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ABSTRACT

Graphical games (GG) provide compact representations of
multiplayer games involving large populations of agents when
influences among them have some locality property. The no-
tion of pure Nash equilibrium (PNE), not requiring random-
ized strategies, is a fundamental stability concept. However,
recent results show that for many natural topologies, a PNE
is very unlikely to exist when the number of agents is large,
which challenges the relevance of PNE in large GG.

In this paper, we investigate how far we can get from
the notion of individual stability captured by the concept of
PNE, by only requiring agents to be almost in best-response
(e-Nash), or by requiring almost all agents to be in best-
response. We study these approximated notions of PNE
for different topologies, including graphs with unbounded
treewidth, like grids. This makes the problem computation-
nally very challenging and requires the comparison and use
of several algorithmic solutions. Our results reveal surpris-
ingly good asymptotic properties, tempering the claim that
individual stability is not a relevant notion for large GG.
Finally, as approximated PNE provide various tradeoffs be-
tween stability and social utility maximization, we propose
an approach to construct a minimal-size e-covering of all
feasible Pareto-dominant tradeoffs.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Theory, Experimentation
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1. INTRODUCTION

Games involving a large number of players require a pro-
hibitive amount of space in order to be represented in nor-
mal form. However, in many cases, the payoff functions
of agents do not depend on all other agents. Graphical
games (GG) provide compact representations of multiplayer
games involving large populations of agents when influences
among them exhibit such locality property [14, 13]. In a
GG, each vertex is an agent, and an agent’s payoff is a func-
tion of his action and the actions of the agents in the inner-
neighborhood.

This paper investigates the stability and efficiency of graph-
ical games, with agents playing pure strategies (i.e. not ran-
domized). In this context, the notion of Pure Nash Equilib-
ria (PNE) is arguably the most fundamental stability notion:
no agent has an individual incentive to deviate. Stability
usually comes at the price of efficiency: the ratio of the best
(resp. worst) NE over the social welfare optimum is known
as the price of stability [1] (resp. price of anarchy).

Unfortunately, there is no guarantee for such a PNE to
always exist (in contrast to the case of mixed Nash equilib-
ria). The existence problem of PNE in general GG has been
known to be hard for a long time [10].

By exploiting non-serial dynamic programming [2] as used
in graphical models for probabilistic inference, [5] provides
an algorithm which handles efficiently graph structures with
bounded (or logarithmic, when the number of actions is
bounded) treewidth. One can also cite [19] which assumes a
bounded treewidth too. Recently, [12] even showed that this
criteria suffices to fully characterize hard vs. easy instances
in GG. Essentially, GG are easy if and only if they have a
bounded treewidth (after their sinks have been iteratively
removed). The case of unbounded treewidth is neverthe-
less of great interest, since many natural graphs fall in this
category (e.g. grids).

Another important issue when there are several possible
PNE is to search for the best one in terms of some welfare
function [3]. However, recent results show that when the
number of agents becomes large, the likelihood to find at
least one PNE converges to 0 for many graph topologies.
Indeed, in [7] different natural topologies are investigated,
both theoretically and experimentally. They show that the
structure heavily affects the probability of existence of a
PNE: for instance, while the probability converges to 0 in



the case of trees with an unbounded diameter, it remains
as high as 1 — 1 for the standard (random) normal form,
or bipartite graphs. They suggest that the probability of
existence increases as the length of paths diminishes. From
the results of [7], there is no evidence that the probability of
PNE existence in general graph topologies tends to a strictly
positive value when the diameter diverges more quickly than
Q(log(n)). The same problem is addressed in [4] for graphs
drawn from the Erdés-Renyi G(n, p) model (where n is the
number of vertices and p € [0,1] is the probability for an
unoriented edge to exist). They essentially show that when
S <p< % (medium connectivity) the probability for
a PNE to exist converges to 0, and when p > QM(T") (high
connectivity) the number of PNEs converges to a poisson(1)
distribution (the probability of existence is again 1 — %)

