x(s)

)

. (26)

The increment of each basis vector is thus a linear combination
of component vectors in the episode. The difference between
the updating rules (3) and (25) is that the former updates the
basis vectors for each component vector one by one while the
latter updates the basis vectors in a batch mode for the whole
episode.

The scalar parameterα(i)
c,h(s, t) has the same form as (6):

α
(i)
c,h(s, t) = λ(t)h(i)

c (t)
xT(s)b

′(i)
h

‖x̂Li
(s)‖‖x(s)‖

. (27)

The meaning of this equation is, however, a little differentfrom
that of (6). Here in (27) the basis vector updating is performed
only after the whole episode has been received. Therefore,
‖x̂Li

(s)‖ and xT(s)b
′(i)
h can reuse the results previously

calculated during module competition. What we need to do
is only store the calculated values in registers and fetch them
when needed. The computational load of (27) is thus trivial.
Furthermore, the dissipation as well as orthonormalization of
basis vectors can be performed only once for each episode
without loosing accuracy since the basis vectors are not
updated during the episode. The computational load can thus
be further reduced. This method will be referred to as BFL-
ASSOM for batch-mode fast-learning ASSOM.

Let us estimate the computational load of the BFL-ASSOM
averaged on each component vector of the episode as we



5

did for the basic ASSOM and for the FL-ASSOM. As has
been mentioned, the calculation ofα

(i)
c,h(s, t) according to (27)

needs only trivial computation. The majority of computation
is in (26). Averaged on each vector in the episode, the
computational load required by basis vector updating with the
BFL-ASSOM is aboutHN multiplications andHN additions.
Furthermore, since the dissipation and orthonormalization of
basis vectors can be performed only once for each episode,
the whole learning time can be further reduced.

E. Experiments

We first demonstrate by experiments that the BFL-ASSOM
can generate topologically ordered invariant-feature filters as
the basic ASSOM. The results of FL-ASSOM will be shown
as the ground truth since the FL-ASSOM is mathematically
equivalent to the basic ASSOM. Kohonen has shown that the
ASSOM can generate basis vectors similar to Gabor filters for
episodes subject to translation [1], [2]. We shall show thatthe
BFL-ASSOM is able to generate similar filters.

The input episodes are constructed from a colored noise
image, which is generated by filtering a white noise image
with a second-order Butterworth filter. The cut-off frequency
is set to 0.6 times the Nyquist frequency of the sampling
lattice. Each episode is composed of6 vectors, each of which
is formed on a circular receptive field composed of349 pixels.
The vectors in the same episode have only random translation
of no more than5 pixels in both the horizontal and the vertical
directions. The episodes are generated on random locationsof
the colored noise image. The mean value of components of
each input vector is subtracted from each component of the
vector. In order to symmetrize the filters with respect to the
center of the receptive field, the input samples are weightedby
a Gaussian function symmetrically placed at the center of the
receptive field with a full width at half maximum (FWHM)
that varies linearly with respect to the learning stept from 1
to 16 sampling lattice spacings. Each vector is normalized to
a unit vector before being sent to the ASSOM.

The ASSOM array is composed of9× 10 modules aligned
in a hexagonal lattice with two basis vectors at each module.
The basis vectors of all the modules are initially randomized
and orthonormalized. The radius of the circular neighborhood
function h

(i)
c (t) decreases linearly from6.73 (= 0.5 × (92 +

102)1/2) to 0.9 ASSOM array spacings witht. The learning-
rate factorλ(t) = 0.1·T/(T +99t), whereT is the total number
of learning steps and set to30, 000 for the current experiment.

As shown in Fig. 3(a), the translation-invariant filters gen-
erated by the BFL-ASSOM and those by the FL-ASSOM are
similar. The difference is only the different organizationof the
filters due to random initialization of the two networks. For
both networks, the formed filters are similar to Gabor filters
of different frequencies and different orientations. Moreover,
filters of similar frequencies and orientations are formed at
nearby sites. For either network, filters corresponding tob1

and those corresponding tob2 have the same frequencies at
the same locations but90 degrees of phase difference, which
confirms orthogonality of the corresponding basis vectors.

