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Fast-Learning Adaptive-Subspace Self-Organizing
Map: An Application to Saliency-Based Invariant
Image Feature Construction

Huicheng ZhengMember, IEEE Grégoire Lefebvre and Christophe Laurent

Abstract— The Adaptive-Subspace Self-Organizing Map (AS- ASSOM is able to capture the transformation coded therein.
SOM) is useful for invariant feature generation and visualization. The simulation results in [1] and [2] have demonstrated that
However, the learning procedure of the ASSOM is slow. In this the ASSOM can induce ordered filter banks to account for
paper, two fast implementations of the ASSOM are proposed . . . . .
to boost ASSOM learning based on insightful discussions of tranSIat'o_n’ rotation and Scalmg'_Th? rela}tlonshlp betwthe
the basis rotation operator of ASSOM. We reveal the objective Neurons in the ASSOM and their biological counterparts are
function approximately maximized by the classical rotation reported in [2]. The ASSOM has been successfully applied
operator. We then explore a sequence of two schemes to apply theto speech processing [6], texture segmentation [7], image

proposed ASSOM implementations to saliency-based invariant  otrieval [8] and image classification [8], [9]. A supendse
feature construction for image classification. In the first schemg ASSOM d by Ruiz-del-Sol ' 7
a cumulative activity map computed from a single ASSOM is W"?‘.S propose 1 Dy Rulz- el-Solar in [7]. .
used as descriptor of the input image. In the second scheme, we The traditional learning procedure of the ASSOM involves
use one ASSOM for each image category and a joint cumulative computations related to a rotation operator matrix, whioh n
activity map is calculated as the descriptor. Both schemes are gnly is memory demanding, but also has a computational load
evaluated on a subset of the Corel photo base with0 classes. o aqratic to the input dimension, i.e. the dimension of tnpu
The multi-ASSOM scheme is favored. It is also applied to adult t Theref this alqorithm in it iqinal f 55t
image filtering and shows promising results. vectors. . ere org, _'S algori m_'n s °“9'”a orm y .

for practical applications, especially for image procegsi
where input patterns are often high dimensional. In order to
reduce the learning time, the Adaptive Subspace Map (ASM)
proposed by De Riddest al. [8] drops topological ordering

I. INTRODUCTION and performs a batch-mode updating of the subspaces with

. : o CA. However, without topological ordering, it is no longer
HE Adaptive-Subspace Self O_rganl_zmg Map (AS.SO.N&SSOM. Lopez-Rubioet al. [10] proposed the PCASOM
proposed by Kohonen [1], [2] is basically a combination

of the SOM [3] and the subspace method. By setting filters g combining PCA \.N'th ASSOM, Whlch_ru_ns about_ .tW'C.e
. aster than the basic ASSOM under similar classification
correspond to basis vectors that span pattern subspaces, so

. : .’ “performance. bpez-Rubioet al. [11] proposed two new
transformation groups can be taken into account autorrli&ncaleamin rules of the ASSOM based on a aradient-based
The ASSOM is an alternative to the standard Principal Compg- 9 9

. . -approach or on the Levenberg-Marquardt method. The new
nent Analysis (PCA) method of feature gen eration. A.n elarll(F"ules converge faster than the traditional ASSOM. However
neural approach for PCA can be found in [4]. Equwalenct%(f gradient-based approach showed obvious oscillations i

between PrObab"'st'C PCA ".ind a typical SUbSpace meth#:he learning curve. The Levenberg-Marquardt method, on the
for Gaussian density estimation has been established [fg. . L :
ther hand, has a computational load cubic with the input

AS.SOM can generate spatiall_y ordered feature filt_ers than imension, which excludes its use for high-dimensionalitap
to interactions among processing modules [2]. The inpuhto ﬁ/IcGIinchey et al. [12] replaced the traditional basis vector

ASSOM array is typically an eplsode, i.e. a sequence ofnnaltte%Dolating formula with one proposed by Oja [13], where the
vectors supposed to approximately span certain subspace

Typical examples of episodes include sequences of temporéiompUtatlonal load is only linear to the input dimensiont bu

consecutive speech sianals or of imade patches S‘ub.ecto%adratic to the subspace dimension. The above-mentioned
P 9 g p ) ethods can beat the ASSOM realized in the traditional way

transformations. By leaming the episode as a whole, tlﬁ\gaterms of learning speed, but not the fast implementations
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updating of the basis vectors, where the increment of each

. . . . . CcC O O O 0 O 0 O
basis vector is a linear combination of component vectors

60 O o0 O O 0 0 0o

in the episode. This modified operator further accelerdtes t 0 046 Bjo o o o
learning procedure. © 0060000

In this paper, we are also interested in applying the fast coolooo o
implementations of ASSOM to saliency-based invariant fea- ©00000O0O0
ture construction for image classification. Saliency-baap- ceeeooen

proaches are driven by psychovisual works [14], [15], which @ ()

have shown that the sensitivity of the human visual systemy. 1. (a) An ASSOM lattice with a hexagonal neighborhoodctEempty

(HVS) is not uniformly distributed across the image contentircle in the IatticehreprQSﬁEtsha ndeural m]gdhule as §h0wn_()jig;(hedgbray
H «“ n i ion represents the neighborhood area of the winning rea Xe! )\

,SUCh local methods can focus on dlﬁere_'m concepts in tHaggsome learning step. (b) Neural architecture of a moduleénABSOM.

image. Research has become very active on saliency-based

approaches [16], [17], [18], [19], [20], [21]. Salient faeats

can be rep_resented by salient regions resulting frpm anéma& interesting that in [31], feature invariance is obtaitgd
segmentation step [22], [23], by non-connected image zong§ng SIFT descriptors before feature clustering, wheieas
resulting from the construction of saliency maps [24], by&sl ;s paper, feature invariance is achieved at the clugistiage,
[25], or by special points [26], [27]. In this paper, we gy using the ASSOM.

