
HAL Id: hal-01216082
https://hal.science/hal-01216082

Submitted on 19 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing Relational-Algebraic Operators for
Improving Cognitive Abilities in Networks of Neural

Cliques
Ala Aboudib, Vincent Gripon, Baptiste Tessiau

To cite this version:
Ala Aboudib, Vincent Gripon, Baptiste Tessiau. Implementing Relational-Algebraic Operators for
Improving Cognitive Abilities in Networks of Neural Cliques. COGNITIVE 2015 : the 7th Interna-
tional Conference on Advanced Cognitive Technologies and Applications, Mar 2015, Nice, France.
pp.36 - 41. �hal-01216082�

https://hal.science/hal-01216082
https://hal.archives-ouvertes.fr


Implementing Relational-Algebraic Operators for
Improving Cognitive Abilities in Networks of Neural

Cliques

Ala Aboudib, Vincent Gripon and Baptiste Tessiau
Télécom Bretagne - Electronics Department

Brest cedex 3, France
Emails: ala.aboudib@telecom-bretagne.eu, vincent.gripon@telecom-bretagne.eu, baptiste.tessiau@ens-rennes.fr

Abstract—Associative memories are devices capable of retrieving
previously stored messages from parts of their content. They are
used in a variety of applications including CPU caches, routers,
intrusion detection systems, etc. They are also considered a good
model for human memory, motivating the use of neural-based
techniques. When it comes to cognition, it is important to provide
such devices with the ability to perform complex requests, such
as union, intersection, difference, projection and selection. In
this paper, we extend a recently introduced associative memory
model to perform relational algebra operations. We introduce
new algorithms and discuss their performance which provides an
insight on how the brain performs some high-level information
processing tasks.

Keywords–Cognitive modeling; artificial neural networks; rela-
tional algebra; associative memory; simulated annealing

I. INTRODUCTION

Associative memories are special types of memories that
are capable of high-speed content-based mapping between
input queries and outputs. This type of storage differs from
classical index-addressable memories in that no explicit ad-
dress is needed to search for stored data. In order to efficiently
provide this associative functionality to memories, different
methods of content structuring are required. Artificial neural
networks (ANNs) are known to be such an adapted medium
to implementing associative memorization. Their design is
inspired from neo-cortical neural mechanisms in mammalian
brains, believed to be knowledge-associative biological neural
networks [1].

Many ANN models, differing in topology and function-
ality, were proposed to act as associative memories. Famous
examples include the Perceptron [2], self-organizing maps [3],
Hopfield networks [4] and Boltzmann machines [5]. A new
model was proposed recently by Gripon and Berrou in [6]
and generalized by Aliabadi et al. in [7]. This model relies
on sparse coded patterns stored as cliques and is based on
Hebian learning [8]. This sparse coding approach resembles
the ones introduced by willshaw [9] and Palm [10], with an
added explicit mapping between stored messages and their
representation in the network.

Typically, an associative memory is able to retrieve a
previously stored piece of information given partial content,
a sort of erasure-retrieval property. However, human ability to
handle more complex queries suggests that their representation
of information should be able to perform other operations.
Relational algebra gives a formal framework to introduce

complex operations on tuples of stored messages, including
union, intersection, difference, projection and selection. In this
paper, we aim at extending the model introduced in [7] to
process these operations.

Most of these operations are common as far as human cog-
nition is concerned. For example, selection aims at retrieving
the list of all messages that match a given probe (e.g., listing all
city names you know that start with the letter ‘b’). The union
operation can be used for merging date while intersection
and difference operation are useful for comparing contents of
several memories or memory regions. Our main motivation is
to show that existing neural-network-based architectures for as-
sociative memories are easily adapted in order to handle these
complex queries. There have been several works addressing the
relational problem and its biological plausibility such as [11]
and [12], which were more focused on inference and relational
learning.

