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Abstract

In this article, we study the effects of a white gaussian additive thermal noise on a subcritical

pitchfork bifurcation. We consider a quasi-1D system of particles that are transversally confined,

with short range (non Coulombic) interactions and periodic boundary conditions in the longitudinal

direction. In such systems, there is a structural transition from a linear order to a staggered raw,

called the zigzag transition. There is a finite range of transverse confinement stiffnesses for which

the stable configuration at zero temperature is a localized zigzag pattern surrounded by aligned

particles, which evidences the subcriticality of the bifurcation. We show that these configurations

remains stable for a wide temperature range. At zero temperature, the transition between a

straight line and such localized zigzag patterns is hysteretic. We have studied the influence of

the thermal noise on the hysteresis loop. Its description is more difficult than at T = 0 K since

thermally activated jumps between the two configurations always occur and the system can never

stay forever in a unique metastable state. Two different regimes have to be considered according

to the temperature value with respect to a critical temperature Tc(τobs) that depends on the

observation time τobs. An hysteresis loop is still observed at low temperature, with a width that

decreases as the temperature increases toward Tc(τobs). In contrast for T > Tc(τobs) the memory of

the initial condition is lost by stochastic jumps between the configurations. The study of the mean

residence times in each configurations gives a unique opportunity to precisely determine the barrier

height that separates the two configurations, without knowing the complete energy landscape of

this many-body system. We also show how to reconstruct the hysteresis loop which would exist at

T = 0 K from high temperature simulations.

PACS :

05. Statistical physics, thermodynamics, and nonlinear dynamical systems

63.70.+h Statistical mechanics of lattice vibrations and displacive phase transitions

05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion
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I. INTRODUCTION

There is much recent interest in physical systems constituted by interacting particles con-

fined in narrow channels, in quasi-one-dimensional geometry. Their typical size extends on

several orders of magnitude, from laser-cooled ions confined in Paul traps [1–14] and polar

molecules [15] to optically confined paramagnetic colloidal particles [16], to plasma dusts in

electrostatic traps [17–21], and to electrostatically interacting macroscopic beads [14, 22–24].

The transverse confining potential is well described as harmonic (see [6] for an anharmonic

potential), while the repulsive interactions may be either described by the Coulomb poten-

tial [1–13], a dipolar interaction [15, 16], a Yukawa potential U0 exp(−r/λ0)/r for screened

electrostatic interaction [17–21] or interaction potential U0K0(r/λ0) [14, 22–24], where K0(.)

is the modified Bessel function of order 0, and where U0 and λ0 are respectively the intensity

and the range of interaction.

The behavior of these systems results from the interplay between the repulsive inter

particle interactions and the potential that confines the particles in the transverse direction of

the trap, which may be characterized by its stiffness β. When β is large enough, all particles

are aligned along the trap axis at equilibrium. As β decreases below a critical stiffness βZZ ,

the equilibrium pattern undergoes a structural phase transition. The characteristics of the

transition depend on the range of the inter particles interactions, on the boundary conditions

in the longitudinal direction and on the system size.

For an infinite interaction range (λ0 → ∞), typically for Coulombic interactions, a system

always evolves from a straight line toward one of two regular symmetric staggered rows. This

transition is therefore called the zigzag transition. Its relevant order parameter is the height

h defined as the distance between any particle and the longitudinal axis. A suitable control

parameter is the dimensionless transverse stiffness ǫ = 1 − β/βZZ (see also [25]). The

bifurcation diagram h(ǫ) corresponds to a supercritical pitchfork bifurcation : The zigzag

phase spontaneously breaks the mirror symmetry, the zigzag phase is stable for ǫ > 0, and

its amplitude h(ǫ) is proportional to ǫ1/2 [1–4, 13, 14] [see Fig. 1-(a)].

For longitudinally confined systems and whatever the inter particle interaction range, the

same kind of transition can be observed. Because of the longitudinal boundary conditions,

the two symmetric zigzag configurations are now inhomogeneous, with the highest distance

hm always localized at the center of the finite cell, and a zigzag amplitude that symmetrically
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decreases toward both edges of the channel. In this case, the relevant order parameter is the

maximum zigzag amplitude hm. Its evolution with the dimensionless transverse stiffness ǫ

evidences the supercritical nature of the bifurcation [3, 4, 7, 20, 22, 26].
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FIG. 1: (Color online) (a) Supercritical pitchfork bifurcation diagram at T = 0 K. (b) Subcrit-

ical pitchfork bifurcation diagram at T = 0 K. The control parameter ǫ = 1 − β/βZZ is the

dimensionless transverse confinement stiffness, which increases from left to right. For the zigzag

transition the order parameter hm is the maximum height of the equilibrium configuration. The

red (dark grey) continuous and dashed lines correspond respectively to stable and unstable con-

figurations. The cyan (light grey) line displays an hysteresis loop.

In a finite periodic system with N particles contained in a cell of length L, when the inter

particles interaction is of finite range (λ0 < ∞), the zigzag transition is strongly modified.

This is relevant for experiments in annular cells [19, 27] and for simulations [14, 24]. In

these systems, when λ0/d ≫ 1 where d ≡ L/N is the mean inter particles distance, the

zigzag transition is still a supercritical pitchfork bifurcation (we assume N even to allow

for an homogeneous zigzag phase in the cell). For smaller values of λ0/d, the description

of the zigzag transition is more complex. As the confinement decreases, the system first

evolves from a linear configuration to an homogeneous zigzag. This happens for β = βZZ

(ǫ = 0). Our previous linear stability analysis allows to identify the domain of stability of

this homogeneous zigzag configuration. This domain extends from ǫ = 0 up to a positive

ǫ > 0 that depends on the particles number N at fixed λ0/d. It is a strongly decreasing

function of N and vanishes in the thermodynamic limit (N → ∞ at fixed d) [14, 24]. Then

for smaller confinement, an inhomogeneous zigzag pattern is observed in which particles in

a line coexist with particles organized in a distorted zigzag (see Fig. 2). We have called this

pattern a bubble [19, 24]. Eventually, at very small confinement (ǫ . 1) an homogeneous

zigzag is restored.
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Since for inhomogeneous patterns the maximum distance hm can be taken as an order

parameter, we have performed numerical simulations to determine the variations of hm(ǫ)

for increasing and decreasing ǫ. In Ref. [24], we have provided evidences of an hysteretic

behavior : The transition from a line toward a bubble, under decreasing confinement, takes

place at a smaller confinement than the transition from a bubble toward a line, under

increasing confinement. These observations of inhomogeneous equilibrium patterns and of

an hysteresis loop all indicate a transition described by a subcritical pitchfork bifurcation [see

Fig. 1 (b)] for finite range interactions and periodic boundary conditions in the longitudinal

direction.