Fig. 3(b) shows how the average projection errore changes
with the learning stept for either network. For each input

FL-ASSOM

b1 b2

BFL-ASSOM

b1 b2

(a)
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t
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Fig. 3. (a) The Gabor-like filters generated by the BFL-ASSOMcompared
to those by the FL-ASSOM on episodes subject to translation.b1: First basis
vectors.b2: Second basis vectors. (b) Changing of the projection errore with
the learning stept for the FL-ASSOM and for the BFL-ASSOM.

episodeX = {x(s), s ∈ S}, wherex(s) are mean-subtracted
and normalized, the projection errore(X) =

∑

s∈S ‖x(s) −
x̂(s)‖2, wherex̂(s) is the projection ofx(s) on the subspace of
the winning module.e in the figure is the average ofe(X) over
all the training episodes. Fig. 3(b) confirms that the difference
between the learning curve of the FL-ASSOM and that of the
BFL-ASSOM is practically negligible.

In the second experiment, we compare the computational
loads of the basic ASSOM, the FL-ASSOM and the BFL-
ASSOM with respect to the input dimensionN and the
subspace dimensionH. We record the elapsed CPU seconds
for each method. The number of iterations are fixed to1, 000.
Each episode is composed of6 vectors, which are generated
randomly according to a uniform probability distribution.The
rectangular ASSOM array contains10 × 10 modules.

The timing results obtained by using C++ implementations
are summarized in Table I, where the means and standard
deviations of the elapsed CPU times after20 runs with
different initializations are recorded. As was anticipated, the
basis vector updating time of the basic ASSOM increases
rapidly with the input dimension and is the bottleneck of
the learning procedure. With the FL-ASSOM, the basis vector
updating time is dramatically reduced, increasing slowly with
the input dimension and with the subspace dimension. It is
no longer a bottleneck of the learning procedure. However,
learning time outside basis vector updating is not reduced.
Now with the BFL-ASSOM, the basis vector updating time
is further reduced. Moreover, learning time outside the basis
vector updating is also reduced considerably compared to the
other two networks. Thus, the whole learning time decreases
from 1, 956 seconds with the basic ASSOM to16.2 seconds
with the BFL-ASSOM whenH = 4 andN = 400.

The relationship between the basis vector updating time
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TABLE I

TIMING RESULTS OF THE BASICASSOM,THE FL-ASSOM AND THE BFL-ASSOM WITH RESPECT TO THE INPUT DIMENSIONN AND THE SUBSPACE

DIMENSION H . LEFT SUB-TABLE : THE BASIS VECTOR UPDATING TIME(VU). µ REPRESENTS THE MEAN VALUE AFTER20 RUNS. σ REPRESENTS THE

CORRESPONDING SAMPLE STANDARD DEVIATION; RIGHT SUB-TABLE : THE WHOLE LEARNING TIME (WL), WHICH INCLUDES THE TIME FOR MODULE

COMPETITION, BASIS VECTOR UPDATING, BASIS VECTOR DISSIPATION AND ORTHONORMALIZATION. ALL THE TIMES ARE GIVEN IN SECONDS

H=2 H=3 H=4
µVU σVU µVU σVU µVU σVU

A
S

S
O

M N=100 78.0 0.54 96.8 0.73 120 4.7
N=200 303 2.1 377 3.2 449 2.7
N=300 682 3.8 846 7.9 1,003 7.6
N=400 1,331 11 1,621 13 1,904 13

F
L

N=100 0.942 0.083 1.26 0.097 1.60 0.10
N=200 1.46 0.13 2.01 0.16 2.48 0.10
N=300 2.10 0.12 2.80 0.20 3.60 0.18
N=400 2.80 0.26 3.73 0.28 4.66 0.20

B
F

L

N=100 0.488 0.059 0.699 0.071 0.972 0.071
N=200 0.569 0.056 0.817 0.093 1.12 0.14
N=300 0.745 0.085 1.05 0.091 1.46 0.095
N=400 0.930 0.10 1.46 0.10 1.84 0.12