These results may challenge the relevance of the notion
in GG involving a large number of agents (at least for the
aforementioned topologies). However, they provide a partial
picture of the problem. In particular, they mostly pay at-
tention to the 2-action case and remain constrained by the
exact definition of PNE. In particular, it does not address
the question of whether it is possible to find a profile of
strategies which is “almost” a PNE. This is the first problem
that we study in this paper. This requires to define what
an approximate PNE is. As a PNE requires all agents to
strictly play a best-response, we shall consider two possible
approximations in this paper. The first one is to modify
the condition under which agents may deviate. Specifically,
we consider the so-called multiplicative e-Nash equilibrium.
The rationale of this notion is that the relative incentive to
deviate for agents may be small in practice. The second one
that we call k-Nash consists in relaxing the constraint that
all agents are in best-response. The rationale of this approx-
imation is that it may only require, for the system designer,
to “convince” or “impose” the strategy of a small number
of agents. This notion bears some similarity with the no-
tion of Stackelberg threshold [17], with the difference that
this measures the number of agents whose strategy must be
fixed in order to guarantee a social optimum at equilibrium,
while in our case, we seek to guarantee that an equilibrium
exists. We also note that the study of k-Nash approxima-
tions is very fundamental, since it does not rely on the payoff
random distributions, but just on best response tables.

Unfortunately, as previously mentioned, instances involv-
ing unbounded treewidth are computationally very challeng-
ing to handle. We deploy a range of algorithmic solutions
(junction tree algorithms [5], a SAT formulation due to [7],
and Mixed Integer Linear Programming), and compare their
respective efficiency on the different problems we face. This
allows us to perform different experiments involving a sig-
nificant number of agents (typically at least 100 agents) and
action-sets of size greater than 2. Our results shed a new
light on the PNE problem in large GG: in a nutshell, we show
that in various GG whose PNE probability of existence con-
verges to 0, we actually get very close to PNE (in particular,
a very small constant fraction of agents may be unsatisfied),
and that the action-set size may greatly affect the results
(in particular, it contradicts the assumption that the diver-
gence of the graph diameter may be a sufficient condition to
conclude on the asymptotic inexistence of PNE).

We next turn our attention to the tradeoff between sta-
bility and utilitarian optimality. Equipped with a suitable
approximation of PNE, it is actually possible to generalize

the notion of price of stability by seeing it as a bi-criteria
problem. The set of non-dominated tradeoffs would provide
precious indications for the system supervisor (“what gain
in social welfare can be expected by relaxing this much of
the stability requirement?”). Specifically, we question how
the price of stability evolves as a function of the best re-
sponse e-relaxation, by computing the values of an (1 + e)-
approximated bi-criteria Pareto-set (e, v) of minimal size,
with a minimal number of calls to an utilitarian optimization
problem and an e-stability optimization problem, thanks to
a greedy algorithm defined in [6].

The remainder of this paper is as follows. In Section 2 we
introduce the necessary background on graphical games. In
Section 3, we provide the different algorithmic approaches
we use, and discuss how they perform for the different prob-
lems we have to deal with. Approximated notions of PNE
are introduced and investigated in Section 4. Finally, Sec-
tion 5 details the methodology to obtain an approximated
Pareto-set for the stability vs. efficiency tradeoff.

2. PRELIMINARIES

We remind common notations of multiagent games. The
set of agents is N = {1,...,4,...,n}. Each agent 7 chooses
his action a; in his particular action-set A;. An action-profile
is any element: (a1,...,ai,...,an) € [, A; denoted by
a € A. An agent i’s adversary-action-profile is denoted
a_; € Hj# A; and his payoff function is v; : A; x A_; = R.

Definition 1 A multiagent game (or n-agent game when
IN| =n)is a t-uple T = (N,{Ai},cn - {vi}t;en)-

Nash equilibria formulate the “individual stability” of an
action-profile (a;,a—;) € A: each agent i, given the fixed
adversary-action-profile a—_;, has no incentive to change uni-
laterally his action a;, to get an individually prefered action-
profile.

Definition 2 Given a multiagent game I' and a player i, a
best response function BR; : A_; — P (A;) maps adversary-
action-profiles to the set of actions which “satisfy” i.

Definition 3 An action-profile a € A is a Nash equilibrium
if and only if for every agent i, a; € BR; (a—;).