mainly interested in salient points, which provide the mosl ;g paper is organized as follows. In Section Il, we discuss

compact representation of the image content by limiting thge yaditional ASSOM learning algorithm and present the
correlation and redundancy [28]. The comer detector psefo lternative fast-learning implementations. The perforoeain

by Harris and Stephens [26] is one of the most used and_ fms of learning speed will be demonstrated by experiments
most known point detegtors. It IS based on thg computatign seciion I, we will apply the ASSOM to saliency-based
Of a local auto-correlatlo_n functl_on at gach p|>_<el locationnarjant feature construction for image classificatiotheT
Eigenvalues of the Hessian matrix of this function are USE perimental results will be presented in Section IV. This

as mdmztor of plressncedof Icprner;. Ig [28], Lauf:gtgal._ paper will be concluded by Section V, which summarizes main
proposed a wavelet-based salient point detector, whick tom points in the paper and give some perspectives.

address the following two observations: 1) contours areemor
perceptually important than other point related featurashs
as corners; 2) salient points detected by a corner detecigr m Il. BASISLEARNING RULES OF THEASSOM
be ga}the.red in small ir.nag.e regions in th_e case of tgxtgrﬁq Basic ASSOM Learning
or noisy images, resulting in a very local image description
This wavelet-based detector reaches photometric inegibg ~ An ASSOM is composed of an array of modules with
incorporating a color invariance method proposed in [29]. €ach one being realized by a two-layer neural network [2],
Various descriptors have been studied for saliency-basggishown in Fig. 1. In the two dimensional case, a lattice with
approaches [30], [21]. Lowe proposed the Scale Invariaat Fé rectangular or hexagonal neighborhood is often used as the
ture Transform (SIFT) for transform of image data into sealéayout of modules, as in the SOM. Fig. 1(a) shows an ASSOM
invariant local features [30]. The SIFT descriptor was usddttice with a hexagonal neighborhood. The architecture of
in [31] for image classification, where images are represkntd neural module of ASSOM is illustrated in Fig. 1(b). Let
by “bags of keypoints” through clustering the SIFT desaiipt £ be a subspace spanned B orthonormal basis vectors
and the Support Vector Machine (SVM) is finally implementedib1, bz, ..., br} andx be an input vector. The neurons in
for classification. Ideally, salient features should beusitto the first layer compute the orthogonal projectianSby, of
geometric transformations, slight changes of viewpoind arx on the individual basis vectofsy,, for h = 1,..., H. The
variations of imaging conditions, which is hard for handiea@ only quadratic neuron of the second layer sums up the squared
feature extractors. The ASSOM is a suitable tool to deal wiHtputs of the first-layer neurons. The output of the modsile i
transformations by learning pattern subspaces. The previdhen|[x.||, with x. being the orthogonal projection &f on
applications of the ASSOM to invariant feature extractigh [ £- It can be regarded as a measure of the matching between
[8], [9] were not based on saliency approaches. In this pap#te input vectorx and the subspacé. For an input episode
we explore a sequence of two schemes to apply the ASSOM= {x(s), s € S}, whereS is the index set of vectors in the
to invariant feature construction for image classificatimier episode, Kohonen proposed to use énergyy g [|x.(s)]?
a saliency framework. In the first scheme, a single ASSOM & the measure of matching betweXrand £ [2].
trained on all image patches extracted at the salient piots ~ Modules in the ASSOM compete with each other based
the training set by using the wavelet-based detector pezpo®n their output energies. Once the winner of the modules is
in [28]. An image is represented by a cumulative activity magetermined, the winning module and its neighbors updaie the
through projecting the patches extracted from the image subspaces to better represent the input subspace. A neighbo
this ASSOM. In the second scheme, one ASSOM per classhigod functionhﬁz) is defined on the lattice of modules, where
trained and an image is represented by a joint cumulative acindicates the index of the winning module andhe index
tivity map calculated from these ASSOMSs. For both schemesf, an arbitrary modulehé”) is a function of learning step and
the SVM will then be implemented for classification. It mayhe area of neighborhood shrinks with the learning step.



The classical Kohonen’s ASSOM learning algorithm can be Dby =agy(s,)X(s)

summarized as follows. At the learning step X(s)
1) Input the episodex(s), s € S. Locate the winning b®
module indexed by = argmax;ec; Y. g 1%z, (s)]?, b®

where! is the set of indices of modules in the ASSOM.
2) For each modulé in the neighborhood of, including
c itself, and for each input vectot(s), update the basis

Vectorsbﬁl), according to the following procedure: Fig. 2. An alternative view of the basis vector updating rodeASSOM.
a) Rotate each basis vector according to:

b{!) = Pﬁi)(s,t)b;f“ , (1) Note that in (6)xT (s)b,'" is the projection of the component
@ . ] ] vector on the basis vectors represented by the neurons of the
whereb,,” is the new basis vector after rotation andjyst |ayer, which we have already when computing the pro-
b, the old one.P{" (s, ) is a rotation operator jection ., (s)| (cf. Fig. 1). If we calculate the scaling factor
matrix defined by: al’) (s,t) first, and then scale the component vect6s) with
‘ ‘ x(s)x7T(s) this factor, the computations associated with the basisowec
P (s,t) = IJM(U%”(UW - (2)  updating will be dramatically reduced. This implementatio
ci will be referred to as FL-ASSOM for fast-learning ASSOM.
A(t) is a learning-rate factor that diminishes with |t js completely equivalent to the basic ASSOM in terms of
For the algorithm to converge\(t) should satisfy generating topologically ordered invariant-feature fite
o A(t) = oo and 35, A3(t) < oo [32]. Now we compare the computational loads of the basis
b) Dissipate the componen&%} of the basis vectors vector updating in the basic ASSOM and in the FL-ASSOM.
bi” to improve the stability of the results [2]: ~ Let N be the input dimension. It is not hard to verify
b;j(’) _ Sgn(bg})ma}((o, |b§3\ — ¢), wheree is a that a naive |mplgme_ntat|c_m of the updating rule defined by
small positive value. the matrix mult|pI|cat|9n_s in (1) and (2) would need about
¢) Orthonormalize the basis vectors in module HN?+ N? sgglar multiplications anq about thg same n_umber
A naive implementation of (1) and (2) requires a matrix muf-)1E Sca"’;‘r addltlons. So Fhe compgtatlona! load 'S approtel‘ya
tiplication which needs not only a large amount of memorg(HN ), i.e. q“adfa“c to the input dimension and linear
but also a computational load quadratic to the input dinmamnsi I\(A)cg]lfncshuetilsgzticzl 1'1'2]812':;3 -trohea rgg:ﬁ;ﬁgggaa?r?gggegf by
It would be costly for practical applications. O(H?N), i.e. linear to the input dimension but quadratic to
the subspace dimension. Now with the proposed updating rule
the computations ofix., (s)|| and ||x(s)|| in (6) need about
In this section, we propose an alternative implementatign N’ + 2N multiplications, andozgl(s,t)x(s) in (5) about
of the basis updating rule in the ASSOM learning. In the firgf N multiplications. In all (5)and (6) need aboRE N + 2N
place we propose to reformulate (1) and (2). The tér;fﬁ) multiplications. Similarly, the number of additions can be
in (1) can be distributed to the right side of (2), leading to: shown to be abouRHN + 2N. So with (5)and (6), the
computational load is approximatelp(HN), i.e. linear to

