
MSoS: A Multi-Screen-Oriented Web Page Segmentation
Approach

Mira Sarkis, Cyril Concolato, Jean-Claude Dufourd
Telecom ParisTech; Institut Mines-Telecom; CNRS LTCI

{sarkis, concolato, dufourd}@telecom-paristech.fr

ABSTRACT
In this paper we describe a multiscreen-oriented approach
for segmenting web pages. The segmentation is an auto-
matic and hybrid visual and structural method. It aims
at creating coherent blocks which have different functions
determined by the multiscreen environment. It is also char-
acterized by a dynamic adaptation to the page content. Ex-
periments are conducted on a set of existing applications
that contain multimedia elements, in particular YouTube
and video player pages. Results are compared with one seg-
mentation method from the literature and with a ground
truth manually created. With a 81% precision, the MSoS
is a promising method that is capable of producing good
segmentation results.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications;
H.3.3 [Information Search and Retrieval]: Clustering,
Information Filtering; H.3.4 [Systems and Software]: Dis-
tributed Systems

Keywords
Web Application, Page Segmentation, Automatic Process-
ing, Application Distribution, Multiscreen

1. INTRODUCTION
Understanding and analyzing web content at the Internet

scale requires automatic processing techniques. These tech-
niques try to simulate the human understandability in terms
of visualization, semantic meaning and interaction. Among
the existing techniques for web content analysis, web page
segmentation techniques are widely used. They consist in
decomposing a page into blocks that englobe coherent and
related content. Segmentation is used in the adaptation of
content to mobile, printing devices or in applications per-
forming information extraction, among others.

In a multi-screen environment, where multiple devices are
used to display and to interact with related content, users

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DocEng’15, September 08 - 11, 2015, Lausanne, Switzerland.
c© 2015 ACM. ISBN978-1-4503-3307-8/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2682571.2797090.

want to have their applications distributed among their de-
vices. For instance, using the touch-screen of a smart-phone
to control the smart-TV functions, while the large screen of
the smartTV displays the multimedia content. In order to
efficiently exploit the features of each device, the distribution
is achieved by splitting the application into multiple pieces
and by associating each piece to a proper device. The chal-
lenges here are: (1) to identify coherent blocks of content
that can be separated from the rest without breaking the
web page structure, (2) to know the device features wherein
the content is efficient for the end-user and (3) to automat-
ically map the content blocks to the ’best-match’ device.

With this motivation, this paper has one principal objec-
tive: To propose a segmentation method that is automatic
and guided by the multi-screen environment, based on: (1)
visual analysis, (2) DOM analysis, and (3) analysis of con-
tent functions in order to achieve the application distribution
in a multiscreen environment. A content function refers to
the type of interaction between a user and a block of con-
tent, e.g., ’display’ for multimedia content and ’interaction’
for interactive content. In contrast to existing works, our in-
tention is to guide the segmentation based on the features of
target devices to facilitate the mapping of blocks to devices.
We call our approach multiscreen-oriented segmentation and
we refer to it as MSoS. The validation of MSoS is performed
in the virtual splitting system [5] that re-factors web pages
to create multi-screen applications and hereinafter referred
to as VSplitter. We have tested MSoS on a set of pages fea-
turing video elements and interactive content, e.g., YouTube
pages and video-player applications. Through experimenta-
tion, we show how the MSoS adapts to the page content to
produce better results when compared to Block-o-Matic[4],
a method in the literature and to a ground truth.

This paper is organized as follows. Section 2 introduces
our MSoS approach within the state-of-the-art. In Section 3
MSoS is described. The implementation and the evaluation
of MSoS in the VSplitter are described in Section 4. Finally
conclusions are drawn in Section 5.

2. STATE OF THE ART
Segmentation techniques: Hybrid segmentation tech-

niques can get better results compared to techniques that
are based only on one type of analysis, i.e., DOM, visual or
content analysis. For instance the hybrid VIPS [1], based on
the joint DOM and visual analysis, utilizes both structural
information in the DOM tree and visual cues to semantically
segment a page. The hybrid Block-o-Matic (BoM) platform
[4], based also on the joint DOM and visual analysis, addi-

Figure 1: Modified BoM segmentation model

tionally abstracts the segmentation from the DOM tree and
works at higher levels. This abstraction facilitates the un-
derstanding and the processing of the page structure. BoM
starts by filtering the DOM structure based on the W3C con-
tent classification1 and on the geometrical features to form
a logical tree. Afterwards, the logical tree is processed based
on Gestalt laws, i.e., proximity, similarity, closure and sim-
plicity, and on the degree of granularity for merging nodes.
At the end of the segmentation, the final blocks are repre-
sented in the logical tree by leaf nodes that mainly contain
information about the node geometry and the corresponding
DOM elements. This link between logical nodes and DOM
elements makes the segmentation results easily exploitable
by other applications.