If we consider BR; (a—;) = argmax,, ¢ 4,{vi (ai,a—;)}, then
we are working on Pure Nash Equilibria (PNE). If we con-
sider BRS (a_:) = {as € AiVd, € A, : % <(+e)
(assuming positive utilities) , then we are working on mul-
tiplicative e-approximated Nash Equilibria (e-PNE).

In the most general normal forms, each payoff function
requires O (HZE N |Az\) space, which is not compact if the
number of agents is unbounded. A graphical game (GG)
catches the locality of payoff functions. Its support graph
is an oriented graph G = (N, E), where N is the set of
agents, F are the edges which define dependencies between
payoffs, and agent ¢’s inner-neighborhood (including him-
self) is denoted v(i). Player i’s payoff function depends only
on the actions of players in v(7). A local-action-profile is any
element: (ai,...) € [[;c, ;) A; denoted by: a” €AY Ina
graphical game, agent 4’s payoff is a function v; : A® — R,
which by the way requires O (Hj@(i) |Aj|) space. Hence
GG are a compact multiagent games representation when
A = max;en {|v(7)|} is bounded and small.



Definition 4 A graphical game (GG) with support graph
G = (N,E) is a t-uple T = (G, {Ai};cn » {vitien)-

What we are mostly going to consider are unoriented graph-
ical games, where (i,j) € E < (j,i) € E (payoff dependen-
cies between agents are mutual).

Figure 1: St Paul Town-Game

Example 1 Consider the example of Figure 1 inspired by
the Road-Game [20]. In the St Paul Town-Game, each agent
possesses one block of land in a square-grid-town of size
n = L x L. FEach agent must choose what to build on his
block of land: a garden, a residential complex, a factory, or
a shopping mall. Clearly, the payoff of a building depends on
what is build on the four adjacent blocks of land. Unfortu-
nately, square-grid-graphs of size n = L X L have unbounded
treewidth L, and an even higher hypertreewidth.

We might also want to find an action-profile which max-
imizes the average payoff, like in the VCG mechanism and
Clarke’s prices.

Definition 5 Given a GG T = (G, {Ai},cy {vi};cn) the
utilitarian optimization problem (denoted as max Y -GG) is

to find a* € argmaz,c 4{Y ;e n vi(a™)}.

Given a fixed support graph G = (N, E), we study random-
payoff graphical games with respect to the following distribu-
tion: each payoff values vi(a(i)) of the functions v; : AD
R are drawn uniformly and independently from the interval
[0,1]. For the PNE and the k-Nash problems, it is equiva-
lent to suppose that each adversary-local-action-profile has
a singleton best-response. But for the e-Nash problem, it is
an important (but common) hypothesis that can influence
the results.

Throughout this paper, B = {a® € A¥|a; € BR; (a—;)}
will denote the best-responses local-action-profiles, and E(Z) =
A® \ B the non-best-responses local-action-profiles. For

e-best-responses, ¢ < € = ES) D Eii)-

3. COMPUTATION IN GRAPHICAL GAMES

In this section, we present various ways to compute a PNE
in a general GG. Recall that this is an NP-Hard problem.
It is known that this problem’s structure is close to a logical
problem [7]. In what follows, we first remind how junction
trees can be used when (hyper)treewidth is bounded. Then
we detail the SAT formulation that [7] briefly proposes and
massively uses. We also propose a MIP formulation of the
same problem, and we show how this MIP can be adapted to
the case of an unbounded maximal degree A, with a cutting
plane algorithm polynomial in A, for non-best-responses.

Junction Tree Algorithm. Computing a PNE in a GG
I = (G, {Ai};cn {vi},cy) can be reduced in various ways
to the Junction Tree algorithm. For instance, [5] builds a
maximum likelihood problem in a Markov random field (ML-
MRF) over A; x ... x A, which is clique-factorized and
whose cliques roughly correspond to the agents neighbor-
hood: C; = v(i) and P (a) = [[,c v ¢c; (a'?). The potential
functions are

i (ON= =10]
e = { a €

1 if
€ otherwise

in such a way that the maximum likelihood are 1 if and only
if there is a PNE. With the same reduction, one can prove
the NP-Hardness of max > -GG. It is sufficient to change
the multiplicative algebra into an additive algebra.