B. Insight on the Basis Vector Rotation

bﬁf) = b;fi) +Ab§f) , () poth the input dimension and the subspace dimension. The
were (b mplementation o the ASSOM, but not e mplementaton
Aby = /\(t)hgi)(t)m : 4)  proposed here. ,
xT(s)b;fi) is in fact a scalar value. The equation becomes:C. Discussion on the Operatd?gi)(s,t)
Abgf) _ a%(s,t)x(s> _ (5) The objective function of the ASSOM is defined as:
Herea() (s, 1) is a scalar value defined by: E= /Z h() 2 WP(X)dX (7)
7 sE
xT(s)b/h(i) whereP(X) is the distribution function of the random episode

all) (s,t) = AR (1) 6)

%z, (s)|[lIx(s)]] X. %z, (s) = x(s)—%g,(s) is the residual ok(s) after projec-

_ ) @) . tiononZ,. In the following we review briefly the main steps in
This shows that the mcremelz.ilbh is in fac_t a scalu_ﬂg the derivation ongi)(&t) from (7) and prove thani)(&t)

of the component vectax(s), as illustrated in Fig. 2, which approximately maximizes another objective function.

seems to have been ignored by many practitioners. Carefup,, sing the Robbins-Monro stochastic approximation [32],
examination of (5) would reveal similarity of this formulativ a sample objective functiohas been aimed at:

a recursive PCA suggested in [33]. The main difference here - )
is that the gain of stochastic approximation is modulated by Ey(t) = Z hff’(t) Z M (8)
a neighborhood function dependent on module competition. - = Ix(s)I?



Kohonen showed in [2] that So

OF, ; x(s)xT(s). (5 OFEms ; Ix(s)ll x(s)x" (s )
() = —2h() (¢ =7 2y (9) Sty = hO(t () (22)
onp) = O L e o ( @S e Ik
Moving b by a step lengthi A(1) in the negative direction = "> (5) — U2 b (23)
of this gradlent since\(t) is small we have: = HXC ||||X s)I "
o : x(s)xT(s) |, "(5) Taking a step\(¢) in the direction of this gradient, we get the
b = |[T+A0O (1)) IxGE b, (10)  rotation matrix
ses
N R OL OIS BO(t) =1+ At x(s)x* .4
~ I] {14—/\(15)’12)() %) b, . (11) 1) = ; 1%z (s) HHX sl

ses

This approximation amounts to a successive rotation of tighen \(¢) is small, it is equivalent tav” (t)asin (12). m
basis for each component vector in the episode.

For stability of the solution, Kohonen proposed to multipl
the learning rate\(¢) by ””x ?SHH and obtained the following
slightly modified rotation operator:

. Further Boosting: Batch-mode Basis Vector Updating

Basis vector updating can be further boosted by working
in a batch mode. We can avoid computing the value of

MO (t) = H {IJF/\( R (¢) AX(S)XT(S) (12) %z, (s)]| in () by using the value computed previously
‘ s %2, (s)[[1Ix(s)]] during module competition. However, this could not be done
_ H PO (s,1) (13) insid_e the framework of FL-ASSOM since the subspaces are

s c A continuously changing in receiving each component vedtor o

the episode. To save computation||éf., (s)||, the batch-mode
That is how the operatoP(”(s t) was developed in the rotation operatoB( )( t) in (24) will be useful.

classical ASSOM basis L(lg;)datmg As was done for the FL-ASSOM, by dlstnbutmg,(” to
In fact, the operato{" (s, ) approximately maximizes terms in the operatoB(” (t), the basis vector updating rule
another objective function as we shall discover now: becomes:
(i) _ /(@) ()
= / Zh“ Z % (X)dX . (14) b, =D, +A4b,", (25)
”X where 4 '
Proof: The sample funct|on of,, is: Abgf) = Z (a%(s,t)x(s)) . (26)
SES
(z) H
ms(t) Z he Z ||X : (15) The increment of each basis vector is thus a linear combimati
_ s€s of component vectors in the episode. The difference between
Taking the gradient of,s(t), we have the updating rules (3) and (25) is that the former updates the
9 (Hﬁf_i(s)u) basis vectors for each component vector one by one while the
3En?s (t) = h9 (1) Z ()1l (16) latter updates the basis vectors in a batch mode for the whole

abﬁj) = 8b§f) ’ episode.

The scalar parameter“}l(s t) has the same form as (6):

Moreover,
(sl X, (s T "(4)
o (o) _yiseon ? (i) o) =AM 2 e
b I bl | | - IRetlisl
So The meaning of t_h|s equation is, however, a I|tt_Ie d!fferieotn
' A , that of (6). Here in (27) the basis vector updating is perfmtm
OE. ' 1 (s 9 (HTl(i(e()sl)\Ll ) only after the whole /episode has been received. Therefore,
o ) :hﬁ’)(t)zi - @ (18) |j%c,(s)| and x"(s)b,” can reuse the results previously
dby, s€S e, (s)ll dby, calculated during module competition. What we need to do
We have is only store the calculated values in registers and fetemth
g (1xe, )12 when needed. The computational load of (27) is thus trivial.
h (1) Z ( x(s)1? ) (19) Furthermore, the dissipation as well as orthonormaliratib
¢ ob'd basis vectors can be performed only once for each episode
56‘7 h without loosing accuracy since the basis vectors are not
9 (Zz W (1) es 1~ Es(t)) updated during the episode. The computational load can thus
= ; (20)  pe further reduced. This method will be referred to as BFL-

()
oby, T ASSOM for batch-mode fast-learning ASSOM.
_ _ 9K (t) =209 (1) 3" x(s)x (3) . (21)  Letus estimate the computational load of the BFL-ASSOM

(&

ob\") = Ix()l? averaged on each component vector of the episode as we




did for the basic ASSOM and for the FL-ASSOM. As has FL-ASSOM BFL-ASSOM
been mentioned, the calculation@ﬂ(s, t) according to (27)
needs only trivial computation. The majority of computatio

computational load required by basis vector updating with t

BFL-ASSOM is aboutd N multiplications and{ N additions.