Though the processing of BoM is totally automatic, its
configuration with a granularity parameter (pG) is manual
and has to be tailored for each page. The pG value deter-
mines the threshold under which a logical node automati-
cally produces a block and above which the node’s children
are processed individually. This value dictates the segmenta-
tion results. Configuring BoM with an inadequate pG value
leads to a page not correctly segmented, and applying BoM
with the same pG value on a heterogeneous page does not
always create coherent blocks similarly on the whole page.

Identifying block functions: BoM does not separate
the blocks based on their functions, but it labels blocks with
labels that are not relevant for our multi-screen environment,
e.g., header, content, image, logo, etc.[4]. A function-based
object model (FOM) for website adaptation is introduced
by Chen et al.[2]. The segmentation model defines a block
as a set of information that have a specific function, i.e., in-
formation, navigation, interaction, decoration or others. In
FOM, even if a function reflects the intention of the author
for using this object, it does not reflect the type of interac-
tion with the end-user.

Positioning our approach: In our work, we reuse the
hybrid approach and the abstraction model proposed by
BoM but we adapt the segmentation to make it completely
automatic and multiscreen-oriented. We propose in particu-
lar to update the pG value based on the content. Addition-
ally, our approach reuses the idea of identifying the block
functions from the page content as in FOM, but we define
functions from the end-user perspective and not the author.

3. THE MULTISCREEN-ORIENTED-
SEGMENTATION APPROACH

3.1 Overview
Our method segments a raw page based on input which

guides: (1) the behavior analysis of DOM elements, (2) the
labeling of logical leaf nodes with a function and (3) the
production of blocks from logical leaf nodes. Specifically,
the functions we use, i.e., ”multimedia” and ”interactive”,
are derived from the device features. The following sections

1http://www.w3.org/TR/html5/dom.html#content-
categories

describe each phase of the MSoS approach that is depicted
in Figure 1.

3.2 DOM to partially-labeled logical tree
The goal of this phase is to abstract the DOM tree and to

represent the page in the form of a logical tree specific to our
approach, in which we seek to label each node with a func-
tion and to minimize the number of leaf nodes to optimize
the segmentation process.

Similar to BOM, the DOM tree is first filtered and for
each retained DOM element a logical node is created and
added to the logical tree. To then label a logical node with
a function, we analyze the static and dynamic behavior of
the corresponding DOM element. The element behavior is
identified through its tag name, its HTML attributes and
its JS properties. In particular, we check the properties
that can alter the static behavior of an HTML element, e.g.,
event listeners, and the HTML5 attributes that identify the
role of an element, e.g., ’role’. If the function of a DOM ele-
ment corresponds to one of the guiding input functions, we
label the logical node with this function. There are elements
whose behavior does not satisfy any of the functions. In this
case, their corresponding logical node remains non-labeled.
Thus, the leaf nodes of the resulting logical tree are not all
labeled and their number is relatively big.

To reduce their number, the logical tree is optimized to
form geometrically bigger labeled blocks. This optimization
will serve the next segmentation phase. The optimization
procedure is as follows: (1) the tree is traversed from the
root to the leaf nodes in a breadth-first manner. (2) If a
node is labeled, we check whether its siblings are labeled
with the same function. If positive, we merge them to form
one node. (3) After analyzing all siblings, if only one labeled
child remains, we propagate its label to its parent. The
output of this first phase is a logical tree with a smaller
number of nodes but with bigger geometry. It should be
noted that some nodes may still be non-labelled.

3.3 Segmentation
The segmentation consists of producing labeled blocks

from the partially-labeled logical tree. A trivial segmen-
tation that produces one block from each logical leaf node,
results in creating an excessive number of blocks. A better
segmentation can be obtained by (1) merging logical nodes
according to the Gestalt laws and the pG value, (2) while
keeping blocks with different functions separated and (3)
making all leaf nodes labeled with the adequate function.

In this work, we consider the notions of global and local
pG as defined in BoM[4]. The global pG is set before starting
the segmentation. The local pG is updated during runtime,
as described in the next paragraph, to adapt the segmenta-
tion of the node subtree to its content. Both the global and
local pG values are calculated automatically by considering
the geometry of the labeled descendants respectively in the
entire logical tree and in a local subtree as follows: for all the
labeled nodes, we calculate the ratio of their areas over the
relevant page area. We define the relevant page area as the
rectangular area defined by the top-left corner of the page,
a width equal to the page width, and a height set to the
minimum between the page height and five times the screen
height. We set the pG value of a subtree to the biggest pG
value in this subtree, or to the global pG if the subtree does
not have labeled descendants. Intuitively, the bigger the lo-

Figure 2: The fully automatic virtual splitting system

cal pG is, the fewer final blocks will be produced and the
better the segmentation results are.

Then, we proceed with the processing of the logical tree in
a depth-first manner starting from the root node and using
the global pG value, as follows: (1) if a node is labeled, we
try to merge it with its siblings, as described below. (2) if a
node is non-labeled and its descendants have different labels,
we process its subtree. (3) if a node is non-labeled and its
descendants have only one function and its relative area is
bigger than the pG, then we process its subtree; otherwise,
we investigate the possibility of merging it with its siblings.