From the theoretical point of view, by considering the vibrational modes of homogeneous

patterns in the case of an infinite system of particles, we have shown that ω(q = π/d),

the frequency associated to the alternate transverse displacement of neighboring particles,

vanishes at the confinement threshold. This means that at the transition the displacements

associated to this soft-mode are quenched, resulting in the homogeneous zigzag pattern [14,

22]. For an infinite system, this soft mode coexists with the Goldstone mode associated to the

translational invariance of the infinite line. Extending the analysis to small nonlinearities, in

the thermodynamic limit and near the bifurcation threshold [24], we have exhibited the key

role of the nonlinear coupling between the soft mode at the bifurcation and the Goldstone

mode linked to the translational invariance. We have obtained the normal form of the

bifurcation, and the conditions required to observe a supercritical or a subcritical pitchfork

bifurcation.

In periodic systems there is also a Goldstone mode linked to the rotational invariance

of the periodic cell. We have established that for the parameters used in our experiments

and in our simulations the bifurcation is always subcritical. A quantitative description of

the nonlinear localized zigzag patterns (bubbles) observed in the simulations is deduced

from the explicit normal form, in excellent agreement with the simulations (see Fig. 2, the

Appendix B and Figs. (10)–(12) of Ref. [24]).

The discussion so far concerns a structural transition observed at temperature T = 0 K.

Beyond this first approach an interesting question is to study the validity and the limits of

this description for systems submitted to a thermal noise. In this paper the focus is set on

this structural transition at finite temperature. The bubble diffusion induced by thermal
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activation will be presented in a forthcoming paper [28].

In the literature there are some theoretical studies devoted to the thermal effects on

supercritical bifurcations [29, 30]. Their results are in good agreement with our numerical

study of the thermal noise effects on the zigzag transition for longitudinally confined sys-

tems [23]. More recently, this approach has been extended to subcritical bifurcations. In

particular, it was shown that temperature affects the hysteresis loop [31]. However the ex-

pressions developed in these study are essentially formal, and poorly confronted with actual

data.

In this article, we study the effects of a white gaussian additive thermal noise on a sub-

critical pitchfork bifurcation. The temperature range that we consider is selected according

to two limiting constraints. At too low temperature no effects can be expected since the

particles only vibrate around their equilibrium position associated to the configurations ob-

tained at T = 0 K. On the other hand, at too large temperature, the amplitude of transverse

fluctuations are of the same order as the bubble height so that the instantaneous patterns

are completely random.

In section II we first discuss the stability of the bubbles with increasing thermal noise,

and the relevance of our theoretical description of the bubbles to systems at finite (nonzero)

temperature. Then we consider the hysteresis loop between a straight line and a bub-

ble observed at very low temperature [24]. At T = 0 K the system is in one of the two

metastable configurations according to its history : The initial configuration and the di-

rection of change of the control parameter ǫ. It’s not the case anymore at T 6= 0. Indeed

inside the hysteresis loop the temperature always induces thermal jumps between the two

configurations. According to the Kramers theory [32], these jumps are characterized by two

transition times τL−B(ǫ, T ) (from line to bubble) and τB−L(ǫ, T ) (from bubble to line). The

existence of these times suggests the important role played on the bifurcation description

by the observation time τobs during which ǫ is constant. As long as τobs is smaller than the

characteristic transition times, the jumps between the configurations are not observed. In

contrast the jumps have to be taken into account once one of these Kramers’ times is smaller

than τobs. By comparing the three characteristic times τobs, τL−B(ǫ, T ) and τB−L(ǫ, T ), we

may define two distinct regimes : The hysteretic regime for which an hysteresis loop may still

be defined, and the intermittent regime for which the thermally activated jumps blur the
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hysteresis loop. Using the probability density function (PDF) of the instantaneous bubble

amplitude hm(ǫ, t), we are able to obtain an efficient description of the bifurcation at T 6= 0.

In particular, this allows a detailed study of the relation between τobs and the hysteretic

and intermittent regimes. The evolution of the hysteresis loop with temperature and the

intermittency effects will be exhibited.

In Sec. III we focus on a temperature range that is low enough for the hysteresis thresholds

to be defined. We show that the hysteresis loop width decreases as the temperature increases.

A threshold temperature Tc(τobs) beyond which no hysteresis can be observed is determined

as a function of τobs. The rough features of this function are recovered with the help of

a qualitative analysis. This critical temperature is linked to a particular value ǫM of the

confinement, which is defined as a Maxwell point for the relevant energy landscape and does

not depend on τobs. A numerical value of ǫM is provided.

In Sect. IV, we focus on the intermittent regime observed at higher temperature. We show

that in this regime a mean residence time for each of the configurations may be defined and

measured on the simulations data. The variations of this residence times with temperature

can be used to determine the main features of the system energy landscape. We propose

although a procedure to reconstruct the hysteresis diagram at T = 0 K from measurements

performed at T 6= 0. Lastly, we obtain two other numerical values for the confinement ǫM ,

with two independent methods, in very good quantitative agreement with the previous one.

The simulations results presented here have been obtained by molecular dynamics with

small dissipation in order to emphasize the noise effects on the particle dynamics. The details

about simulations are given in Appendix A. For the sake of completeness the theoretical

description of the bubbles is summarized in Appendix B.