Furthermore, since the dissipation and orthonormalinatib

basis vectors can be performed only once for each episode,

the whole learning time can be further reduced. €
5.9

5.7

---- FL-ASSOM
—— BFL-ASSOM

E. Experiments
We first demonstrate by experiments that the BFL-ASSOM

can generate topologically ordered invariant-featurerltas 55 1

the basic ASSOM. The results of FL-ASSOM will be shown 53 1

as the ground truth since the FL-ASSOM is mathematically Y T S S
equivalent to the basic ASSOM. Kohonen has shown that the 0 5 10 15 20 25 3b
ASSOM can generate basis vectors similar to Gabor filters for (x10)

episodes subject to translation [1], [2]. We shall show that
BFL-ASSOM is able to generate similar filters.
The Input eplsodes are constructed from a colored no'l’f‘ig. 3. (@) The Gabor-like filters generated by the BFL-ASS©dmpared

image, which is generated by filtgring a white noise iMag§hose by the FL-ASSOM on episodes subject to translabionFirst basis
with a second-order Butterworth filter. The cut-off frequgn vectors.ba: Second basis vectors. (b) Changing of the projection erreith

is set t00.6 times the Nyquist frequency of the samplindhe learning step for the FL-ASSOM and for the BFL-ASSOM.

lattice. Each episode is composed6o¥ectors, each of which

is formed on a circular receptive field composed®d pixels. )

The vectors in the same episode have only random translatfffsodeX = {x(s),s € S}, wherex(s) are mean-subtracted
of no more thars pixels in both the horizontal and the verticand normalized, the projection erre(X) = >, g [|x(s) —
directions. The episodes are generated on random locatfon&(s)[|*, wherex(s) is the projection ok(s) on the subspace of
the colored noise image. The mean value of components B¢ winning modulec in the figure is the average ofX) over
each input vector is subtracted from each component of tAk the training episodes. Fig. 3(b) confirms that the défere
vector. In order to symmetrize the filters with respect to tHeetween the learning curve of the FL-ASSOM and that of the
center of the receptive field, the input samples are weighyed BFL-ASSOM is practically negligible.

a Gaussian function symmetrically placed at the center®f th In the second experiment, we compare the computational
receptive field with a full width at half maximum (FWHM) loads of the basic ASSOM, the FL-ASSOM and the BFL-
that varies linearly with respect to the learning stefpom 1 ASSOM with respect to the input dimensioN and the

to 16 sampling lattice spacings. Each vector is normalized f!bspace dimensiofl. We record the elapsed CPU seconds
a unit vector before being sent to the ASSOM. for each method. The number of iterations are fixed,t@00.

The ASSOM array is composed 6fx 10 modules aligned Each episode is composed @fvectors, which are generated
in a hexagonal lattice with two basis vectors at each moduf@ndomly according to a uniform probability distributiofhe
The basis vectors of all the modules are initially randomize€ctangular ASSOM array containg x 10 modules.
and orthonormalized. The radius of the circular neighbocho  The timing results obtained by using C++ implementations
function A" (t) decreases linearly fror.73 (= 0.5 x (9> + are summarized in Table |, where the means and standard
10%)1/2) to 0.9 ASSOM array spacings with The learning- deviations of the elapsed CPU times aftéh runs with
rate factor\(¢) = 0.1-T/(T+99t), whereT is the total number different initializations are recorded. As was anticipgtéhe
of learning steps and set 80, 000 for the current experiment. basis vector updating time of the basic ASSOM increases

As shown in Fig. 3(a), the translation-invariant filters gerrapidly with the input dimension and is the bottleneck of
erated by the BFL-ASSOM and those by the FL-ASSOM aitée learning procedure. With the FL-ASSOM, the basis vector
similar. The difference is only the different organizatioithe updating time is dramatically reduced, increasing slowithw
filters due to random initialization of the two networks. Fothe input dimension and with the subspace dimension. It is
both networks, the formed filters are similar to Gabor filter80 longer a bottleneck of the learning procedure. However,
of different frequencies and different orientations. Muver, learning time outside basis vector updating is not reduced.
filters of similar frequencies and orientations are formed Alow with the BFL-ASSOM, the basis vector updating time
nearby sites. For either network, filters correspondingto is further reduced. Moreover, learning time outside theisbas
and those corresponding te, have the same frequencies avector updating is also reduced considerably comparedeto th
the same locations bW degrees of phase difference, whictpther two networks. Thus, the whole learning time decreases
confirms orthogonality of the corresponding basis vectors. from 1,956 seconds with the basic ASSOM 1.2 seconds

Fig. 3(b) shows how the average projection eer@hanges Wwith the BFL-ASSOM whenH = 4 and N = 400.
with the learning steg for either network. For each input The relationship between the basis vector updating time

(b)



TABLE |
TIMING RESULTS OF THE BASICASSOM, THE FL-ASSOMAND THE BFL-ASSOMMWITH RESPECT TO THE INPUT DIMENSIONN AND THE SUBSPACE
DIMENSION H. LEFT SUB-TABLE: THE BASIS VECTOR UPDATING TIME(VU).  REPRESENTS THE MEAN VALUE AFTER20 RUNS. 0 REPRESENTS THE
CORRESPONDING SAMPLE STANDARD DEVIATION RIGHT SUB-TABLE: THE WHOLE LEARNING TIME (WL), WHICH INCLUDES THE TIME FOR MODULE
COMPETITION, BASIS VECTOR UPDATING BASIS VECTOR DISSIPATION AND ORTHONORMALIZATION ALL THE TIMES ARE GIVEN IN SECONDS

