Preference-based Evolutionary Direct Policy Search
Résumé
We present a novel approach to preference-based reinforcement learning, namely a preference-based variant of a direct policy search method based on evolutionary optimization. The core of our approach is a preference-based racing algorithm that selects the best among a given set of candidate policies with high probability. To this end, the algorithm operates on a suitable ordinal preference structure and only uses pairwise comparisons between sample rollouts of the policies. We present first experimental studies showing that our approach performs well in practice.