II. EVOLUTION OF BUBBLE PATTERNS WITH THERMAL NOISE

A. Bubbles at finite temperature

At T = 0 K, for each confinement ǫ corresponding to a bubble state, the particles are

organized according to a unique stationary equilibrium pattern. Their shape is accurately

deduced from the normal form (B1) given in Appendix B. The theoretical bubbles shape is

given in Eqn. (B3) and the determination of an effective bifurcation parameter, mandatory
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for finite systems with periodic longitudinal boundary conditions, is made from Eqns. (B5)

and (B6), thus without any fitting parameter (see also Ref. [24]). The first question that

arises is about the possible persistence of these patterns at higher temperatures and corre-

spondingly the relevance of the theoretical analysis to their description.

In the Figs. 2 (a)–(c), we show instantaneous pictures of the periodic cell for a constant

transverse confinement and increasing temperatures, which are at least two orders of mag-

nitude higher than in our previous study [24]. In each case a bubble is evidenced, and

whatever the temperature its shape compares very accurately with the unique theoretical

shape deduced from the known value of ǫ. This proves that at these temperatures these

coherent patterns are not destroyed by the thermal fluctuations. To emphasize this point,

we plot in Figs 2 (d)–(f) the superposition of all the positions reached by particles during a

typical run. At T = 109 K and T = 1010 K [Figs 2 (d)–(e)], the bubble shape is basically

preserved during the whole simulation run. The bubbles are actually stable equilibrium

patterns, the thermal fluctuations only inducing random motions of the particles around

their equilibrium positions, with an amplitude that increases with temperature. At higher

temperature [T = 1011 K, see Figs 2 (f)] the bubble pattern remains recognizable even if it

is almost completely blurred because of the fluctuations.

B. Hysteretic and intermittent regimes

The systems presenting a subcritical pitchfork bifurcation exhibit a finite range of ǫ for

which the configuration may be a line or a bubble (see Appendix B for a brief summary).

These metastable configurations are associated to the energy minima EL(ǫ) for the line and

EB(ǫ) for the bubble. A thermal fluctuation may activate a jump from one configuration

to the other at the expense of a maximum of energy EM(ǫ). We insist on the fact that this

maximum is not provided by our continuous model, since the knowledge of the full energy

landscape require the complete solution of the discrete N -body problem. We discuss this

point in details in Sec. IV.

Let us first consider the system at T = 0 K, and let us look at the configuration evolution

when ǫ increases for a system that is initially in the linear configuration. The system

remains in this configuration as long as EL(ǫ) is a local minimum. When ǫ reaches the

value ǫup(T = 0), the minimum EL(ǫup) and the maximum EM (ǫup) disappear, and the
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FIG. 2: (Color online) Particles position (xi, yi) (mm) of 128 particles in the bubble configura-

tion (ǫ = 0.02 and d = 1.875 mm), for three temperatures T = 109, 1010 and 1011 K from left to

right. In the top plots the green dots correspond to an instantaneous particles position and the

dashed red line is the theoretical bubble shape. In the bottom plots the blue dots (dark gray)

are the mean values of the positions, the light gray dots corresponds to superposition of all in-

stantaneous positions recorded during the simulation run and the solid red line is the theoretical

bubble shape.

system jumps to a bubble configuration of smaller energy EB(ǫup). In the same manner, by

considering a system initially in the bubble configuration and a decreasing ǫ we can define

ǫdown(T = 0). These two thresholds characterize the width ǫup(T = 0)− ǫdown(T = 0) of the

hysteresis loop at T = 0 K.

At T 6= 0 K, these jumps are thermally activated. The jump from a linear to a bubble con-

figuration is characterized by a Kramers’ activation time τL−B(ǫ, T ) ∝ exp(∆UL−B(ǫ)/kBT )

where ∆UL−B(ǫ) = EM(ǫ)−EL(ǫ), whereas the jump from a bubble to a linear configuration

is characterized by τB−L(ǫ, T ) ∝ exp(∆UB−L(ǫ)/kBT ) where ∆UB−L(ǫ) = EM (ǫ) − EB(ǫ).

Thus the probability of a jump from one configuration to the other one is a function of both

ǫ and T .

Because of the existence of these Kramers’ times, the hysteresis description depends on

the observation time τobs. For an infinite τobs, whatever ǫ, the Kramers’ times are necessarily

smaller than τobs and both configurations are observed, independently of the initial state.

So we cannot define the transition thresholds as for T = 0 K and the hysteresis loop is

meaningless. However, in practice any actual numerical or experimental observation implies
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a finite τobs. The hysteresis thresholds have to be redefined and depend on this observation

time. A threshold can be defined if a jump from an initial configuration to the other

one occurs during the observation time, while the reverse jump does not occur because

the corresponding Kramers’ time is too long with respect to τobs. In this case, speaking

of an hysteresis loop that depends on the temperature makes sense. In contrast, when

the characteristic times for both jumps are smaller than τobs, the two configurations are

observed during τobs, whatever the initial configuration of the system. The memory of the

initial configuration is not conserved, so that no hysteresis loop can be defined. We will

speak in this case of an intermittent regime.

C. Definition of an order parameter in presence of thermal noise

In order to describe the transition it is mandatory to define the order parameter hm(ǫ)

for each confinement ǫ, that characterizes accurately and unambiguously the configurations

explored by the system. The definition of this parameter at finite temperature is not obvious

and requires an adapted procedure.

The simulations only provide instantaneous configurations. Such configurations are plot-

ted for three different temperatures in Fig. 2 (a)–(c). They are very sensitive to the thermal

fluctuations, however they are all in close agreement with the same theoretical description,

independently of the temperature, as shown in Sec. IIA. Thus, the main question is how to

determine an amplitude hm(ǫ) which could well characterize this configuration. We could

be tempted to define hm(ǫ) as the maximum distance between the particles and the longi-

tudinal axis, measured from time averaged configurations. This procedure makes sense at

low temperature, but it introduces important errors at high temperature. Indeed, at small

temperature, we see that the averaged configurations [see Fig. 2 (d) and (e)] are very close

to the instantaneous ones [see Fig. 2 (a) and (b)]. In contrast the averaged configuration at

the highest temperature, shown in Fig. 2 (f), has nothing in common with the instantaneous

configuration of Fig. 2 (c). Thus the strong discrepancy between the averaged configuration

of Fig. 2 (f) and those of Fig. 2 (d) and (e) is a spurious effect which prevents the definition

of hm(ǫ) from the averaged configuration.