The rest of this paper is organized as follows: in Section
II, we introduce the associative memory model extended in
this paper. Sections III, IV, V and VI describe how to perform
resp. union, intersection, difference and projection using these
models. In Section VII, we explain how to handle the more
complex selection operator. For this operator, we introduce
a novel algorithm using simmulated annealing. Simulation
results are provided in Section VIII when independently iden-
tically uniformly distributed messages are considered. Section
IX is a conclusion.

II. THE MEMORY MODEL AND RELATIONAL ALGEBRA

A. The associative memory model
First, we introduce the associative memory model proposed

by Gripon and Berrou in [6] and then extended in [7]. Let
us consider the finite alphabet A made of integers between
1 and `. we define a blank character ⊥ 6∈ A and A = A ∪
{⊥}. We are interested in storing words made of χ characters
over A. We call such a word a message m = m1m2 . . .mχ.
Blank characters represent the absence of a character at a given
position, such that depending on their number, messages can
be regarded as sparse vectors.

An associative memory is a device capable of storing
messages and then retrieving them given partial knowledge
about some of their nonblank characters. To implement this
device, the authors of [6] propose to use a symmetric, binary,
χ-partite neural network composed of n = χ · ` vertices
that we shall refer to as units. The authors of [6] explain



that units should be considered analogous to cortical micro-
columns believed to be the computational building-blocks of
the cerebral neo-cortex [13] [14]. This network can be split
into χ clusters, each containing the same number ` of units.

We denote by [n] the set of integers beween 1 and n, let
us then index each cluster of the network by an integer in [χ].
We also index units of a given cluster by integers in [`]. As a
result, each unit in the network is uniquely addressed giving a
couple (i, j) where i is the index of a cluster and j the index
of the unit within this cluster.

We define a function f that maps each message m into a
set of couples (i, j) as follows:

f : m 7→ {(i, j)
∣∣i ∈ [χ], j ∈ [`] and mi = j} (1)

where mi refers to the i-th character of m.
The network topology is entirely captured by an adjacency

matrix W of size χ · ` such that:

w(i,j)(i′,j′) =

{
1 if (i, j) and (i′, j′) are connected
0 otherwise

(2)

To store a message m = m1m2 . . .mχ in such a network,
all unit pairs in f(m) are connected pairwise according to 2
forming a clique in the underlying graph. It is worth noticing
that cliques corresponding to different messages could some-
times overlap and share connections. Given a set of messages
M, we denote by W (M) the adjacency matrix obtained after
storage of all messages in M.

A subset of f(m) is called a partial input associated with
the message m. The task of an associative memory is then:
given a partial input of m ∈M, retrieve m using W (M).

To retrieve a message from a partial input, an iterative
algorithm is performed. Retrieval algorithms and techniques
have been discussed in detail in [15].

It has been shown in [7] that performance of this struc-
ture as an associative memory mainly depends on a density
parameter defined as the ratio of the number of connections
in the network to the total number of possible connections.
Under the hypothesis that messages contain exactly c non-
blank characters uniformly distributed over A, density can be
approximated by the following equation:

d = 1−
(

1− c(c− 1)

χ(χ− 1)l2

)M
(3)

In this paper, we aim at extending the functionality of these
associative memories, which we shall call Clustered Clique
Networks (CCNs), to cover more general problems defined in
relational algebra.

B. Connections to relational algebra
In relational algebra, operators are defined on relations

(sets of tuples). A set of attributes is associated with each
relation. Then, each tuple is defined as a set of instances of
these attributes. A CCN in this respect can be viewed as a
relation. Each cluster represents an attribute and units within
each cluster are instances of that attribute (attribute values). A
clique connecting units is equivalent to a tuple. In the following
sections, we are going to propose algorithms and methods for
implementing some relational operators on relations defined in
the form of CCNs.

III. UNION

Defined in terms of the set theory, the union of a collection
of sets S1, S2, ..., Sn is a set S∪ containing all distinct
elements in this collection. It can be described as follows:

S∪ = S1 ∪ S2 ∪ ... ∪ Sk (4)
= {x|x ∈ S1 ∨ x ∈ S2 ∨ ... ∨ x ∈ Sk} (5)

where ∪ is the set union operator and ∨ is the Boolean OR
function.