H=2 H=3 H=4
µWL σWL µWL σWL µWL σWL

A
S

S
O

M N=100 84.0 0.57 107 0.75 134 4.8
N=200 314 2.2 395 3.2 475 3.0
N=300 699 3.8 872 8.0 1,042 7.8
N=400 1,354 11 1,658 13 1,956 13

F
L

N=100 6.92 0.057 10.9 0.086 15.6 0.13
N=200 12.5 0.14 19.9 0.19 28.4 0.26
N=300 18.5 0.13 29.2 0.23 41.9 0.43
N=400 24.3 0.27 38.7 0.32 55.1 0.37

B
F

L

N=100 2.50 0.044 3.62 0.032 4.82 0.037
N=200 4.35 0.057 6.28 0.065 8.42 0.076
N=300 6.34 0.064 9.19 0.071 12.3 0.085
N=400 8.39 0.093 12.1 0.10 16.2 0.075
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Fig. 4. The basis vector updating time with respect to (a) the input dimension
at the subspace dimensionH = 2 and (b) the subspace dimension at the input
dimensionN = 200. For sake of clarity, the updating time of the FL-ASSOM
and that of the BFL-ASSOM are magnified by a factor of 50.

and the input dimension or the subspace dimension for the
three implementations of ASSOM is visualized in Fig. 4. The
basis vector updating time increases approximately linearly
with respect to the input dimension for the FL-ASSOM
and for the BFL-ASSOM, but apparently nonlinearly for the
basic ASSOM. In all the cases, the updating time increases
approximately linearly with respect to the subspace dimension.

III. SALIENCY-BASED INVARIANT FEATURE

CONSTRUCTION FORIMAGE CLASSIFICATION

In this section, we explore a sequence of two schemes
where the ASSOM is applied to saliency-based invariant
feature construction for image classification. The implemented
ASSOM may be the FL-ASSOM or the BFL-ASSOM. We will
compare their performance in Section IV.

A. Salient-Point Single ASSOM Scheme (SPSAS)

The first scheme to be explored is based on a single ASSOM
as shown in Fig. 5. Salient points are first detected from the
input image by using the wavelet-based detector proposed in

[28]. Working with wavelets is justified by the consideration
of the HVS for which multi-resolution, orientation and fre-
quency analysis is of prime importance. In order to extract
the salient points, a wavelet transform is firstly performedon
the grayscale image. The obtained wavelet coefficients are
represented by a zerotree structure [34]. This tree is then
scanned at a first time from leaves to the root to compute the
saliency value at each node. Afterwards, this tree is scanned
for the second time from the root to leaves in order to
determine the salient path from the root to raw salient points
on the original image. By working with grayscale images, the
points located on boundaries of highlights or shadows are apt
to be detected as salient whereas they are only caused by
illumination conditions. To remove such false salient points,
a gradient image is calculated by using the color invariants
proposed by Geusebroeket al. [29]. A threshold is then set to
select the most salient points.

The ASSOM shall be trained to generate the appropriate
feature filters based on the local regions (patches) around
these salient points, which are supposed to carry essential
information for image description and consequently for clas-
sification. The ASSOM can work on episodes composed of
several component vectors, but construction of episodes isnot
necessary in a general situation if we want the ASSOM to
learn subspaces. Although it is possible to construct episodes
by artificially introducing transformations such as translation,
rotation or scaling as in [8], this process could generate
artificial variants which might not really exist in the test set.
So we prefer to use raw image patches to train the ASSOM.

Let pk, k ∈ {1, 2, . . . ,K} be K salient points detected
from the imageI, which amount toK patchesxk. These
patches are fed into a single ASSOM with|I| modules, which
was previously trained in an unsupervised way on all patches
extracted from all categories of images in the training set.
For each patchxk, the modulei (i ∈ I) generates an energy
‖x̂kLi

‖2, with x̂kLi
being the orthogonal projection ofxk on

the subspaceLi of the modulei. Energies generated by all
the modules construct an activity map, which is a vector

ak =
[

‖x̂kL1
‖2 · · · ‖x̂kLi

‖2 · · · ‖x̂kL|I|
‖2

]T
. (28)
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Fig. 5. SPSAS image classification architecture.