We have therefore developed a consistent process to determine the amplitude hm(ǫ) at

every temperature. In order to take advantage of the improvement in the statistics implied
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by the duration of the whole simulation, while avoiding averaging artifacts, we define hm(ǫ, t)

as the maximum distance between the particles and the cell axis at time t, and we consider

its probability density function (PDF). The PDFs are shown in Fig. 3 for two temperatures

and increasing values of ǫ, near the bifurcation threshold.

The position of the maximum of this distribution may be used as an order parameter.

Let us first consider a strong confinement ǫ for which the particles are along a straight line

at zero temperature, so that hm(ǫ, T = 0, t) = 0 and the PDF is the Dirac δ–function δ(h).

At finite temperature, the maximum height hm(ǫ, T > 0, t) is strictly positive at each time

and increases with temperature [see Fig. 3 (a)]. Thus the corresponding PDF is slightly

shifted above zero and is broadened around the most probable value hm(ǫ, T > 0). Note

that from now on we emphasize the dependence of hm upon the temperature.

Then, for a confinement such that the stable pattern at T = 0 is a bubble, the PDF is

a Dirac δ–function centered on a strictly positive value that is the bubble amplitude. At

finite temperature, the PDF evidences a small shift toward higher values and a broadening,

as was the case for the straight line [see Fig. 3 (c)]. The configuration is nevertheless easy to

distinguish from a straight line, because despite the thermal fluctuations the most probable

value hm(ǫ, T > 0) is much higher than in the previous case.

Lastly, let us consider a confinement ǫ in the hysteretic domain at T = 0 K. At zero

temperature, the distribution of hm(ǫ, T = 0, t) corresponds to Dirac δ–functions centered

around hm = 0 if the initial configuration was a straight line or around hm > 0 if the initial

configuration was a bubble configuration. The PDF of hm(ǫ, T, t) at finite temperature is

shown in Fig. 3 (b). At low temperature (T = 1010 K, cyan–light grey symbols) for which

no jump between the two allowed configurations may be expected, the system simply keeps

a memory of its initial configuration and explores the configuration space around only one

stable attractor. Depending upon the initial condition, the PDF is a finite width distribution

centered around a small value of hm for the fluctuating straight line [Fig. 3 (b), cyan circles]

or around a much larger value of hm for the fluctuating bubble [Fig. 3 (b), cyan crosses].

At higher temperature, (T = 1011 K, red–dark gray symbols) there are thermally activated

jumps between the line and the bubble. This is the intermittent regime, for which the

memory of its initial condition is lost by the system. The PDF evidences a camelback shape

[see Fig. 3 (b), red–dark grey symbols]. The first peak corresponds to the fluctuating straight

line configurations and the second peak corresponds to the fluctuating bubble configurations.
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Both peaks are broadened because of the thermal fluctuations, and the probability to observe

an intermediate configuration that cannot be described neither as a line nor as a bubble is

strictly positive.
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FIG. 3: (Color online) PDF of the height hm(ǫ, T, t) (in mm) for a system of 128 particles, for

three different confinements : (a) ǫ = −0.05; (b) ǫ = 0.001; (c) ǫ = +0.05. The red (dark grey)

and cyan (light grey) dots correspond respectively to T = 1010 K and T = 1011 K. In (b) the

open circles correspond to a case of line initial condition and the crosses to the case of bubble

initial condition. In the inset of each plot, we show the corresponding point in the hysteresis loop

measured at a very low temperature T = 107 K.

D. Evolution of the hysteresis with temperature

The thermal effects on the hysteresis diagram can be studied by following the evolution

of the PDFs of hm(ǫ, T, t) with the confinement ǫ for several temperatures. In Fig. 4 we

display the reconstructed hysteresis diagram with the help of the PDFs, shown as density

plots for each confinement ǫ.

For low temperature, the thermal energy is insufficient to induce intermittency during a

step at constant ǫ of duration τobs. The hysteresis loop is still observed, and the diagram is

only slightly modified with respect to the case of the very low temperature T = 107 K, as

shown by Fig. 4 (a) and (b). The comparison between the hysteresis diagrams obtained at

T = 109 K and T = 1010 K (resp. Fig. 4-(a) and 4-(b)) shows that its width decreases as

the temperature increases. This point will be discussed in details in the next section III.

For higher temperature, the intermittent behavior strongly modifies the transition dia-

gram, as shown by Fig. 4 (c) and (d). Now the thermally activated jumps between the

linear configuration and the bubble happen in the range ǫdown(T = 0) < ǫ < ǫup(T = 0). At
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FIG. 4: Hysteresis diagrams reconstructed from the PDF of hm(ǫ, T, t), measured at tempera-

tures T = 109 K (a), T = 1010 K (b), T = 1011 K (c) and T = 2 × 1011 K (d). The solid red line

represents the hysteresis loop obtained at very low temperature T = 107 K. The PDF are dis-

played as density plots for each ǫ and correspond to the blue scales on the right. For T = 109 K

and T = 1010 K the system keeps the memory of its initial condition, and the evolution of ǫ dur-

ing the whole simulation corresponds to the red arrows. At T = 1011 K and T = 2 × 1011 K all

memory is lost by the system, and the diagrams do not depend on the evolution of ǫ during the

whole simulation.

T = 1011 K and T = 2 × 1011 K, during a step at constant ǫ of duration τobs, the system

looses all memory of its initial state and the hysteresis loop is no more observed.