In the context of memory storage, union is used to combine
the contents of several memories or memory partitions into a
single one while avoiding the redundancy resulting from the
same data-word being stored multiple times. An example of
this is merging the contents of two folders on a computer. This
task is straightforward when using a classical indexed memory
since messages do not overlap.

Suppose that we have two CCNs with the same dimensions
W (M1) and W (M2) that we wish to merge in a single
network W∪ of the same dimensions. We define this operation
as follows:

w∪(i,j)(i′,j′) =

 1 if
w(M1)(i,j)(i′,j′) = 1∨
w(M2)(i,j)(i′,j′) = 1

0 otherwise
(6)

Following intuitively from this definition is the fact that
upon applying the union operation, information is conserved
in the new network. That is, if a clique exists in either W (M1)
or W (M2), it would also exists in W∪. Hence we can
rewrite W∪ as W∪(M) with M =M1 ∪M2. The problem
here is that combining memories in this fashion can cause a
significant growth in the density of W∪(M), leading possibly
to dramatically low performance in terms of retrieval error
rates of stored messages. More formally, if d1 is the density
of W (M1) and d2 is the density of W (M2), then the density
of W∪(M) denoted d∪ is given by:

d∪ = 1− (1− d1)(1− d2) (7)

and thus d∪ is greater than both d1 and d2. This means
that while retrieval error rates may be optimal for W (M1)
and W (M2), the network resulting from their union might
suffer from some degeneration in performance because of the
increased density. Therefore, union should be done only if the
resulting network performance is acceptable. The relationship
between retrieval error rates and density are presented in details
in [7] and [15].

According to (6) all possible connections in the networks
should be tested during the union operation. So, given χ(χ−1)`2

2
possible connections [7] in each network, the average-case
complexity of such process is Θ(χ2`2).

The phenomenon of degenerated memorization efficiency
caused by the increased density is not uncommon in the brain.
For example, learning and recalling a new word in a foreign
language is typically not a difficult task. However, trying to
learn a dozen of new words at the same time might turn out
to be much more challenging comprising many memorization
errors and confusions and even mixing syllables of different
words. New words can be better learned by training and
experience, which is partially due to the association of these
words with other memories. We suggest that this process, in



terms of CCNs is equivalent to adding more clusters to the
network such that more units can be added to existing cliques,
which lowers its density and increases performance.

IV. INTERSECTION

The intersection among several sets S1, S2, ..., Sk is a set
S∩ containing only those elements that S1, S2, ..., Sk have in
common:

S∩ = S1 ∩ S2 ∩ ... ∩ Sk (8)
= {x|x ∈ S1 ∧ x ∈ S2 ∧ ... ∧ x ∈ Sk} (9)

where ∩ is the set intersection operator and ∧ is the Boolean
AND function.

(a) Network W (M1) (b) Network W (M2)

(c) Network W∩ (d) Network W \

Figure 1. Intersection and Difference between two CCNs. W∩ shown in 1c
is the network resulting from the intersection of W (M1) and W (M2).

W \ shown in 1d is the difference of W (M1) from W (M2).

When applied to relations, intersection serves in extracting
common tuples between two or more tables having the same
number and types of attributes. This is done easily when
such a database is stored in an indexed memory. One way
to implement intersection between two CCNs is by keeping
only those connections that happen to exist in the exact same
place in both networks. So, given two CCNs W (M1) and
W (M2) of the same type and dimensions, we can define their
intersection W∩ as follows:

w∩(i,j)(i′,j′) =

 1 if
w(M1)(i,j)(i′,j′) = 1∧
w(M2)(i,j)(i′,j′) = 1

0 otherwise
(10)

The average-case complexity of this operation is given by
Θ(χ2`2) for the same reason as in the union. The density d∩
of W∩ as a function of d1 and d2 (the densities of W (M1)
and W (M2) respectively) is given by:

d∩ = d1.d2 (11)

We notice from (11) that d∩ is always lower than d1 and d2

given that densities have their values in the interval [0,1]. Thus,
we guarantee that no density explosion occurs as in union.