We remark that this activity map construction corresponds to
a soft (or fuzzy) clustering process in the sense that, in every
module of the ASSOM, the input patch has a membership
defined by the energy. It has been shown that a fuzzy clustering
process has advantages over a hard one [35]. Activity maps of
all patches extracted fromI are then accumulated to form a
cumulative activity mapyI characterizing the imageI, which
is defined by:

yI =

K
∑

k=1

ak . (29)

This feature vector is then classified by an SVM previously
trained on feature vectors of the training images. The imple-
mentation of the SVM used in this paper is part of a publicly
available machine learning tool collection WEKA [36]. Here
we use a Gaussian kernelG(u,v) = exp(−α‖u−v‖2), where
α = 0.02 in our experiments.

B. Salient-Point Multi-ASSOM Scheme (SPMAS)

The SPSAS does not make use of the fact that we have the
label information for images in the training set. It might lead
to map modules that mix up different categories of features
and confuse the (SVM) classifier. A better strategy would
be to use a specific ASSOM for each category. This idea
was explored in [9] for recognition of handwritten digits and
produced promising results. But the size of images in their
case is very small (25×20 pixels), permitting a direct ASSOM
learning. In our case, the images have much larger sizes and
cannot be directly dealt with under their framework.

The SPMAS replaces the single ASSOM in the SPSAS with
an array of ASSOMs, each one being trained for one category
of image patches. Separate ASSOMs for different categories
permit the system to learn the individual feature sets more
precisely than a single ASSOM for all categories. LetJ be
the set of image labels (categories),cj=

∑K
k=1 a

(j)
k , j ∈ J be

the cumulative activity map generated by thej-th ASSOM.
The new feature vectoryI is a joint cumulative activity map
formed by combining the|J| cumulative activity maps:

yI =
[

cT
1 · · · cT

j · · · cT
|J|

]T

, (30)

as illustrated in Fig. 6. The feature vectoryI is sent to the
SVM for classification, as in the SPSAS.

ASSOM  1

{ }Kkk ,,1 , K∈x

Image patches
ASSOM  j

ASSOM  |   |

Joint Cumulative
Activity Map

yy





















∑

∑

∑

=

=

=

K

k
k

K

k

j
k

K

k
k

1

)(

1

)(

1

)1(

a

a

a

M

M





















∑

∑

∑

=

=

=

K

k
k

K

k

j
k

K

k
k

1

)(

1

)(

1

)1(

a

a

a

M

M

Fig. 6. Construction of the joint cumulative activity map in the SPMAS.

A similar single-SOM versus multi-SOM framework was
proposed in [37] for face recognition. Each face image is firstly
partitioned into non-overlapping sub-blocks corresponding to
local feature vectors. A single SOM is trained for all classes
of feature vectors or a separate SOM is trained for each
class. Face images are then represented by sets of SOM
weight vectors. A softk-nearest neighbor ensemble method
is proposed to identify unlabeled images. The single-SOM
scheme and the multi-SOM scheme showed similar perfor-
mance in their experiments. A block-to-block comparison is
used in their research for face identification, which assumes
good calibration between training faces and testing faces.It is
not suitable for general-purpose image classification problems,
where good calibration is not guaranteed. Also, representation
of the feature vectors by the weight vectors may be noisy,
a smoothed representation such as the activity maps may be
more appropriate.

IV. EXPERIMENTAL RESULTS

A. Multi-Category Classification

In the first experiment, we evaluate our system in terms
of multi-category image classification on the SIMPLIcity
database1, which is part of the well known Corel database
and has been used to test the SIMPLIcity content based image
retrieval system in [23]. The database consists of ten categories
including African people and villages (Afr), beaches (Bea),
buildings (Bui), buses (Bus), dinosaurs (Din), elephants (Ele),
flowers (Flo), food (Foo), horses (Hor), mountains and glaciers
(Mou), each containing100 images of384×256 pixels. Some
representative examples from each category are presented in
Fig. 7. The images in each category are divided into two equal
parts:50 for training and the other50 for testing.