It is possible to get a qualitative picture of these hysteresis diagram. Whereas at T = 0 K

the energy of the system is either EL(ǫ) or EB(ǫ), the thermal agitation results in an explo-

ration of the neighborhoods of EL(ǫ) and EB(ǫ) by the energy of the system. This induces
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a broadening of the PDF of hm(ǫ, T, t). As said before, we do not know the complete energy

landscape. We may nevertheless obtain a rough estimate of the distribution of hm(ǫ, T, t) by

considering only homogeneous configurations. In this simpler model the expression of the

energy reads :

E(ǫ, h) =
ǫβZZ

2
h2 +

g3
4
h4 −

g5
6
h6 (1)

where ǫ is the order parameter, h the observable (the amplitude of the homogeneous zigzag)

and βZZ and the gi are positive constants [See Eqn. (B1) of Appendix B]. The hysteresis

loop at T = 0 is then characterized by the existence of two local energetic minima, one for

h = 0 noted E0(ǫ) and one for h 6= 0 noted E1(ǫ). In order to exhibit the broadening we

may estimate the extension of h reached by the system thanks to the thermal fluctuations,

by numerically extracting h from the equations E(ǫ, h) = E0(ǫ) + kBT near the solution

h(T = 0) = 0 and E(ǫ, h) = E1(ǫ) + kBT near the solution h(T = 0) 6= 0. The domain

explored by h calculated using this procedure are plotted in Fig. 5 when an hysteresis loop

is observed at low temperature [Fig. 5 (a)], and when an intermittent regime is observed at

high temperature [Fig. 5 (b)]. They display the same qualitative features as those obtained

in the simulations for inhomogeneous configurations (Fig. 4).

III. EFFECT OF THE THERMAL NOISE ON THE HYSTERESIS THRESHOLDS

We now look in details at the influence of the thermal noise on the hysteresis loop for a

given observation time τobs during which ǫ is kept constant.

At T = 0 K the thresholds ǫdown(T = 0) and ǫup(T = 0) only depend on the stability

of the equilibrium configurations. At finite temperature, the thresholds ǫdown(T, τobs) and

ǫup(T, τobs) also depend on the temperature and on the observation time. Let us first consider

a system initially in the linear configuration and increase ǫ by successive steps of duration

τobs. For the i-th step, ǫ = ǫi, the system stays in a straight line configuration as long as the

Kramers’ transition time τL−B(ǫi, T ) > τobs, because its initial configuration at the step (i−1)

is a line, and τobs is insufficient for the transition to happens. The transition toward the bub-

ble configuration takes places when τL−B(ǫi, T ) ∼ τobs since the observation of a jump toward

the bubble configuration during τobs is now more likely. Once the transition is achieved, if

τB−L(ǫi, T ) > τobs the system remains in the bubble configuration. Thus τL−B(ǫup, T ) ∼ τobs

defines the hysteresis threshold ǫup(T, τobs) providing that τB−L(ǫup, T ) > τobs at the temper-
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FIG. 5: (Color online) Qualitative estimate of the thermal broadening for a subcritical pitchfork

bifurcation. For each ǫ the red (grey) shaded segment quantify the reachable values of h. The

solid black lines display the stable homogeneous states, the dotted black lines the unstable states

and the black arrows the hysteresis loop at T = 0. (a) : At low temperature the two explored

regions corresponding to the two equilibrium states are always distinct and the hysteresis loop

remains as represented by the solid red line. This is to be compared to Figs. 4 (a) and (b). (b) :

At high temperature the two explored area merge and the hysteresis loop is blurred. This is to

be compared to Figs. 4 (c) and (d).

ature T . Note that since τL−B(ǫ, T ) ∝ exp(∆UL−B(ǫ)/kBT ) decreases with temperature, the

condition τL−B(T, ǫup) ∼ τobs implies that ǫup(T, τobs) is a decreasing function of the temper-

ature. Similarly, following the evolution of an initial bubble configuration as ǫ decreases, we

can define the threshold ǫdown(T, τobs) (with τB−L(ǫdown, T ) ∼ τobs and τL−B(ǫdown, T ) > τobs).

In the opposite way, this threshold increases with temperature.

The Fig. 6 represents ǫdown(T, τobs) and ǫup(T, τobs) as functions of T , from our simu-

lation data. The variations of ǫdown(T, τobs) and ǫup(T, τobs) with the temperature agree

with the above analysis. The width of the hysteresis loop, ǫup(T, τobs) − ǫdown(T, τobs),

eventually vanishes at a threshold temperature Tc(τobs). This temperature is defined by

τL−B(ǫdown, Tc) ∼ τB−L(ǫup, Tc) ∼ τobs.

A qualitative picture of the variation of Tc with τobs may be obtained. For an infinite

observation time, intermittency is always present, thus no hysteresis loop can be defined at

finite temperature so that Tc(τobs → ∞) → 0. In order to analyze the variation of Tc(τobs)

for finite τobs we may derive the evolution of ǫdown(T, τobs) and ǫup(T, τobs) from the two
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FIG. 6: (Color online) Evolution of the thresholds ǫup(T, τobs) (blue dots) and ǫdown(T, τobs) (red

squares) with temperature.

equations :

kBT ln

(

τobs
τ0

)

= ∆UL−B(ǫup), (2)

kBT ln

(

τobs
τ0

)

= ∆UB−L(ǫdown), (3)

where for the sake of simplicity the characteristic time τ0 introduced by Kramers [32] may

be considered constant.

Up to now these equations are only formal because we do not know the energy gaps.

As before, we get a qualitative interpretation by considering homogeneous patterns. We

show in Fig. 7 the evolution of ǫup(T, τobs) and ǫdown(T, τobs) calculated for three ratios

τobs/τ0. They are obtained by directly solving the equations (2) and (3) where the unknown

energetic barriers ∆UL−B and ∆UB−L are estimated for homogeneous patterns from the

simple energetic expression of Eqn. (1). We recover the qualitative features of the functions

ǫdown(T, τobs) and ǫup(T, τobs) measured from the simulations data, shown in Fig. 6. This is

also consistent with simulations results presented by Agez et al. [31] see their Fig. 15.