Some problems might still occur when performing this
operation, as depicted in Figure 1 where four simple identical
networks are considered each with a total number of units
n = 12 grouped in χ = 3 clusters with a message size
of c = χ. Network W (M1) shown in Figure 1a contains
two cliques afh and beg and network W (M2) in Figure 1b
also contains two cliques afr and beg. We notice that only
the clique beg is common between these two networks. By
applying the intersection operation as in (10) we obtain W∩

shown in Figure 1c, which contains the common clique beg as
expected but also contains the edge af , which is an undesirable
result, because af does not represent a complete message
(tuple). We shall call af a residual edge. As a consequence,
W∩ could possibly contain more connections than a an ideal
intersection network W∩(M) with M = M1 ∩ M2. This
increase in density due to residual edges is expected to
deteriorate performance [7].

V. DIFFERENCE

The difference of two sets S1 and S2, which can also be
called that relative complement of S2 with respect to S1, is a
set S\ that contains only those elements of S1 that are not in
S2:

S\ = S1 \ S2 = {x|x ∈ S1 and x /∈ S2} (12)

where \ is the set difference operator which is not commutative
so that S1 \ S2 6= S2 \ S1.

So, the difference between two database tables is the set
of tuples in the first one that do not exist in the other, which
is also an easy-to-implement operation in classical memory
systems. A simple method of implementing difference between
two CNNs W (M1) and W (M2) is by instantiating a new
memory W \ containing only connections in W (M1) that do
not exist in W (M2). That is:

w
\
(i,j)(i′,j′) =

 1 if
w(M1)(i,j)(i′,j′) = 1∧
w(M2)(i,j)(i′,j′) = 0

0 otherwise
(13)

The average-case complexity of this operation is also given
by Θ(χ2`2). Intuitively, the density d\ of the new network W \
is always less than or equal to the density d1 of W (M1). So,
if d1 is well controlled, we would have no problems with the
performance of W \. The density d\ is given by the following
relationship:

d\ = d1.(1− d2) (14)

As in the case of intersection, the difference operation
defined in (13) processes data down on the level of individual
connections not on the level of cliques. This causes the
problem depicted in Figure 1d. In this figure, W \ is the
network resulting from applying W (M1) \W (M2). Ideally,
we wish that W \ = W \(M) with M = M1 \ M2 ,i.e., a
network that contains only the clique afh. However, according
to (13), we only get two edges ah and fh because af
is a common edge between W (M1) and W (M2) and thus
eliminated by the difference operation. This represents a loss of
information since the network W \ no more stores the message



corresponding to the clique afh. We shall call this undesirable
effect erosion. Actually, no method is yet available for getting
an ideal intersection or an ideal difference between CCNs. We
consider the methods proposed in this paper as approximations
to the real operations.

VI. PROJECTION

In relational algebra, projection is defined as a unary
operator Π applied to a tuple R in order to produce a new
tuple RΠ consisting of k attributes {r1, r2, ..., rk}, which is a
subset of the attributes originally contained in R. This can be
written as follows:

RΠ = Πr1,r2,...,rk(R) (15)

A network WΠ is said to be a projection of a network W
on a given set of attributes, if it contains only a subset of the
attributes of W ,i.e., WΠ contains only a subset of the clusters
of W .

Clearly, this operation is very easy to implement in CNNs
with a constant time complexity. Moreover, the density dΠ of
the resulting network is equal to the density of the original net-
work given that connections are uniformly distributed within
the latter network:

dΠ = d (16)

VII. SELECTION

A. Problem definition
In relational algebra, selection or restriction is a unary

operator applied to a relation R1 and returns another rela-
tion R2. The latter relation contains all tubles in R1 whose
attribute values satisfy a propositional formula ϕ. This can be
transcribed as follows:

R2 = σϕ(R1) (17)

We argue in this paper that a mechanism similar to selec-
tion might be used by the brain for thinking and memorization.
A typical such request would be, for instance, to name all
scientific authors one knows whose names start with an ‘a’.
We aim at using the model proposed in [7] as a substrate for
this selection process.