H=2 H=3 H=4 H=2 H=3 H=4
K“vu ovu K“vu ovu K“vu ovu MWL | OWL | MWL | OWL | UWL | OWL
S [ N=100| 78.0| 054| 96.8| 0.73| 120| 4.7 S [ N=100 | 840| 057| 107 | 0.75| 134| 48
Q [[N=200 303 21| 377 32| 449| 27 Q [[N=200| 314 22| 395[ 32| 475| 30
) [ N=300| 682| 38| 846| 79| 1,003| 7.6 @ | N=300 | 699 38| 812 80 | 1,042 738
< ["N=400 | 1,331 11 | 1,621 13 | 1,004 13 < ["N=400 | 1,354 11 | 1,658 13 | 1,956 13
N=100 | 0.942 | 0.083| 1.26 | 0.097 | 1.60 | 0.10 N=100 | 6.92 | 0.057| 10.9 | 0.086| 156 | 0.13
_ [[N=200| 1.46| 013| 201| 0.16| 248]| 010 _ [ N=200| 125| 014 199 0.19| 284 0.26
' "N=300| 20| 02| 2.80| 020| 360 0.18 “ [N=300| 185| 013| 29.2| 023| 419| 043
N=400 | 2.80| 0.26| 3.73| 028 4.66| 0.20 N=400 | 243 | 027| 387| 032| 551| 037
N=100 | 0.488 | 0.059 | 0.699 | 0.071 | 0.972 | 0.071 N=100 | 2.50 | 0.044 | 3.62 | 0.032| 4.82| 0.037
7' [[N=200 | 0.569 | 0.056 | 0.817 | 0.093 | 1.12| 0.14 o [[N=200| 4.35| 0.057| 6.28| 0.065| 8.42 | 0.076
@ [N=300 | 0.745| 0.085| 1.05| 0.091| 1.46| 0.095 @ [N=300 | 6.34| 0.064| 9.19 | 0.071| 12.3 | 0.085
N=400 | 0.930| 0.10| 1.46| 0.10| 1.84| 012 N=400 | 8.39| 0.093| 12.1| 0.10| 16.2| 0.075
1800 600 [28]. Working with wavelets is justified by the consideratio
2 ~ASSOM g “ ASSOM of the HVS for which multi-resolution, orientation and fre-
5 1500 | T FLASSOM o 500 FLASSOM ency analysis is of prime importance. In order to extract
2 - BFL-ASSOM £ - BFL-ASSOM qu y ySIS | pri Imp = X
8 1o00 - € 00 | the salient points, a wavelet transform is firstly perfornoed
> : the grayscale image. The obtained wavelet coefficients are
o] L S L . .
g o900 g > represented by a zerotree structure [34]. This tree is then
> . .
2 600 | 2 500 |- scanned at a first time from leaves to the root to compute the
© . . .
3 < saliency value at each node. Afterwards, this tree is sahnne
300 ¢ wor for the second time from the root to leaves in order to
/ . . . -
0 = 0 : : determine the salient path from the root to raw salient goint
100 200 300 400 2 3 4 on the original image. By working with grayscale images, the
input dimension subspace dimension points located on boundaries of highlights or shadows are ap
@ () to be detected as salient whereas they are only caused by

illumination conditions. To remove such false salient p&in

Fig. 4. The basis vector updating time with respect to (a)tpetidimension 5 gradient image is calculated by using the color invariants
at the subspace dimensiéh = 2 and (b) the subspace dimension at the input

dimensionN = 200. For sake of clarity, the updating time of the FL-AssomProposed by Geusebroek al. [29]. A threshold is then set to
and that of the BFL-ASSOM are magnified by a factor of 50. select the most salient points.
The ASSOM shall be trained to generate the appropriate
feature filters based on the local regions (patches) around
and the input dimension or the subspace dimension for tfpse salient points, which are supposed to carry essential
three implementations of ASSOM is visualized in Fig. 4. Thyformation for image description and consequently foisela
basis vector updating time increases approximately lipeakification. The ASSOM can work on episodes composed of
with respect to the input dimension for the FL-ASSOMseveral component vectors, but construction of episodestis
and for the BFL-ASSOM, but apparently nonlinearly for th@ecessary in a general situation if we want the ASSOM to
basic ASSOM. In all the cases, the updating time increasgarn subspaces. Although it is possible to construct elpiso
approximately linearly with respect to the subspace difoens py artificially introducing transformations such as tratisin,
rotation or scaling as in [8], this process could generate
[1l. SALIENCY-BASED INVARIANT FEATURE artificial variants which might not really exist in the test.s
CONSTRUCTION FORIMAGE CLASSIFICATION So we prefer to use raw image patches to train the ASSOM.

In this section, we explore a sequence of two schemes-€t Pk, k € {1,2,..., K} be K salient points detected
where the ASSOM is applied to saliency-based invariaffm the imageZ, which amount tok" patchesx;. These
feature construction for image classification. The impleteg Patches are fed into a single ASSOM with modules, which

ASSOM may be the FL-ASSOM or the BFL-ASSOM. We willWas previously trained in an unsupervised way on all patches
compare their performance in Section IV. extracted from all categories of images in the training set.

For each patclx;, the module; (i € I) generates an energy
. i i IXxc,||?, with %;.. being the orthogonal projection af, on
A. Salient-Point Single ASSOM Scheme (SPSAS) the subspace’; of the modulei. Energies generated by all
The first scheme to be explored is based on a single ASSQh modules construct an activity map, which is a vector
as shown in Fig. 5. Salient points are first detected from the
input image by using the wavelet-based detector proposed in aj, = [||%iz, [|* -+ %Kiz, [|* - ||§ck£m|\2