One can remark that if we choose ¢ = e™' = exp(—1),
this ML-MRF not only decides on the existence of a PNE,
but also maximizes the number of agents in a best-response
local-action-profile. Indeed, if 7™ is the maximal log-likelihood
of this ML-MRF, then —7* is precisely the minimal num-
ber of unsatisfied agents. Unfortunately, these algorithms
assume a bounded degree (or at most logarithmic with a
fixed number of actions) treewidth, for tractability. They
behave very badly in the general case, including the St Paul
Town-Game.

SAT. Let us now introduce a decision variable z;., €
{0,1} for each agent i and each one of his action a;. These
variables can be both interpreted as a boolean or a binary
variable, whose meaning is “agent 7 chooses action a;”. From
this, given a GG I' = (G, {Ai};cn - {vi}icn), the SAT for-
mulation proposed in [7] is obtained by two sets of clauses.
The first one ensures that each agent chooses one and only

one action:
Vi, \/ Tia;

a; €EA;

. ’
Vi, Y{ai, a;} C Ai, ~Ti,a; V 7T a

The second set of clauses forbids the non-best-responses
local-action-profiles :

. (i) ~ ) 4 )
Vi,Va*’ € B, \/ mjﬂy)
Jjev(i)

One can remark that, this formulation can also be used to
answer for a fixed € the decision problem “Is there an e-Nash
Equilibrium?”; by simply prohibiting Eiz).

MIP. For the first MIP formulation that we propose, we
use the same variables and the same constraints, and we in-
troduce the relaxation variables p; € [0, 1] the sum of which
must be minimized so that a PNE exists if and only if the
optimal value is 0. First of all we need to add constraints



enforcing that ¢ chooses exactly one action:
Vi € N,Va; € A;: x4, €{0,1} (1)
VieN: 3, cq Tia, =1 (2)
Then we impose that for each non-best-response local-action-
profile, at least one decision of the inner-neighborhood v(%)

is 0. These contraints are relaxed by using continuous vari-
ables p;.

Vie N: pi €[0,1] (3)
vieNva® € B w0 < MO - 14 ()
g

We can then write the MIP addressing the PNE problem in
GG:

minimize
subject to

doie1Pi
MAER)AB)A )

By introducing a cutoff if max; p; > 0, we avoid many explo-
ration nodes that are useless for the Pure NE problem. The
number of non-best-response local-action-profile constraints
is an exponential of A. Hence this is a compact formulation
if A is bounded.

Techniques. We tested three computation techniques:
maximum likelihood in a Markov random field with the junc-
tion tree algorithm implemented in libDAI [15], the SAT
formulation with the miniSAT solver [8], and the MIP for-
mulation in GuRoBi [11]. We shall summarize how these
approaches fit the different problems considered in the fol-
lowing section.

Figure 2 compares the computation times in unbounded
(hyper)treewidth GGs, using our MIP formulation (ILP)
and junction-trees (ML_MRF). Both techniques are surpassed
by miniSAT (which required an almost 0 time, here).

— 10000 : : : :
© i - : P —+—
§ 1000 oM MRF .
. o : < e ]
£ 10 R /*’,k—- S
a - i : : : 1
S 0001 L i i i i

0 50 100 150 200 250

number of agents

Figure 2: Computation average times for the PNE
problem in square grids made of 2 actions agents.

4. APPROXIMATING PURE NE

In this section we investigate two different kinds of ap-
proximation of pure equilibria in GG. We conduct experi-
ments with these approximations on support graphs whose
random payoff GG are known to be unfortunately not likely
to have a PNE when n is high: for paths, binary trees [7],
and medium connected Erdds-Renyi [4], where we know that
P(3a: PNE ) — 0, when n — oo, and for square grids, for
which we experimentally measured (see Figure 4) that the
PNE probability tends to 0 for small action-sets.

e-Nash.The first notion we study is the multiplicative €
approximated NE, which minimizes e(a) = max;cn {€:(a”)}