The selection algorithm we shall present here runs con-
tinuously, giving multiple (possibly redundant) answers one
after another. This appears to us being behaviorally similar to
what humans could produce facing a similar query. The process
that makes us avoid redundancy is called short-term/working
memory. Once its buffer is full or overcrowded, repetitions of
the same word/name can occur.

The requirements that our selection algorithm is meant to
meet are the following:

1) Determine the sub-graph G of potentially interesting
units.

2) In sub-graph G, find all cliques of size c.

Finding a maximum clique in a graph (or equivalently)
a minimum cover is a know NP-complete problem. Many
algorithms and heuristics were proposed to give approximate
solutions to this problem in medium-sized graphs. Examples
of these algorithms are [16] and [17] that make use of the
simulated annealing principle introduced in [18] and [19],

which is a probabilistic meta-heuristic method for locating the
global optimum of a given function. Another known method
widely used in applications such as computational chemistry
is the BronKerbosch algorithm [20], which can efficiently find
maximal cliques in an undirected graph.

We propose to use an adaptation of the simulated annealing
algorithm proposed by Geng et al. in [16]. We also use their
same objective function to evaluate our solutions.

B. The proposed selection algorithm
Suppose we have a CCN denoted by W and a partial input

message m containing q 6 c known nonblank attributes. The
selection operator consists in finding all stored cliques made of
a set of units containing f(m). In order to perform this search
efficiently, it is sufficient to restrict the search to the subgraph
made of only the units connected to units in f(m). We shall
call this subgraph Gm. We denote its adjacency matrix by Am.

For simplicity of representation, we refer to each unit of
Gm by an integer index k or s where k, s ∈ {0, 1, ..., n′− 1},
n′ being the number of units in Gm. Our objective now is to
find all the cliques in Gm that have a size (number of units)
of c′ = c− q.

We consider the following optimization problem: We define
ρ as a permutation of units in Gm (ρ is an array of size n′
containing all unit indexes of Gm as its elements). For a given
ordering of elements in ρ, we consider the first c′ elements of
ρ as indexes of units in Gm acting as a potential solution (a
clique). So, by permuting ρ’s contents we can get a different
candidate solution. The objective function used to evaluate
these solutions is given by:

F (Gm, ρ) =

c′−2∑
k=0

c′−1∑
s=k+1

(1− aρ[k],ρ[s]) (18)

where aρ[k],ρ[s] is an element of the adjacency matrix W . As
F (G, ρ) = 0 when a clique is found, the goal is to find
permutations that minimize this function.

The algorithm is applied to Gm as follows:

Step 1: Parameter initialization.
Initial temperature T1, end temperature T2, current
temperature t = T1 and cooling coefficient α.
Set the initial permutation as ρ[k] = k, k ∈
{0, 1, ..., n′ − 1}. Random setting of permutation
is also possible.

Step 2: Compute F (Gm, ρ) and terminate if it evaluates
to zero.

Step 3: Randomly choose two integer indexes u and w
of ρ such that u ∈ {0, 1, ..., c′ − 1} and w ∈
{c′, c′ + 1, ..., n′ − 1}.
Condition 1:
If ρ[w] has more or the same number of connec-
tions with {ρ[0], ρ[1], ..., ρ[c′ − 1]} than ρ[u] has,
then ρ[w] and ρ[u] are swapped and thus a new
permutation ρ′ is obtained.
Condition 2:
If ρ[u] has more connections with
{ρ[0], ρ[1], ..., ρ[c′ − 1]} than ρ[w] has, then
the index w is rejected and we go back to step 3.
but if w has already been rejected for more than
8n′ times consecutively as defined in [16], then



ρ[w] and ρ[u] are swapped and a new permutation
ρ′ is obtained.