[
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Fig. 5. SPSAS image classification architecture.
A similar single-SOM versus multi-SOM framework was

proposed in [37] for face recognition. Each face image iflyirs
We remark that this activity map construction correspomds partitioned into non-overlapping sub-blocks correspngdio
a soft (or fuzzy) clustering process in the sense that, imyevdocal feature vectors. A single SOM is trained for all classe
module of the ASSOM, the input patch has a membershifp feature vectors or a separate SOM is trained for each
defined by the energy. It has been shown that a fuzzy clugteritlass. Face images are then represented by sets of SOM
process has advantages over a hard one [35]. Activity mapsaafight vectors. A softk-nearest neighbor ensemble method
all patches extracted frod are then accumulated to form ais proposed to identify unlabeled images. The single-SOM
cumulative activity magyz characterizing the imagg, which scheme and the multi-SOM scheme showed similar perfor-

is defined by: mance in their experiments. A block-to-block comparison is
K used in their research for face identification, which assume
Yz = Zak : (29) good calibration between training faces and testing fatés.
k=1

not suitable for general-purpose image classification lprob,
This feature vector is then classified by an SVM previouslyhere good calibration is not guaranteed. Also, repretienta
trained on feature vectors of the training images. The implef the feature vectors by the weight vectors may be noisy,
mentation of the SVM used in this paper is part of a publicls smoothed representation such as the activity maps may be
available machine learning tool collection WEKA [36]. Herenore appropriate.
we use a Gaussian kerr@l(u, v) = exp(—allu—v||?), where

«a = 0.02 in our experiments.
P IV. EXPERIMENTAL RESULTS

B. Salient-Point Multi-ASSOM Scheme (SPMAS) A. Multi-Category Classification

The SPSAS does not make use of the fact that we have thdn the first experiment, we evaluate our system in terms
label information for images in the training set. It mighade Of multi-category image classification on the SIMPLIcity
to map modules that mix up different categories of featuré§tabase, which is part of the well known Corel database
and confuse the (SVM) classifier. A better strategy wouldnd has been used to test the SIMPLIcity content based image
be to use a specific ASSOM for each category. This igégtrieval system in [23]. The database consists of ten osaiteg
was explored in [9] for recognition of handwritten digitsdan including African people and villages (Afr), beaches (Bea)
produced promising results. But the size of images in theiildings (Bui), buses (Bus), dinosaurs (Din), elephaBig),
case is very smalb6 x 20 pixels), permitting a direct ASSOM flowers (Flo), food (Foo), horses (Hor), mountains and glexi
learning. In our case, the images have much larger sizes 4NtPU). €ach containing00 images 0f384 x 256 pixels. Some
cannot be directly dealt with under their framework. representative examples from each category are presemted i

The SPMAS replaces the single ASSOM in the SPSAS wiffid- 7- The images in each category are divided into two equal
an array of ASSOMs, each one being trained for one categdt§ts:50 for training and the othes0 for testing.
of image patches. Separate ASSOMs for different categoriesVe focus on RGB color features in the experiment. The
permit the system to learn the individual feature sets mo¥@age patches are circles witso7 pixels (about a radius
precisely than a single ASSOM for all categories. Jebe Of 14), which amount tol,791 = 597 x 3 dimensional
the set of image labels (categoriee),:z,le al(cj), j € J be Vectors. The mean value of components of each input vector
the cumulative activity map generated by tjh ASSOM. IS subtracted fr(_)m each component of the vector. The trginin
The new feature vectay; is a joint cumulative activity map Steps are empirically set 0,000 for the ASSOM in the

formed by combining théJ| cumulative activity maps: SPSAS and0, 000 for each ASSOM in the SPMAS, simply
- because there are more training patches available fornigéesi
yr = [clT C’J,F C‘m , (30) ASSOM in the SPSAS than for each ASSOM in the SPMAS.

We use a rectangular ASSOM lattice. The choice between
as illustrated in Fig. 6. The feature vectpr is sent to the

SVM for classification, as in the SPSAS. Lhttp://wang.ist.psu.edwjwang/testl.tar
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Fig. 7. Example images from the SIMPLIcity database.

TABLE I TABLE I
COMPARISON OF CLASSFICATION ACCURACIES BETWEEN THSPSAS COMPARISON OF CLASSIFICATION ACCURACIES BETWEEN THE
AND THE SPMAS ,AVERAGED ON THE 10 CATEGORIES BFL-ASSOMAND THE FL-ASSOM, AVERAGED ON THE 10 CATEGORIES

ASSOM SPSAS SPMAS ASSOM FL-ASSOM BFL-ASSOM

size Training Test | Training Test size Training Test | Training Test

5x5 45.8% 42% 87% 70% 5x5 87% 70% 832% [ 73.8%
10x 10 | 71.2% 58% 100% 76.2% 10 x 10 100% 76.2% 100% 78.2%
15 x15 | 88.4% [ 56.8% 100% 7% 15 x 15 100% 7% 100% 78%

rectangular or hexagonal lattice does not seem to be dritica3) SPMAS Feature Filter VisualizationFig. 8 shows the
according to our experiments. feature filters generated from the) categories of training

1) SPSAS Versus SPMASVe first compare the SPMAS images by using th&0 x 10 BFL-ASSOM-based SPMAS. Two
to the SPSAS based on the FL-ASSOM. The experimentzurons are implemented in the first layer of each module.
results are summarized in Table Il. Both schemes suffertl this way, each ASSOM learned twid x 10 lattices of
from the overfitting problem due to lack of data. The SPSAasis vectors. In order to show the correspondence between t
shows less overfitting than the SPMAS when the size of tisemponents of the basis vectors and the R, G, B components
ASSOM is small. But overfitting of the SPSAS inflates moref the input patches, each three subsequent components of
quickly than that of the SPMAS when the size of the ASSONhe basis vectors are grouped back to form an “RGB” pixel.
increases. In this sense, the SPSAS is more sensitive to T components are normalized to the raftg@55] with the
number of parameters than the SPMAS. The SPMAS showalue 128 corresponding to a componenft “Pixels"of the
better classification accuracies than the SPSAS on both thasis vectors are organized to form the same shape as the
training set and the test set across different configurstiomput patches, i.e. a circle.
which confirms advantages of using separate ASSOMSs to learrEach basis vector can be rotated to the opposite direction
features of different categories. On the test set, the SPRBSS without altering the spanned subspace. Thus we could rotate
an improvement of accuracy @8.2% —28% over the SPSAS. some of the basis vectors in order to get maps where neigh-
We will stick to the SPMAS in the following experiments. boring basis vectors appear more similarly. For example, th