The crossing of the plots ǫdown(T, τobs) and ǫup(T, τobs) happens by construction for T =

Tc(τobs). It takes place at a confinement ǫ = ǫM which does not depend on τobs. This

particular value ǫM is defined as the confinement for which both energetic barriers are

equals :

∆UL−B(ǫM ) = ∆UB−L(ǫM), (4)

which suggest to call it the Maxwell point. Note that this equation and thus the value of ǫM

are independent of the temperature. As shown in Fig. 6 the value of ǫM is 0± 0.01.
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FIG. 7: (Color online) Theoretical variation of the thresholds ǫup(T, τobs) (cyan, light grey) and

ǫdown(T, τobs) (red, dark grey) with the temperature, for observation times τobs/τ0 = 0.5 (dashed

line), τobs/τ0 = 1 (solid line) and τobs/τ0 = 4 (dotted line). The critical temperature Tc(τobs)

decreases as τobs increases. The confinement ǫM corresponds to the Maxwell point at which both

stable states have the same energy.

IV. INTERMITTENT REGIME AND ENERGY LANDSCAPE

Let us now consider the intermittent regime. Despite the large fluctuations induced by

the thermal agitation, we have taken advantage of the unique opportunity given by the

numerous transitions between configurations to determine the main features of the energy

landscape (Maxwell point and energetic barrier height).

A. Residence time and energy landscape

For a temperature higher than Tc(τobs) the intermittent regime is reached as soon as

τB−L(ǫ, T ) < τobs and τL−B(ǫ, T ) < τobs. An example of such intermittency is shown in Fig. 8

which presents a typical time evolution of the maximum height hm(ǫ, T, t). The system stays

for a finite time in one configuration and jumps quickly to the other configuration. Let τL

be the time spent by the system in the straight line configuration, and τB the time spent by

the system in the bubble configuration. The PDFs of these times are widely distributed, as

shown in Fig. 9 (a) and (b).

From such distributions the mean residence times 〈τL〉 and 〈τB〉 may be calculated [33].
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FIG. 8: (Color online) Typical evolution of hm(ǫ, T, t) (in mm) with time (in s) for ǫ = 0.005

with T = 8.1010 K. The solid black lines indicate hm values associated to the linear and bubble

configurations for T = 0 K, the dashed black lines indicate the time average values hm(ǫ, T ) for

the linear and bubble configurations at T = 8.1010 K.

In order to check the relevance of these two times, the PDF obtained from simulations

have to be compared to the homogeneous Poisson probability density P (τ) = e−τ/〈τ〉/〈τ〉,

which describes the probability distribution of residence times that are random and of small

probability [32]. In Fig. 9 (a) and (b) we show that the PDF measured from the simulations

is very well fitted by the expected probability distribution.

The knowledge of these mean residence times provides a lot of useful information. Ob-

viously, it gives the most likely state of the system, which cannot be deduced from the

transition diagram blurred at this high temperature [see, e.g. Fig. 4 (c) and (d)]. Moreover,

the evolution of these residence times with the confinement ǫ gives another method to de-

termine the Maxwell point. At the Maxwell point, we expect that 〈τL〉 = 〈τB〉. We display

in Fig. 9 (c) the evolution of the mean residence times 〈τL〉 and 〈τB〉 as a function of ǫ at a

temperature T = 8. 1010 K. The two mean residence times are equal for ǫM = 0.003± 0.004,

which is in very good agreement with our previous estimate deduced from the zero width of

the hysteretic loop (see Fig. 6).

Furthermore, the energy barriers ∆UL−B(ǫ) and ∆UB−L(ǫ) for a given ǫ may be estimated

from the evolution of residence times with temperature. The first step is to determine the

evolution of the mean residence times with the temperature, at fixed ǫ, Fig. 10. The plots

measured on the simulations data are very well fitted by a Kramers’ law [34], which gives a

reliable estimate for the energy barriers ∆UL−B(ǫ) and ∆UB−L(ǫ) for a given ǫ.
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FIG. 9: (Color online) (a) Distribution of the residence times for a line. (b) Distribution of the

residence times for a bubble. In both cases the confinement is ǫ = 0.0 and T = 8. 1010 K. The

red dashed line is a fit with the expected Poisson distribution, P (τ) = e−τ/〈τ〉/〈τ〉 from which

we deduce the relevant mean residence time 〈τ〉. (c) Plots of the mean residence times 〈τL〉 (blue

dots) and 〈τB〉 (red squares) as a function of ǫ at T = 8. 1010 K. The crossing of these plots

defines the Maxwell point ǫM (dotted line).

When we repeat this process for several values of ǫ, we are able to plot the evolution of

the energy barriers with the confinement ǫ, as shown in Fig. 11. As expected, these barriers

are monotonic functions of ǫ, with ∆UL−B(ǫ) decreasing and ∆UB−L(ǫ) increasing. Note

that these energetic barriers are independent of the temperature and observation time, as

expected for these intrinsic parameters of the system. The crossing point of this two curves,

for which the two barriers are equal, characterizes by definition the Maxwell point ǫM [see

Eqn. (4)]. Its value measured on Fig. 11 is ǫM = 0.007 ± 0.004. Let us underline that our

three independent estimates of ǫM are fully consistent. Note also that this procedure is

useful since the complete energy landscape is unknown and since the Maxwell point cannot

be directly deduced from a single hysteresis diagram.