We focus on RGB color features in the experiment. The
image patches are circles with597 pixels (about a radius
of 14), which amount to1, 791 = 597 × 3 dimensional
vectors. The mean value of components of each input vector
is subtracted from each component of the vector. The training
steps are empirically set to80, 000 for the ASSOM in the
SPSAS and30, 000 for each ASSOM in the SPMAS, simply
because there are more training patches available for the single
ASSOM in the SPSAS than for each ASSOM in the SPMAS.
We use a rectangular ASSOM lattice. The choice between

1http://wang.ist.psu.edu/∼jwang/test1.tar
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Afr Bea Bui Bus Din Ele Flo Foo Hor Mou

Fig. 7. Example images from the SIMPLIcity database.

TABLE II

COMPARISON OF CLASSFICATION ACCURACIES BETWEEN THESPSAS

AND THE SPMAS,AVERAGED ON THE10 CATEGORIES

ASSOM SPSAS SPMAS
size Training Test Training Test

5 × 5 45.8% 42% 87% 70%

10 × 10 71.2% 58% 100% 76.2%

15 × 15 88.4% 56.8% 100% 77%

rectangular or hexagonal lattice does not seem to be critical
according to our experiments.

1) SPSAS Versus SPMAS:We first compare the SPMAS
to the SPSAS based on the FL-ASSOM. The experimental
results are summarized in Table II. Both schemes suffered
from the overfitting problem due to lack of data. The SPSAS
shows less overfitting than the SPMAS when the size of the
ASSOM is small. But overfitting of the SPSAS inflates more
quickly than that of the SPMAS when the size of the ASSOM
increases. In this sense, the SPSAS is more sensitive to the
number of parameters than the SPMAS. The SPMAS shows
better classification accuracies than the SPSAS on both the
training set and the test set across different configurations,
which confirms advantages of using separate ASSOMs to learn
features of different categories. On the test set, the SPMAShas
an improvement of accuracy of18.2%−28% over the SPSAS.
We will stick to the SPMAS in the following experiments.

2) BFL-ASSOM Versus FL-ASSOM:Table III summarizes
the classification accuracies of the SPMAS with the BFL-
ASSOM and with the FL-ASSOM of various sizes. The
number of neurons in the first layer of each ASSOM module
is fixed to 2. This table shows that the performance of the
BFL-ASSOM is a little better than the FL-ASSOM. The
reason could be that the BFL-ASSOM is a more accurate
learning process deduced from the corresponding objective
function than the FL-ASSOM. Thus the local features could
be better structured with the BFL-ASSOM than with the FL-
ASSOM. The improvement of the classification accuracy is
1% − 3.8% on the test set if we replace the FL-ASSOM
with the BFL-ASSOM. Taking the learning speed into account,
the BFL-ASSOM seems more attractive than the FL-ASSOM.
According to Table III the performance of the BFL-ASSOM-
based SPMAS is nearly optimal when the ASSOMs are of the
size10×10. We will stick to the10×10 BFL-ASSOM-based
SPMAS in the following experiments.

TABLE III

COMPARISON OF CLASSIFICATION ACCURACIES BETWEEN THE

BFL-ASSOM AND THE FL-ASSOM,AVERAGED ON THE10 CATEGORIES

ASSOM FL-ASSOM BFL-ASSOM
size Training Test Training Test

5 × 5 87% 70% 88.2% 73.8%

10 × 10 100% 76.2% 100% 78.2%

15 × 15 100% 77% 100% 78%

3) SPMAS Feature Filter Visualization:Fig. 8 shows the
feature filters generated from the10 categories of training
images by using the10×10 BFL-ASSOM-based SPMAS. Two
neurons are implemented in the first layer of each module.
In this way, each ASSOM learned two10 × 10 lattices of
basis vectors. In order to show the correspondence between the
components of the basis vectors and the R, G, B components
of the input patches, each three subsequent components of
the basis vectors are grouped back to form an “RGB” pixel.
The components are normalized to the range[0, 255] with the
value 128 corresponding to a component0. “Pixels”of the
basis vectors are organized to form the same shape as the
input patches, i.e. a circle.