2) BFL-ASSOM Versus FL-ASSOMable Ill summarizes orangish basis vectors could be turned to bluish in lthe
the classification accuracies of the SPMAS with the BFllattice of the elephant category although we did not do that.
ASSOM and with the FL-ASSOM of various sizes. Thdhis would not change the performance of the ASSOM and
number of neurons in the first layer of each ASSOM modutée consequent classifier.
is fixed to 2. This table shows that the performance of the As we mentioned previously in Section II-B, the ASSOM
BFL-ASSOM is a little better than the FL-ASSOM. Thesubspace learning process is similar to a recursive PCAdn t
reason could be that the BFL-ASSOM is a more accurabasis vector orthonormalization process, the first basitove
learning process deduced from the corresponding objectaee only normalized, and the second ones are orthogonalized
function than the FL-ASSOM. Thus the local features coulith respect to the first ones. Thus the first basis vectors
be better structured with the BFL-ASSOM than with the FLare likely to capture the first principal components of the
ASSOM. The improvement of the classification accuracy iaput feature subspaces while the second ones are likely to
1% — 3.8% on the test set if we replace the FL-ASSOMapture the second principal components. There are some
with the BFL-ASSOM. Taking the learning speed into accounbbservable characteristics of features correspondinghéo t
the BFL-ASSOM seems more attractive than the FL-ASSOMarious categories of images. For flowers, the first basitowec
According to Table Il the performance of the BFL-ASSOM-show a distinct red tone because most of the flowers, at least
based SPMAS is nearly optimal when the ASSOMs are of tlire the SIMPLIcity database, have a red tone. For buildings,
size10 x 10. We will stick to thel0 x 10 BFL-ASSOM-based both basis vectors do not show distinct colors. This is aigo t
SPMAS in the following experiments. case for the dinosaurs since the dinosaur pictures areciattifi
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Afr Bea Bui Bus Din

Fig. 8. Feature filters for th@0 categories of the SIMPLIcity training sdb;: The first basis vectords: The second basis vectors.

TABLE IV TABLE V
CLASSIFICATION ACCURACIES OF THE10 x 10 BFL-ASSOM-BASED CONFUSION MATRIX OF THESPMAS. THE BOLDFACED FIGURES
SPMASWITH DIFFERENT SUBSPACE DIMENSIONSTHE RESULTS ARE CORRESPOND TO CORRECTLY CLASSIFIED TEST IMAGES

AVERAGED ON THE 10 CATEGORIES

True Classeg Afr Bea Bui Bus Din Ele Flo Foo Hor Mou

H=9 T H=4d | H=61 H=8 T H=10 Afr 43 2 0 0 0 2 0 2 1 O

Training | 100% | 100% | 100% | 100% | 100% Bea 13 2 0 1 41 0 2 3
Test 782% | 78.6% | 82.4% | 84.6% | 86% Bui 1 53102010 1

Bus 0 2 246 0 0 0 0 0 O

Din 0 0 0 0500 0 0 0 O

Ele 3 1 3 0 1400 0 2 0

Flo 1 0 0 0 1 046 2 0 O

models without distinct colors. Foo 2 1 2 0 0 0 144 0 0
. . s Hor 0 0 0 0 0 0 1T 049 0O

In Fig. 9, we show three exemplary images and their joint Viou T8 0 0 1T 1T 2 0 037

cumulative activity maps, where gray levels of the modufes i
the ASSOMs are proportional to the energies of the respectiv
modules. For the first two images, the ASSOMs correspond-
ing to the correct image categories are more activated tHaf €mphasized that the good results are obtained solely with
other ASSOMSs. However, this is not always so obvious. F6RW image patch learning by ASSOM without calculating any
example, the third image strongly activated both the sgyfdescriptors beforehand. It shows that the system can learn
ASSOM and the “Bus” ASSOM. In fact, many bus images iRafterns directly from the input signal itself.

the SIMPLIcity database have buildings in the backgrounds.5) SPMAS Confusion MatrixThe confusion matrix of the

It is not surprising to find out that the “Bus” ASSOM hasSPMAS is shown in Table V. Most of the test images are
learned the concept of some building parts. That is why vgerrectly classified. The best classified category is dingsa

choose to keep the activity maps of different ASSOMs aryhere all the test images are correctly recognized. Thetwors
use the SVM to make the decision. classified is the beach category, where a368y(72% ) images

4) Effects of the Subspace Dimensiofihe classification are correctly recognized. (8%) images in the beach category
results with the subspace dimensiéh — 2,4,6,8,10 are are classified as elephant. Examination of the beach categor
summarized in Table IV. Eromfi — 2 to I — io,tﬁe7average shows that most images in this category have yellow sands
accuracy on the test set is improved 8%, wh'ich suggests and blue sky as backgrounds. Blue sky can often be found in

that higher subspace dimensions capture more precisely E'ﬂ% elephant category while the color of sand is often simila

. . . . : that of soil in the elephant categor§.(16%) mountains
f . Th h high
variances of Input patterns. The price fo pay is that a hig té)rd glaciers images are classified as beach. This is because

subspace dimension involves a heavier computational lo&d!

Even though the complexity of the system seems to incree{ggumari]ns cte;]n %flten bke fourlg inbthi beacrzj c;’atefgo[y andt;ch eBt/
with higher subspace dimensions, the “curse of dimensioffcl' Share the blue Sky as the background. In fact, an objec

does not seem to appear. The reason could be that the lengt 0spd appear in a range of contexts and a salient point could

the feature vectoyz is constant with respect to the subspac eh ocatthe_d ﬁt the bor(:ﬁ rof tV\t’O E[hfffzrent bUt. adja(t:entt OBIJeCtS
dimension. Also, the SVM is less prone to overfitting thal en this happens, the context piays an important role. o

some other methods since it can limit the complexity igher level features, such as global features or semantics
the model by the number of support vectors [38]. Fig. 1 ased features, should be helpful in further improving the

shows some examples of the results from the test set. We a%qgsmcr?t.lon accuradcy. AIISO flor iomte' objects, SIUCh as san?
performed a 5 times 5-fold cross validation witth = 10, In beach Images and soll In elephant images, colors may no

which shows that the classification accuracy can reach a @a?nﬁnou%h Ior dlshcnr?(;nstmg them V\f/hlereas other descsptor
value of85.5% with a standard deviation ¢f.6%. such as texture should be more usetul.