(where ¢;(a'V) is defined by (1 + €;(a?))v;(a?) = Bi(a?)
and Bi(a?) is the best individual value that ¢ can achieve
with an individual deviation). This general idea of this ap-
proximation is standard in the literature (although we note
that it is usually used in the additive sense), and reflects
the intuition that “agents are indifferent to sufficiently small
gains” [18]. We emphasize that this notion is often used as
a discretization to facilitate the computation of mixed equi-
libria. In this case, a common criticism is to say that it is
not guaranteed to be close to an exact equilibrium (which
does exist for sure). This argument does not hold here, as
our objective is to minimize e: when a PNE does exist, we
indeed get € = 0, otherwise we find an action profile which is
the less sensible to individual deviation: the smallest € such
that there is an action profile where agents are not likely to
individually deviate when the gain is less than (1 + ¢€) times
what they already have.

k-Nash. The second kind of approximation is to find an
action-profile, which minimizes the number k of agents not
playing a pure best-response (k-Nash), and hence to find the
minimal fraction of unsatisfied agents that it is necessary to
“convince” or “constrain” to obtain stability. This notion has
a great advantage over the e-Nash approximation: it does
not rely on the payoff distributions, but just on singleton
best response tables. We note that, in principle, the fraction
of unsatisfied agents may converge to 0 even though the
probability of PNE does so.

Methodology. Remark that both the maximum log like-
lihood and the MIP presented in Section 3 can be directly
adapted to k-Nash: maximizing the number of agents play-
ing a best response. If the support graph is of polynomial
size and has a bounded treewidth, then one should use a
junction tree algorithm. Otherwise, when the treewidth is
unbounded, or when A is unbounded, one should use the
MIP formulation when addressing k-Nash.

Now for the computation of e-Nash, since for a fixed e,
the SAT formulation is the fastest one by a huge margin
(regardless of the treewidth or the support graph’s maximal
degree A), it turns out to be faster than MIP to make a
dichotomy over € with the SAT formulation at each iteration.

We deduced the proportions of instances having a PNE
from the fastest previous approximations. For the conve-
nience of the reader, we summarize the characteristics of
the graphs and the algorithmic approaches employed (for
the different problems) in Table 1.

Results on paths and binary trees. We know from
[7] that the probabilities of PNE to exist in paths and bi-
nary trees tend to 0 (they actually reach 0 with about 100
agents). Our experimental results are presented in Figure 3.
We observe that these results are insensitive to the size of the
action-set. On these structures, more actions for agents do
not help to reach a PNE. Now regarding the approximations
of PNE, one may intuitively expect the situation to worsen
as the probability of PNE decreases. This is not the case: in
both topologies, the k-Nash equilibria we found reveal that
the average minimal fractions of unsatisfied agents tend to
small constants, between 3% and 6%. It means that the
average number of unsatisfied agents is strictly proportional
to the total number of agents. Moreover, this convergence
is very fast: even when the probability of PNE is as high
as 50% (path, 2 actions), the average fraction of unsatisfied
agents is already at 6%. In this sense, we are not far from in-
dividual rationality equilibrium (even though the number of



Graph parameters Algorithmic approach
Name Treewidth Diameter | k-Nash e-Nash
Path 1 n Junction trees [1500] | Dichotomy of SAT [500]
Binary tree 1 2logn Junction trees [1500] | Dichotomy of SAT [500]
Grid vn 2v/n MIP [500] Dichotomy of SAT [1500]
medium connect. Erdés-Renyi | Q(Bn), with 5 >0 [9] | logn MIP [500] Dichotomy of SAT [500]

Table 1: Summary of graph parameters and algorithmic solution for the different problems. The number in
brackets indicates the number of payoffs GG per graph and action-size
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Figure 3: Indicators of PNE proximity in random-
payoff GG : path and binary trees

unsatisfied agents grows, of course): in a path of 200 agents,
the system designer may only have to fix the strategy of
about 10 agents to obtain a stable situation.