Each basis vector can be rotated to the opposite direction
without altering the spanned subspace. Thus we could rotate
some of the basis vectors in order to get maps where neigh-
boring basis vectors appear more similarly. For example, the
orangish basis vectors could be turned to bluish in theb1

lattice of the elephant category although we did not do that.
This would not change the performance of the ASSOM and
the consequent classifier.

As we mentioned previously in Section II-B, the ASSOM
subspace learning process is similar to a recursive PCA. In the
basis vector orthonormalization process, the first basis vectors
are only normalized, and the second ones are orthogonalized
with respect to the first ones. Thus the first basis vectors
are likely to capture the first principal components of the
input feature subspaces while the second ones are likely to
capture the second principal components. There are some
observable characteristics of features corresponding to the
various categories of images. For flowers, the first basis vectors
show a distinct red tone because most of the flowers, at least
in the SIMPLIcity database, have a red tone. For buildings,
both basis vectors do not show distinct colors. This is also the
case for the dinosaurs since the dinosaur pictures are artificial
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Afr Bea Bui Bus Din Ele Flo Foo Hor Mou

b1

b2

Fig. 8. Feature filters for the10 categories of the SIMPLIcity training set.b1: The first basis vectors.b2: The second basis vectors.

TABLE IV

CLASSIFICATION ACCURACIES OF THE10 × 10 BFL-ASSOM-BASED

SPMASWITH DIFFERENT SUBSPACE DIMENSIONS. THE RESULTS ARE

AVERAGED ON THE10 CATEGORIES

H = 2 H = 4 H = 6 H = 8 H = 10

Training 100% 100% 100% 100% 100%

Test 78.2% 78.6% 82.4% 84.6% 86%

models without distinct colors.
In Fig. 9, we show three exemplary images and their joint

cumulative activity maps, where gray levels of the modules in
the ASSOMs are proportional to the energies of the respective
modules. For the first two images, the ASSOMs correspond-
ing to the correct image categories are more activated than
other ASSOMs. However, this is not always so obvious. For
example, the third image strongly activated both the “Bui”
ASSOM and the “Bus” ASSOM. In fact, many bus images in
the SIMPLIcity database have buildings in the backgrounds.
It is not surprising to find out that the “Bus” ASSOM has
learned the concept of some building parts. That is why we
choose to keep the activity maps of different ASSOMs and
use the SVM to make the decision.

4) Effects of the Subspace Dimension:The classification
results with the subspace dimensionH = 2, 4, 6, 8, 10 are
summarized in Table IV. FromH = 2 to H = 10, the average
accuracy on the test set is improved for7.8%, which suggests
that higher subspace dimensions capture more precisely the
variances of input patterns. The price to pay is that a higher
subspace dimension involves a heavier computational load.
Even though the complexity of the system seems to increase
with higher subspace dimensions, the “curse of dimension”
does not seem to appear. The reason could be that the length of
the feature vectoryI is constant with respect to the subspace
dimension. Also, the SVM is less prone to overfitting than
some other methods since it can limit the complexity of
the model by the number of support vectors [38]. Fig. 10
shows some examples of the results from the test set. We also
performed a 5 times 5-fold cross validation withH = 10,
which shows that the classification accuracy can reach a mean
value of85.5% with a standard deviation of2.6%.

According to [23] and [39], the best classification accuracy
ever met across various features is84.1% on the SIMPLIcity
data set, which is worse than what we obtained, i.e.86% on
the test set or a mean value85.5% with the 5 times 5-fold
cross validation. Considering difficulty of the classification
problem, the performance of our system is promising. It should

TABLE V

CONFUSION MATRIX OF THESPMAS. THE BOLDFACED FIGURES

CORRESPOND TO CORRECTLY CLASSIFIED TEST IMAGES

True Classes↓ Afr Bea Bui Bus Din Ele Flo Foo Hor Mou
Afr 43 2 0 0 0 2 0 2 1 0
Bea 1 36 2 0 1 4 1 0 2 3
Bui 1 5 39 1 0 2 0 1 0 1
Bus 0 2 2 46 0 0 0 0 0 0
Din 0 0 0 0 50 0 0 0 0 0
Ele 3 1 3 0 1 40 0 0 2 0
Flo 1 0 0 0 1 0 46 2 0 0
Foo 2 1 2 0 0 0 1 44 0 0
Hor 0 0 0 0 0 0 1 0 49 0
Mou 1 8 0 0 1 1 2 0 0 37

be emphasized that the good results are obtained solely with
raw image patch learning by ASSOM without calculating any
descriptors beforehand. It shows that the system can learn
patterns directly from the input signal itself.