B. Reconstruction of the hysteresis loop at T = 0 K

Another important point is that we are able to recover the hysteresis loop at T = 0 K from

the data recorded at T 6= 0. As shown by Fig. 11 (a), the energetic barriers are roughly linear

functions of the confinement ǫ. We can thus extrapolate the data to estimate the values

of ǫup(T = 0) and ǫdown(T = 0) for which the energetic barriers ∆UL−B(ǫ) and ∆UB−L(ǫ)

respectively vanish. These values correspond by definition to the thresholds and give the

width of the hysteresis loop at T = 0 K. Moreover, the upper branch of the hysteresis loop is
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FIG. 10: (Color online) (a) Plot of the mean residence time 〈τL〉 (in s) for a line, as a function

of temperature (in 1010 K), for ǫ = −0.01. (b) Plot of the mean residence time 〈τB〉 (in s) for a

bubble, as a function of temperature (in 1010 K), for ǫ = −0.01. The red dots are simulations

data, the dashed blue line is the fit performed with Kramers’ law.

quite accurately given by the position of the maximum of a typical PDF, since it varies slowly

with temperature, while the lower branch is zero by definition of the line configuration. In

Fig. 11 (b) we show an hysteresis loop at T = 0 K, reconstructed from measurements at

T 6= 0, that compares rather well with the hysteresis loop evidenced by very low temperature

simulations.
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FIG. 11: (Color online) (a) Plot of the energetic barriers (10−12 J) as functions of the confine-

ment parameter ǫ, for a transition from a line to a bubble [∆UL−B(ǫ), blue dots] and from a

bubble to line [∆UB−L(ǫ), red squares]. (b) The dashed blue lines are determined from the ex-

trapolation of the previous plots (see text for details) and indicate the width of the hysteresis

loop. The shaded area is a measure of the uncertainty. For comparison the solid red line indi-

cates the hysteresis loop obtained at very low temperature.

To conclude this discussion, let us emphasize an interesting opportunity given by our
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analysis : We are able to obtain the local maximum EM (ǫ) in the otherwise unreachable

energy landscape. This is schematically illustrated in Fig. 12 (a). The energy EL(ǫ) of a

line and the energy EB(ǫ) of a bubble may be calculated from the equilibrium configurations

obtained in the simulations, and EM(ǫ) is the energy amount that has to be spent in order

to jump between the line and bubble configuration. Therefore, we may write

EM (ǫ) = EL(ǫ) + ∆UL−B(ǫ) = EB(ǫ) + ∆UB−L(ǫ). (5)

We plot in Fig. 12 (b) these two sums. They are in very good agreement, especially if

we consider the small values of the energetic barriers with respect to the configurations

energies, which is of the order of 15 nJ. This result supports our analysis of the residence

times as Kramer’s times. Therefore, we propose this explicit procedure to determine the

main features of the energy landscape in such many body systems.
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FIG. 12: (Color online) (a) Schematic representation at a given ǫ of the energy landscape, where

the arrows indicate the energetic barriers ∆UL−B and ∆UB−L. (b) Energy EM (in 10−3 nJ) of

the local maximum as a function of ǫ, see Eqn. (5). The blue dots display the reconstruction

from the measurement of the energetic barrier ∆UL−B and the energy of a line, and the red

squares the reconstruction from the measurement of the energetic barrier ∆UB−L and the energy

of a bubble. The origin of the energy is the line configuration energy, EL.

V. CONCLUSION

The subcritical pitchfork bifurcation studied in this paper is the zigzag transition in

systems of particles that are transversally confined, with short range (non Coulombic) in-

teractions and periodic boundary conditions in the longitudinal direction.
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As a consequence of the subcriticality, there is a finite range of transverse confinement

stiffnesses for which the stable configuration at zero temperature is a bubble, where a lo-

calized zigzag pattern takes place in a finite part of the periodic cell. We have shown that

these configurations remains stable for a wide temperature range.

At zero temperature, the transition between a straight line, for which all particles are

aligned along the bottom of the transverse confinement potential, and a bubble is hysteretic.

We have studied the influence of the thermal noise on this hysteresis loop. Its description is

more difficult than at T = 0 K since thermally activated jumps between the two configura-

tions always occur and the system can never stay forever in a unique metastable state. But

since an actual simulation last a finite time, these jumps need to be taken into account only

if their characteristic Kramers’ times, τL−B(ǫ, T ) and τB−L(ǫ, T ) are smaller than the obser-

vation time τobs. The Kramers’ times being temperature-dependent, two different regimes

have to be considered according to the temperature value with respect to a critical temper-

ature Tc(τobs) such that τL−B(ǫ, Tc) ∼ τB−L(ǫ, Tc) ∼ τobs. For T < Tc(τobs) the duration of a

simulation is short enough for the system to keep the memory of its initial condition. An

hysteresis loop is still observed, with a width that decreases as the temperature increases

toward Tc(τobs). For T > Tc(τobs) the memory of the initial condition is lost by stochastic

jumps between the linear and bubble configurations evidenced on the duration τobs, and the

hysteresis loop is no longer seen.

Moreover the study of the mean residence times in each configurations, measured in this

intermittent regime, gives a unique opportunity to precisely determine the barrier height of

the energy landscape of the considered system. Lastly from these values obtained at high

temperature, we are able to determine the extension of the hysteresis loop which would exist

at T = 0 K.

Appendix A: Numerics

The details on the numerical algorithm may be found in Ref. [35]. A short summary is

presented here. We simulate identical point particles of massmmoving on a plane, submitted

to a thermal bath at temperature T . The thermal bath is accounted for by a damping

constant γ, and by random forces applied on each particle, with the statistical properties of

uncorrelated white Gaussian noise. The particles are transversally confined in a quasi-1D
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geometry by a harmonic potential of stiffness β, whereas periodic boundary conditions are

applied in the longitudinal direction. The particles interact with a repulsive potential, which

in all simulations is a screened electrostatic interaction U(r) = U0K0(r/λ0) with energy scale

U0, with a characteristic length λ0 and where K0 is the modified Bessel function of index

0. The dynamics of the system is then simulated by the numerical integration of coupled

Langevin equations [35].

Let L be the length of the periodic simulation cell, and let N be the number of particles.

For all the simulations considered here, we have taken N = 128 and L = 240 mm, thus

an inter particles distance d = 1.875 mm. The damping constant is γ = 1 s−1. For such

parameters the equilibrium properties of the system have been described by a subcritical

pitchfork bifurcation (see Appendix B and Ref. [24]).

The focus in this paper is on the influence of the temperature on the subcritical bifur-

cation. Thus the range of temperature considered here is between 109 to 2. 1011 K, to be

compared with the typical interaction energy between particles at our concerned density

Uinter ≈ 0.117 nJ (Uinter ≈ 8.46 1012 K).