Unlike for k-Nash, the experiments for e-Nash show that
in paths and trees, the results are affected by the size of the
action-set. More precisely, the smaller the action-sets are,

the harder it is to guarantee a small € incentive for all agents
in the same action-profile. To conclude, although more ac-
tions available for agents do not increase the probability of
PNE, they do increase significantly the quality of the e-Nash
approximation (compare 200 agents on a path: ¢ is less than
10% for 4 actions vs. 50% for 2 actions).
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Results on grids. These results are in Figure 4. The
probability of PNE existence is greatly affected by the action-
set size in this topology (recall this was not the case for
paths and binary trees). For 2 or 3 actions for each agent,
these probabilities tend to 0 (at different rate) as the grid
sizes increase. With action-sets of size 4, the influence of the
action-set size can be observed even more dramatically: the
probabilities of pure NE to exist do not tend to 0 any longer
(they seem to tend to the 1 — I value). This shows that
the diameter of the graph cannot be a sufficient parameter
to conclude on the fact that the probability of PNE existence
converges asymptotically to 0 or not. To the best of our
knowledge, this is the first time that this is observed.

Turning our attention to k-Nash, we see that we are not
so far from individual stability since the minimal fraction of
unsatisfied agents are below 2%. About e-Nash, € tends to
0 with 3 or 4 actions, but does not with 2. We also note
that this topology allows to reach very close to stable e-
Nash approximations: for instance, € remains negligible for
250 agents with a 3-action set, when the probability of PNE
has already decreased to 20%.
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Figure 5: Indicators of PNE proximity in random-
payoff GG: medium connectivity Erdés Renyi graph

Results on medium connectivity Erdés-Renyi. In
medium connectivity (% < p < lr‘;:)) Erdés-Renyi graphs,
we see that the convergence to 0 of PNE existence is not
affected by the action-set size (not shown here). We can
also observe that the average minimal fraction of unsatis-
fied agents decreases below 2%. As for the e-Nash, the val-
ues obtained show that it is more difficult than with grids
to get a close e-approximation of PNE. For completeness,
we mention that we also performed some experiments on

small worlds (Watts-Stogratz) graphs, which are free-scale
networks capturing some properties of biological, social, and
computer networks. To sum up, we observed that the action-
set size has a strong influence on both the PNE probabil-
ity and the minimal € values. By focusing our attention to
p € [0.03,0.375], we observe that we obtain very small e val-
ues (from 3% to less than 1%). Note that when p = 0.375
the PNE probability has reached the 1 — 1 value [7].

Conclusions. Some general conclusions can be drawn
from these experiments. First of all, even though the PNE
probability tends to 0, in general, the approximated equi-
libria are very good. This is in line with some observations
of [20] who mentioned that “it appears that, with random
payoffs, fairly good equilibria often exist in pure strategies”
after some experiments on grids (with 3-actions games, and
under the additive e-Nash interpretation). However, we also
see that the picture is more complex. While k-Nash approxi-
mations always require only a small (decreasing or constant)
fraction of agents to be convinced, it may sometimes be dif-
ficult to get small e-approximations when the action-set is 2.
But augmenting the size of the action-set always improves
this approximation. As approximated PNE may provide
various solutions, this gives us the flexibility to optimize the
efficiency (in the utilitarian sense).

S. STABILITY VS SOCIAL UTILITY

Given a GG, we investigate the bi-criteria problem that
consists in both maximizing “individual stability” and “over-
all utility”. Formally, concerning stability, we will focus
on the maximization of a strictly decreasing function of e,
¢(a) = 1/(1 + €(a)), which corresponds to the guaranteed
fraction of individual rationality ¢;(a®) = v;(a®)/8:(a®)
where 8;(a?) is the best individual value that i can achieve
with an individual deviation. Note that maximizing this
function means that we minimize €(a), which represents
the worst relative opportunity loss among agents for action-
profile a. Concerning utility, we maximize the standard util-
itarian criterion defined by v(a) = >,cy vi(a®). Hence, to
any a in A is assigned a performance vector (p(a),v(a)) in
the bi-criteria valuation space. The set of feasible perfor-
mance vectors is then defined by F'(A) = {(p(a),v(a)),a €
A} and the components are assumed to be bounded.