Step 4: Compute F (Gm, ρ
′) and terminate if it evaluates

to zero.
Step 5: Compute ∆F = F (Gm, ρ

′)− F (Gm, ρ).
If ∆F 6 0, then accept the new permutation
ρ′ by setting ρ = ρ′. Otherwise accept ρ′ with
probability p = e

−∆F
t .

Step 6: Update current temperature as t = αt. If t < T2

terminate the algorithm; otherwise, go back to step
3.

A single run of this selection algorithm is meant to find one
clique ,i.e., one answer. So, in order to output more answers
this algorithm should be repeated many times.

VIII. RESULTS

A. Selection
In order to test the proposed selection algorithm, we used

a CCN with n = 3240 units grouped in χ = 15 clusters.
15000 randomly generated messages of c = 10 characters were
stored giving a network density d of about 0.13. We used the
same initial and end temperatures as in [16] for the simulated
annealing algorithm; 100 and 0.001, respectively. We set the
cooling coefficient to 0.996. To construct a selection query
message, one already stored message is randomly selected of
which 9 characters were erased (set to ⊥) giving an input query
message with only one known non-blank character.

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

50

Number of executions of the selection algorithm

N
u
m

b
e
r 

o
f 
u
n
iq

u
e
 o

u
tp

u
ts

 f
o
u
n
d

 

 

Accumulated number of unique outputs found

Target number of unique outputs

Figure 2. Average accumulated number of unique outputs as a function of
the number of iterations in a network of n = 3240, χ = 15, c = 10, 15000
stored messages. The input message used has only one non-blank character.

As described in Section VII, the algorithm we propose
might give redundant outputs when executed several times.
Figure 2 shows how fast unique outputs were found as a
function of the number of executions of the selection algo-
rithm. Curves in the figure are averaged over 100 identical
experiments.

An interesting property of the resulting curve is that most
unique answers are obtained during earlier executions of the
algorithm. So, referring back to Figure 2, about 45 unique an-
swers out of 47 possible ones are found by the 250th execution,

40 answers by the 125th execution and about 30 answers by
the 60th. In other words, about 89% of answers were obtained
when only 50% of total executions were achieved and 67% of
answers after 24% of total executions. This is a natural result
for a selection by replacement experiment where all answers
have an equal chance of being chosen at each execution.

We suggest that such result bears some qualitative resem-
blance to the way human beings memorize lists of mental
objects where it is common that the last few items turn out to
be more difficult and time consuming to recall because of the
distraction caused by redundant answers coming to mind and
other phenomena.

B. Intersection and difference
A comparison among average complexities of some op-

erators when applied to CCNs and two other known data
structures (ordered lists and binary search trees) storing sparse
messages of the form m = m1m2 . . .mχ is provided in Table
I. An interesting observation is the fact that the order of
complexity of operators using a CCN is close to that of a binary
search tree given that setting ` � χ is preferable in practice
for a higher network capacity [7]. However, the complexity
of union, intersection and difference of ordered lists is lower
by a factor of χ than that of CCNs while the complexity of
insertion is `2/χ higher.

TABLE I. COMPLEXITY OF SOME RELATIONAL OPERATORS IN
SEVERAL TYPES OF DATA STRUCTURES.

CCN ordered list binary search tree

Insertion(Storing) Θ(χ2) Θ(χ`2) Θ(χ log(`))

Union Θ(χ2`2) Θ(χ`2) Θ(χ`2 log(`))

Intersection Θ(χ2`2) Θ(χ`2) Θ(χ`2 log(`))

Difference Θ(χ2`2) Θ(χ`2) Θ(χ`2 log(`))

IX. CONCLUSION AND FUTURE WORK

In this paper, we have introduced some methods for ap-
plying certain algebraic-relational operators on a new class of
neural-network-based associative memories we call CCNs. We
argued that the process of recalling a list of items (which can
also be mapped to more general memorization tasks) in the
brain can be behaviorally assimilated to the selection operation
known to relational algebra. We proposed an algorithm for
implementing this process using the principle of simulated
annealing. Then, we showed that the results we got have some
resemblance to what might be obtained by a human subject in
terms of redundancy.