In some simulations, we vary the stiffness by steps. The typical duration of a stiffness

step is 2. 105 time steps, and with a relative stiffness variation of 10−3. To get enough

statistics for the PDF of hm(ǫ, T, t) we have also undertaken longer simulations (up to 107

time steps) at fixed confinement. Therefore, the analysis of the residence times has been

obtained by the measure of at least thousand jumps between each configurations for every

confinement studied. The smoothness of the resulting distributions (see Fig. 9) attest the

quality of these measurements.

Appendix B: Bifurcation analysis of the zigzag transition.

The normal form for the zigzag transition has been established in Ref. [24]. In this

appendix we summarize the main results.

1. Thermodynamic limit

The zigzag transition happens because it is energetically favorable for the particles to

organize in a staggered row when the density 1/d increases or when the transverse stiffness
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β decreases. In this zigzag pattern, the particles alternate with a transverse coordinate

±h so that the nearest neighbor distance increases. Therefore, a decrease in the interaction

energy eventually compensates the energy increase due to the transverse confining potential.

Since the two symmetric zigzag patterns have the same energy, the zigzag transition is a

pitchfork bifurcation which takes place at a critical value βZZ of the transverse stiffness.

The physical origin of the normal form for this bifurcation is the coupling between the soft

mode at the transition and the Goldstone mode due to the translational invariance of the

infinite system.

A consistent expansion up to the power ǫ5/3, where ǫ is the distance to threshold β =

βZZ(1− ǫ) gives the normal form as

mḧ = βZZǫh + g3h
3 − g5h

5 + g1∂
2h/∂x2, (B1)

where all distances are in units of d and where ḣ denote the time derivative of h. Knowing

the interaction potential U(r/λ0) (see Appendix A), and restricting the interactions up to

the second neighbors only, we have given in Ref. [24] the analytic expressions of βZZ and

the coefficients gi which are known functions of d. For d/λ0 > 2.04 (see [24]) the coefficients

g3 and g5 in Eqn. (B1) are positive and the pitchfork bifurcation is subcritical.

The line h = 0 is a stable equilibrium pattern when ǫ 6 0. The homogeneous zigzag

pattern is stable when −g23/(4βZZg5) 6 ǫ, and its amplitude is

h2
ZZ =

1

2g5

(

g3 +
√

g23 + 4ǫβZZg5

)

. (B2)

In [24], we have shown that the normal form Eqn. (B1) allows inhomogeneous stationary

solutions when −3g23/(16βZZg5) 6 ǫ 6 0, such that

h(x) =
hb− hb+

√

(h2
b+ − h2

b−) cosh
2
(√

−ǫβZZ

g1
x
)

+ h2
b−

, (B3)

where

h2
b± =

3

2g5

(

g3
2
±

√

g23
4

+
4

3
ǫg5βZZ

)

. (B4)

We call these excitations bubbles. In the context of phase transitions, these localized exci-

tations exhibit a phase coexistence between the two phases (aligned and zigzag), hence a

first order transition. Their observation in our simulations evidences the subcriticallity of

the zigzag bifurcation.
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2. Periodic boundary conditions

The previous analysis may be extended to finite systems with periodic boundary condi-

tions, because the periodicity implies a rotational invariance that induces a Goldstone mode.

The normal form (B1) is thus relevant to periodic systems, assuming as for systems in the

thermodynamic limit the vicinity of the bifurcation threshold (|ǫ| ≪ 1) and slow spatial

variations (|∂h/∂x| ≪ h/d).

Periodic boundary conditions are relevant for the simulations, which exhibit localized

inhomogeneous patterns, as shown in [24] and in Sec. II. In Ref. [24], the simulations are

done at very low temperature. The thermal fluctuations are very small, so that it is easy

to measure the inter particle distance in that part of the inhomogeneous pattern where the

particles are aligned (outside the bubble), which is found to be deff > d. It is therefore

energetically favorable to have a localized excitation with nonzero transverse displacement

h(x), because the particles that stay aligned with h = 0 are separated by a distance deff

which decreases their interaction energy.

In the simulations, the inhomogeneous patterns are observed when the stiffness βsimu of

the confining potential is such that βsimu < βZZ(d). This defines a positive parameter ǫsimu

as βsimu = βZZ(d)(1− ǫsimu). From the inter particle distance deff > d, we define an effective

bifurcation parameter ǫeff

ǫeff = 1−
βsimu

βZZ(deff)
. (B5)

We have shown in [24] that a bubble observed in a finite periodic system is very well described

as a bubble in an infinite system, with an inter particle distance deff and a distance to

threshold ǫeff .

At high temperature, it is less easy to measure deff because of the thermal fluctuations.

The coupling between the two soft modes which is the basic mechanism responsible for the

subcriticallity of the zigzag transition, thus for the possibility to observe the zigzag bubbles,

lead to an analytic expression for the length of a periodic system of N particles that includes

a bubble. This length has to be equal to the spatial period L, which is expressed by [24]

L = deff

[

N −
2αhb−hb+

κ′
arctanh

(

hb−

hb+

)]

. (B6)

Here α is a known function of deff which quantifies the mode coupling, and for a given value

of the transverse stiffness βsimu this is an equation of the only unknown deff .
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FIG. 13: (a) Plot of the numerical solution deff (mm) of (B6) as a function of ǫsimu for N = 128

and L = 240 mm. (b) Plot of the effective distance to threshold ǫeff as a function of ǫsimu for

N = 128 and L = 240 mm.

The numerical roots deff (mm) of (B6) and the corresponding effective distance to thresh-

old ǫeff are plotted in Fig. 13 for several values of ǫsimu [36]. We see that the calculated values

of deff are always greater than d, and that ǫeff is negative, which is consistent with our de-

scription of the bubbles.

In Fig. 2 we compare the bubble patterns observed at various temperatures with the

analytic expression (B3), calculated for the value of deff that is the root of (B6) for the value

ǫsimu and the particles number N used in the simulations. We see that when the temperature

is low enough to avoid the pattern destruction by the thermal fluctuations the agreement is

excellent.
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(in French), Phd thesis, Université Paris Diderot (2013).
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