Since the two objectives considered are possibly conflict-
ing, we are interested in finding action-profiles achieving
different tradeoffs. To this end, determining a representa-
tive subset of feasible Pareto-optimal tradeoffs within F'(A)
would provide useful information for the system supervi-
sor. We recall that a vector (p,v) € F(A) is Pareto-optimal
if we cannot improve one dimension without downgrading
the other. Note that the set P of Pareto-optimal vectors in
F(A) possibly includes a huge number of elements. Not only
would its exact determination induce a prohibitive compu-
tational time, it would also provide the supervisor with an
unnecessary large sample of possibilities. We propose in-
stead to determine an approximation of P using the notions
of e-dominance and e-covering.

e-dominance. For any e = (e,, e,) € R3 the e-dominance
relation is defined on performance vectors © = (24, Zv),y =
(Yo y0) € F(A) by @ ze y & [(zo(1 + €p) > yp) and
(o(1+e0) = o).

e-covering. For any e = (e,,e,) € ]Rf_ and any set S C



F(A), the set T C S is said to be an e-covering of S if
Vse S, Ft eT,t = s.

In general, multiple e-covering of the Pareto set P exist.
The set P itself in an obvious example of e-covering of P.
More interestingly, the existence of e-covering of polynomial
size is established for general multiobjective combinatorial
problems with a bounded number of criteria [16]. Here, for
any given e = (ey,e,) € RL we would like to be able to
determine an e-covering of P as small as possible, ideally an
e-covering of P of minimal cardinality. Since we have only
two objectives we can resort to a greedy approach proposed
in [6] for computing an e-covering of minimal cardinality
in general bi-criteria optimization problems. Let us explain
how this approach can be further specified to explore the
feasible tradeoffs attached to the action-profiles in a GG.

The construction proposed in [6] relies on solving a se-
quence of optimization problems alternating two comple-
mentary subproblems:

Restrict-v(a). For any given value a, we want to maxi-
mize v subject to the constraint ¢ > «, or answer no when
no such solution exists.

Restrict-p(v). For any given value -, we want to maxi-
mize ¢ subject to the constraint v > v, or answer no when
no such solution exists.

We present now how we can solve these two subproblems
in our context. Since these two problems are NP-hard, and
since they include too much numerical information to resort
to SAT reformulation, we focus on Mixed Integer Program-
ming formulations (MIP).

Solving Restrict-v(a). With no loss of generality, we as-
sume that payoffs are positive (vi(a) > 0). If it is not the
case, a simple translation of payoffs is sufficient. We re-
mind players action variables x; o, € {0,1} whose value is
1 iff player 1 chooses action a;. First of all we need to add
constraints enforcing that ¢ chooses exactly one action :

Vi € N,Va; € A; : Zia; €{0,1} (5)
VieN: X, ca, Tia; =1 (6)
Then we define the variables of local action profiles z; ,),

in such a way that we have z; ) = /\j€v<i) LNOE
a5

Vie NVa® € A 0<z,0<1  (7)

Vie NVa € AV Vjev(i): z 0 < z o (8
]

And make players payoffs v; consistent with the activated
local action profile:

VieN: vi=3,meamvi(@?)z .0 )

To complete the formulation of Restrict-v(a), we must also
require that ¢ > a:
Vie NVa € BY 2, o =0 (10)

To avoid very large integrality gaps, the following reinforce-
ment is useful:

VieN, > z.0=1 (11)
ROPNO)

Moreover constraints (11) become necessary when the prob-
lem is empty due to constraints (10). We can then write our

MIP formulation solving Restrict-v(a):

maximize > vs
subject to  (5) A (6) A (7) A (8) A (9) A (10) A (11)

Since all vi(a(i)) are positive, and we maximize, the local
action profiles variables are consistent.

Solving Restrict-¢(7). In this problem, we want to max-
imize p(a) = 1/(1 + €(a)) with €(a) = max;en{ei(a)} and
€i(a) = D @ea ei(a(”)zi,a(i). We recall that our actual
objective is to minimize €;,2 € N under the constraint that
the total payoff is at least . However, it is not possi-
ble to proceed exactly as above to formulate the restrict-¢
problem using variables z; ,i) because now the lineariza-
tions as well as the consistencies of z, iy = /\jEV(i) .Tj’GEi)
are lost. To recover the necessary monotonicity of the ob-
jective function with respect to z; (i) variables we maxi-
mize a strictly decreasing function of e. We therefore define

pi(a?) = — vi(a))

1 .
e @®) = Bia®)" Hence we have :

) wi(a(®
ViEN: @i=3 ,)ecat mzi,am (12)
The total payoff must be at least -, therefore :

Yo > w0 2 (13)

PEN oD e A(D)
Finally, our MIP adressing Restrict-(7) is :

maximize min;en{p;}
subject to  (5) A (6) A (7) A (8) A(11) A (12) A (13)

5 (aV)
Bi(alD))
the local-action-profile variables are consistent, and the MIP
is valid. We therefore obtain MIP formulations to solve the
two basic sub-problems Restrict-v(a) and Restrict-¢(7).