5) SPMAS Confusion Matrix:The confusion matrix of the
SPMAS is shown in Table V. Most of the test images are
correctly classified. The best classified category is dinosaur,
where all the test images are correctly recognized. The worst
classified is the beach category, where only36 (72% ) images
are correctly recognized.4 (8%) images in the beach category
are classified as elephant. Examination of the beach category
shows that most images in this category have yellow sands
and blue sky as backgrounds. Blue sky can often be found in
the elephant category while the color of sand is often similar
to that of soil in the elephant category.8 (16%) mountains
and glaciers images are classified as beach. This is because
mountains can often be found in the beach category and they
often share the blue sky as the background. In fact, an object
could appear in a range of contexts and a salient point could
be located at the border of two different but adjacent objects.
When this happens, the context plays an important role. So
higher level features, such as global features or semantics-
based features, should be helpful in further improving the
classification accuracy. Also for some objects, such as sand
in beach images and soil in elephant images, colors may not
be enough for discriminating them whereas other descriptors
such as texture should be more useful.

B. Adult Image Filtering

In the second experiment, we apply the SPMAS to adult
image filtering. There are respectively733 adult and 733
benign training images,377 adult and467 benign test images.
Each BFL-ASSOM was trained with200, 000 iterations. The
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Afr Bea Bui Bus Din Ele Flo Foo Hor Mou

Fig. 9. Three images and their joint cumulative activity maps.

Afr Bea Bui Bus Din Ele Flo Foo Hor Mou

Bea Mou Foo Bui Ele Hor Foo Flo Ele Bea

Fig. 10. Examples of the classification results. Horizontal lines are separation marks of different rows. The correct labels are given in the top row. The
second row presents examples of correctly classified images. The bottom row shows the incorrectly classified images with theassigned (wrong) labels.

Adult

b1 b2

Benign

b1 b2

Fig. 11. BFL-ASSOMs generated for adult images and benign images.

Adult Benign

(a)

Adult Benign

(b)

Fig. 12. Joint cumulative activity maps of (a) an adult image and(b) a
benign image.

subspace dimension is2 and the topology of the ASSOMs is a
10×10 rectangular lattice. The image patches at salient points
are circles of597 RGB pixels. The trained BFL-ASSOMs
are shown in Fig. 11, whereb1 of the adult images exhibits
evident orientations, whileb2 embodies an obvious yellow
tone. In Fig. 12, we show the exemplary joint cumulative
activity maps of an adult image and a benign image. For the
adult image, the “adult” ASSOM is obviously more activated
than the “benign” ASSOM. However, for the benign image, the
difference is not that obvious. This is related to the difficulty in
learning “the rest of the world”, which is practically impossible
to be sufficiently sampled. Also, maybe we should wonder
what the “benign” ASSOM has really learned from “the rest
of the world”. It has probably just learned a flat distribution,
where nothing is specially interesting.

We use the true positive (TP) rate and the false positive
(FP) rate to describe the performance of adult image filtering.
The TP rate is the proportion of correctly blocked adult images

Fig. 13. Classification results of some benign test images. Over the line:
Correctly classified examples. Under the line: Incorrectly classified examples.

and the FP rate is the proportion of incorrectly blocked benign
images. The SPMAS shows a TP rate of89.1% with an FP rate
of 13.9% on the training set. The F1 measure is0.878 on the
adult class and0.874 on the benign class. On the test set, the
TP rate is90.2% and the FP rate is13.1%. The F1 measure
is 0.874 on the adult class and0.892 on the benign class.
Fig. 13 shows some classified examples from the benign test
subset. The correctly classified images cover a wide range of
scenes, including people or objects with skin-like colors.The
incorrectly classified images include people with exposed skin
or non-human objects with large areas of skin-like colors. To
deal with such false alarms, higher-level analysis of the scenes
might be necessary, such as detection of humans and context
analysis. The receiver operating characteristics (ROC) curve
of our system is shown in Fig. 14. The area under the curve
(AUC) is a high value0.958.