According to [23] and [39], the best classification accuracg o
ever met across various featuressis1% on the SIMPLIcity B- Adult Image Filtering
data set, which is worse than what we obtained, 868 on In the second experiment, we apply the SPMAS to adult
the test set or a mean vals.5% with the 5 times 5-fold image filtering. There are respectivelid33 adult and 733
cross validation. Considering difficulty of the classificat benign training images77 adult and467 benign test images.
problem, the performance of our system is promising. It &khouEach BFL-ASSOM was trained witR00, 000 iterations. The
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Afr Bea Din Ele Flo Foo

Bui Bus Hor Mou

Fig. 9. Three images and their joint cumulative activity maps.

Afr Bea Bui Bus Din Ele Flo Foo Hor Mou

Bea Mou Foo Bui Ele Foo Flo Ele Bea

Fig. 10. Examples of the classification results. Horizonitad are separation marks of different rows. The correctidabee given in the top row. The
second row presents examples of correctly classified imadesb®ttom row shows the incorrectly classified images withassigned (wrong) labels.

Fig. 11. BFL-ASSOMSs generated for adult images and benign ésag

Adult  Benign Adult  Benign

Fig. 13. Classification results of some benign test imagesr @ line:
Correctly classified examples. Under the line: Incorrecissified examples.
@) (b)

Fig. 12. Joint cumulative activity maps of (a) an adult image énda

benign image. and the FP rate is the proportion of incorrectly blocked geni

images. The SPMAS shows a TP rate’6f1% with an FP rate
of 13.9% on the training set. The F1 measurd)i878 on the

subspace dimension #sand the topology of the ASSOMs is aadult class and.874 on the benign class. On the test set, the
10 x 10 rectangular lattice. The image patches at salient point§ rate is90.2% and the FP rate i$3.1%. The F1 measure
are circles of597 RGB pixels. The trained BFL-ASSOMsis 0.874 on the adult class and.892 on the benign class.
are shown in F|g 11, wherb; of the adult images exhibits Flg 13 shows some classified examples from the benign test
evident orientations, whild, embodies an obvious yellow subset. The correctly classified images cover a wide range of
tone. In Fig. 12, we show the exemplary joint cumulativécenes, including people or objects with skin-like coldrise
activity maps of an adult image and a benign image. For tHcorrectly classified images include people with expoded s
adult image, the “adult” ASSOM is obviously more activate@ non-human objects with large areas of skin-like colos. T
than the “benign” ASSOM. However, for the benign imagel th@eal with such false alarms, higher—level analySiS of tlemes
difference is not that obvious. This is related to the diffigin  Might be necessary, such as detection of humans and context
learning “the rest of the world”, which is practically immikle ~analysis. The receiver operating characteristics (RO@Yecu
to be sufficiently sampled. Also, maybe we should wond®&f our system is shown in Fig. 14. The area under the curve
what the “benign” ASSOM has really learned from “the redAUC) is a high value).958.
of the world”. It has probably just learned a flat distributio  We compared the SPMAS with some other adult image
where nothing is specially interesting. filtering systems based on skin detection. Jones and Rehg [40
We use the true positive (TP) rate and the false positipgoposed one of the best skin detectors in the literaturte thvé
(FP) rate to describe the performance of adult image figerinCompaq database. They built an adult image detection system
The TP rate is the proportion of correctly blocked adult iesg based on their skin detector. Five features are calculated f
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ASSOM, but not than the fast implementations proposed here.
The acceleration of ASSOM learning is especially meanihgfu
/ for images, which are usually associated with high dimerssio
Experimental results revealed superiority of the SPMAS to
the SPSAS in saliency-based invariant feature constmuétio
image classification. In the SPMAS, one ASSOM s trained
for each image category to make use of the fact that image
labels are known for the training set. The feature vector of
the input image is built by combining cumulative activity
maps of different ASSOMs. The SPMAS showed promising
performance on a 10-category image classification problem
and on adult image filtering. Compared to other skin-deteeti
based adult image filtering systems, one important advantag
of the SPMAS is that the manual labor related to preparation
, , . of the skin training set can be saved.
the skin detection output and two additional features eorre There could be several other ways to improve the ASSOM
spond to the dimensions of the input image. A neural netwogk o subsequent SPMAS. For example, a non-uniformly
is implemented fqr class_ification. The adult image ﬁlteringistributed input signal will lead to ASSOM modules with
system proposed in [41] is based on a MRF (Markov randoglhgpaces too close (when these modules are in the dense
fields) skin detector. Nine features are extracted from ﬂ}%nes of the input space) or too far away from each other
skir_1 detection qutput, including the shape information lohs (when they are in the sparse zones of the input space). The
regions. A'mLJ.It|-Iayer perceptron (MLP) is then mplemehtesim"ar problem is often encountered in the SOM. Hierarahic
for classification. These systems, as well as the proposgfyis have been proposed to mitigate this problem. Such map
SPMAS, were evaluated on different databases. Despite thig,cyre permits multi-resolutional representationhef input
the comparison still makes sense since all the databases @iga| space and fast locating of the winner as demonstrated
comprehensive and contain thousands of images randorBD/ Liu et al [42]. A similar strategy could be used for

dpwnloqded from Internet, Wf}ich are likely to follow simila the ASSOM. In this paper, the ASSOMs are only trained
distributions. Jones and Rehg's system has a TP ra#8.8% o, the RGB color feature. We can as well train different

under an FP rate df3.1%. The system proposed in [41] has g\g5oMs on different features, e.g. color and texture, aed th
TP rate of abous7.1% under an FP rate af3.7%. Apparently  onpine these ASSOMSs. This could be realized in a boosting

the SPMAS is competitive to these skin-detection-basedt adyl, 1 awvork (AdaBoost for example).
image filtering systems.
In fact for the skin-detection-based systems, although de- ACKNOWLEDGMENT

tected skin provides evidence of adult content, the falka™s .
The authors are grateful to the anonymous reviewers for

or missed real skin may confuse the adult image detectortﬁgir valuable comments and suggestions, which have helped
well. The SPMAS, however, does not depend on such a sKin: 99 ' P

preprocessor which might be a source of false detectiori.itsé0 improve the quality of this paper.

It learns features directly from raw image patches. In thag,w
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