We have also demonstrated that CCNs can be used as
classic data-structures by approximating operators such as
union, intersection, difference and projection. We saw that
the implementation of union and its related density explosion
problem raised the question as to how the brain organizes
information with high correlation or high density. Two possible
mechanisms the brain might be using are forgetting rarely
used “data” (by the decay of synaptic weights) and tagging
pieces of correlated data with different contextual information.
Similar mechanisms might be integrated in CCNs by allowing
connections to have real values with a decay parameter and by
providing contextual tagging in the form of CCNs existing on



a separated level of a hierarchy of networks. Another possible
solution is to design networks with dynamic sizes to prevent
exceeding a maximum allowed density.

ACKNOWLEDGMENT

This work was supported by the European Research Coun-
cil under the European Union’s Seventh Framework Program
(FP7/2007-2013) / ERC grant agreement n 290901.

REFERENCES
[1] J. R. Anderson and G. H. Bower, Human associative memory. Psy-

chology press, 2013.
[2] F. Rosenblatt, “The perceptron: a probabilistic model for information

storage and organization in the brain.” Psychological review, vol. 65,
no. 6, 1958, p. 386.

[3] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological cybernetics, vol. 43, no. 1, 1982, pp. 59–69.

[4] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the national academy
of sciences, vol. 79, no. 8, 1982, pp. 2554–2558.

[5] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm
for boltzmann machines,” Cognitive science, vol. 9, no. 1, 1985, pp.
147–169.

[6] V. Gripon and C. Berrou, “Sparse neural networks with large learning
diversity,” Neural Networks, IEEE Transactions on, vol. 22, no. 7, 2011,
pp. 1087–1096.

[7] B. K. Aliabadi, C. Berrou, V. Gripon, and J. Xiaoran, “Storing sparse
messages in networks of neural cliques.” IEEE transactions on neural
networks and learning systems, vol. 25, no. 5, 2014, pp. 980–989.

[8] D. O. Hebb, The Organization of Behavior. John Wiley, 1949.
[9] D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins, “Non-

holographic associative memory.” Nature, 1969.
[10] G. Palm, “On associative memory,” Biological Cybernetics, vol. 36,

no. 1, 1980, pp. 19–31.
[11] H. Blockeel and W. Uwents, “Using neural networks for relational

learning,” ICML-2004 Workshop on Statistical Relational Learning and
its Connection to Other Fields, 2004, pp. 23–28.

[12] J. E. Hummel and K. J. Holyoak, “A symbolic-connectionist theory of
relational inference and generalization.” Psychological review, vol. 110,
no. 2, 2003, p. 220.

[13] E. G. Jones, “Microcolumns in the cerebral cortex,” Proceedings of the
National Academy of Sciences, vol. 97, no. 10, 2000, pp. 5019–5021.

[14] V. B. Mountcastle, “The columnar organization of the neocortex.” Brain,
vol. 120, no. 4, 1997, pp. 701–722.

[15] A. Aboudib, V. Gripon, and X. Jiang, “A study of retrieval algorithms of
sparse messages in networks of neural cliques,” COGNITIVE 2014, The
Sixth International Conference on Advanced Cognitive Technologies
and Applications, 2014, pp. 140–146.

[16] X. Geng, J. Xu, J. Xiao, and L. Pan, “A simple simulated annealing
algorithm for the maximum clique problem,” Information Sciences, vol.
177, no. 22, 2007, pp. 5064–5071.

[17] X. Xu and J. Ma, “An efficient simulated annealing algorithm for the
minimum vertex cover problem,” Neurocomputing, vol. 69, no. 7, 2006,
pp. 913–916.

[18] S. Brooks and B. Morgan, “Optimization using simulated annealing,”
The Statistician, 1995, pp. 241–257.

[19] V. Černỳ, “Thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm,” Journal of optimization theory
and applications, vol. 45, no. 1, 1985, pp. 41–51.

[20] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an
undirected graph,” Communications of the ACM, vol. 16, no. 9, 1973,
pp. 575–577.