We compared the SPMAS with some other adult image
filtering systems based on skin detection. Jones and Rehg [40]
proposed one of the best skin detectors in the literature with the
Compaq database. They built an adult image detection system
based on their skin detector. Five features are calculated from
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Fig. 14. ROC curve of the SPMAS for adult image filtering.

the skin detection output and two additional features corre-
spond to the dimensions of the input image. A neural network
is implemented for classification. The adult image filtering
system proposed in [41] is based on a MRF (Markov random
fields) skin detector. Nine features are extracted from the
skin detection output, including the shape information of skin
regions. A multi-layer perceptron (MLP) is then implemented
for classification. These systems, as well as the proposed
SPMAS, were evaluated on different databases. Despite this,
the comparison still makes sense since all the databases are
comprehensive and contain thousands of images randomly
downloaded from Internet, which are likely to follow similar
distributions. Jones and Rehg’s system has a TP rate of88.9%
under an FP rate of13.1%. The system proposed in [41] has a
TP rate of about87.1% under an FP rate of13.7%. Apparently
the SPMAS is competitive to these skin-detection-based adult
image filtering systems.

In fact for the skin-detection-based systems, although de-
tected skin provides evidence of adult content, the false “skin”
or missed real skin may confuse the adult image detector as
well. The SPMAS, however, does not depend on such a skin
preprocessor which might be a source of false detection itself.
It learns features directly from raw image patches. In this way,
the SPMAS also saves considerable manual labor of labeling
skin pixels for training of the skin detector.

V. CONCLUSIONS ANDPERSPECTIVES

The ASSOM is useful for dimension reduction, invariant-
feature generation and visualization. Our study reveals that
the increment of each basis vector in the ASSOM learning
is a scaling of the component vectors of the input episode,
which leads to a fast implementation of the ASSOM, i.e. the
FL-ASSOM. With the FL-ASSOM, the computational load
of basis updating is linear to the input dimension, which
was quadratic with a naive implementation of the traditional
ASSOM. We discovered the objective function approximately
maximized by the traditional ASSOM and further proposed a
batch-mode fast implementation of the ASSOM, i.e. the BFL-
ASSOM, where the increment of each basis vector is a linear
combination of the component vectors in the input episode.
Computational load can be further saved with the BFL-
ASSOM. The algorithms previously proposed in the literature
could be faster than the traditional implementation of the

ASSOM, but not than the fast implementations proposed here.
The acceleration of ASSOM learning is especially meaningful
for images, which are usually associated with high dimensions.

Experimental results revealed superiority of the SPMAS to
the SPSAS in saliency-based invariant feature construction for
image classification. In the SPMAS, one ASSOM is trained
for each image category to make use of the fact that image
labels are known for the training set. The feature vector of
the input image is built by combining cumulative activity
maps of different ASSOMs. The SPMAS showed promising
performance on a 10-category image classification problem
and on adult image filtering. Compared to other skin-detection-
based adult image filtering systems, one important advantage
of the SPMAS is that the manual labor related to preparation
of the skin training set can be saved.

There could be several other ways to improve the ASSOM
or the subsequent SPMAS. For example, a non-uniformly
distributed input signal will lead to ASSOM modules with
subspaces too close (when these modules are in the dense
zones of the input space) or too far away from each other
(when they are in the sparse zones of the input space). The
similar problem is often encountered in the SOM. Hierarchical
SOMs have been proposed to mitigate this problem. Such map
structure permits multi-resolutional representation of the input
signal space and fast locating of the winner as demonstrated
by Liu et al. [42]. A similar strategy could be used for
the ASSOM. In this paper, the ASSOMs are only trained
on the RGB color feature. We can as well train different
ASSOMs on different features, e.g. color and texture, and then
combine these ASSOMs. This could be realized in a boosting
framework (AdaBoost for example).
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