Now, the greedy construction of an e-covering starts with
the initial call go =Restrict-v(0). Then we compute the
following alternated sequences for n > 1:

Pn Restrict-¢(gn—1/(1 + €v)) (14)
gn+1 = Restrict-v((1 4 e,)p(pn)) (15)

We let n increase until the feasible domain of Restrict be-
comes empty. The resulting set {p1,...,px} provides an
e-covering set of minimal cardinality. This procedure makes
only 2K calls to Restrict where K is the size of the output.
Further details on this greedy approach and its optimality
for general bi-objective problems are given in [6].

We have performed numerical tests to check the practical
feasibility of this approach. The results can be seen on Fig-
ure 6 that provides e-coverings for instances of size 7x7 and
e € {(0.05,0.25), (0.015,0.075), (0.002,0.01) }.

As expected, we observe that points belonging to the e-
covering set spread throughout the approximate Pareto front
with a density of points that increases as the norm of e =
(e4, €v) diminishes. Note that the supervisor can control in-
dependently the density of points on the v-axis and on the
p-axis by choosing e, # e,. Remark also that some of these
points do not belong to the boundary of the convex-hull of
the e-covering set. Such tradeoffs are known as unsupported
solutions and cannot be obtained by optimization of a linear
combination of the two criteria. The numerical tests confirm
the adequacy of the e-covering concept to provide represen-
tative approximations of the Pareto ensuring some diversity

If we assume

> 0 (without loss of generality), then
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Figure 6: e-Covering of Pareto-optimal tradeoffs

(inherent to the covering property) while avoiding any re-
dundancy (due to minimality). Such coverings provide the
supervisor with a collection of typical action-profiles achiev-
ing various efficient tradeoffs between stability and social
utility maximization. The final choice within the e-covering
can then easily be made depending on the aspirations in
terms of stability and social welfare.

6. CONCLUSION

In this paper we investigated stability and efficiency is-
sues in GGs, without confining ourselves to the tractable
case of bounded treewidth. This is made possible through
the use of a variety of algorithmic solutions. Previous works
showed the influence of the network topology on the asymp-
totic probability of PNE, exhibiting many cases where this
probability tends to 0 with n. What our experimental results
first exhibit is that there is an interplay between the topol-
ogy and the action-set size: for some topologies only, the
action-set makes a crucial difference in terms of convergence
to 0 for the PNE existence. Thus, we observed a (1 — 1)
probability of PNE existence in square-grids with 4 actions.
To the best of our knowledge, this is so far the topology with
the fastest diameter’s divergence (1/n) observed not to tend
to 0. Our second main finding is that, despite the low prob-
ability of PNE existence, approximations of equilibria are in
most cases close to individual stability. The convergences of
k-Nash to particular values calls for a deeper understanding
of how graph topologies influence the minimal number of
unsatisfied agents. Eg., it is an open question whether there
are any topology where the k-Nash over random-payoff GG
may increase. While k-Nash does not rely on the payoff ran-
dom uniform [0, 1] distribution, e-Nash does, so it would also
be of interest to study non-uniform distributions.

Finally, we have seen that these approximations of PNE
provide many solutions. This allows the computation of
tradeoffs between almost individually stable solutions, and
efficient (socially optimal) one. Knowing how the price of
stability would evolve as a function of the € would certainly
be useful for the system designer. Our last section shows
how this can be performed in practice without returning a
set of undominated trade-off solutions of prohibitive size.
We want to emphasize that the MIP formulations we used
for the tradeoffs determinations can be generalized to other
criteria. Eg., PNE can be e-approximated in an additive
way, or the overall utility can be replaced by a fair criterion.
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