We try to merge a node with its next siblings, as follows:
if the node does not have any sibling, it produces a block.
Otherwise, for each sibling, if one of the functions of the
sibling descendants is different from the current node func-
tion, the nodes are not merged even if the Gestalt laws and
geometrical conditions are satisfied, and the current node
produces a block. Otherwise, if the functions are the same,
the merging of nodes is tested using the Gestalt laws and
the geometrical conditions, as used in BoM. At the end of
the merging, at least one labeled block is produced.

4. EXPERIMENTATION

4.1 Deployment and integration aspects
To deploy our approach and validate that it produces re-

sults that are useful in the context of multi-screen applica-
tions, we integrated it with the COLTRAM platform [3] and
the VSplitter [5].

We developed a COLTRAM web service to automatically
discover devices available in the network and to get a list of
their features. We limit the number of devices to two. We
characterize each device based on: (1) its screen size, i.e.,
large or small display, (2) its means of interaction, i.e., touch
input, keyboard, mouse or non-interactive, (3) its type, i.e.,
TV, portable device or desktop. Then, for each device we
identify their dominant feature that we consider as the func-
tion of the device. For instance, a smartTV is better used
for displaying ”multimedia” content, e.g., image, video, etc.,
a smart phone with a touch-screen is adequate for ”interac-
tion” purposes. As depicted in Figure 2 the guiding input,
formed as a json object that associates each device with a
function, and the application DOM tree are fed to MSoS.

Based on this input, we statically classify the element tags.
For instance, the ’audio’, ’video’ and ’object’ tags are used
to embed multimedia content in a web document. In the
W3C content categories, the interactive content is limited
to the HTML tags that are initially intended for the user
interaction. In our classification, we did not adopt the in-
teractive content definition given by W3C because:(1) some
tags in the category are more multimedia than interactive,
e.g., video and audio elements with a control bar, (2) some

elements can become interactive after event listeners are reg-
istered on them to listen to user interaction events. In con-
sequence, we analyze first the HTML attributes that are
set statically in the HTML document, or dynamically on
document load. And second, we capture event listeners by
instrumenting the addEventListener native method.

The VSplitter refactors single-screen applications, deliv-
ers a multi-screen application, and maintains the applica-
tion functionality across devices by monitoring the appli-
cation updates and synchronizing the content between two
devices, the master and the slave. The VSplitter uses an
annotated DOM tree with annotations indicating to which
device a DOM element should belong. In order to annotate
the application DOM tree, we exploit the fact that the log-
ical nodes contain a reference to their corresponding DOM
elements. We annotate DOM elements based on the label of
their corresponding logical node. If this label refers to the
selected function of the master device, then we annotate the
element as ’device1’. Otherwise, if it refers to features of the
slave device, we annotate it as ’device2’. Since the logical
tree does not cover the complete DOM tree, but only the
retained elements during the abstraction phase, the DOM
tree is not totally annotated. The annotation is then re-
solved as denoted in our previous work [5] and the content
is distributed over the master and slave applications. Each
of these applications is wrapped in a COLTRAM application
and exposes a service for communication. Both master and
slave applications are discoverable by each other, thus allow-
ing a communication channel. Using this channel, updates
and synchronization messages are exchanged continuously
between the master and slave applications.

4.2 Results and Discussion
In this section, we illustrate the MSoS results by com-

paring them to BoM results and we evaluate our MSoS by
comparing it to a ground truth that we refer to as GT. The
procedure is based on the evaluation of three performance
parameters: the visual coherence of blocks, the correctness
of the function attributed to each block, and finally that
blocks do not have content with different functions.

To test our method, we selected ten existing pages with
multimedia and interactive content, classified as follows: (1)
social applications i.e., YouTube, (2) video player applica-
tions, i.e., mediaElement2, videojs3, jplayer4, (3) web syn-
chronized applications, e.g., semantic video5. Applications
and results are accessible from our site 6.

Comparing to BoM: We illustrate the MSoS results by
comparing them to the same page segmented by BoM. Fig-
ure 3 presents the two segmentation results on a YouTube
page 7. Note that we cropped the comments section to better
illustrate the segmentation results. Figure 3(a) represents
the segmentation results using BoM with a pG value set
manually to 0.31. Note here that the block colors are inter-
nal to BoM. Figure 3(b) represents the segmentation results
with MSoS. During the segmentation, two main values were
computed: 0.36 (global and local) and 0.31 (local). Most
of the logical nodes were processed with the 0.31 value, this

2http://mediaelementjs.com/
3http://www.videojs.com/
4http://jplayer.org/
5http://popcornjs.org/demo/semantic-video
6http://download.tsi.telecom-paristech.fr/gpac/MSoS
7http://bit.ly/1eue6i3

(a) (b)

Figure 3: Segmentation results on a YouTube page (a) BoM
with pG = 0.31 (b) MSoS with pG = 0.31 and 0.36

is why we decided to configure BoM with this value. Com-
paring the two figures, the blocks generated from MSoS are
more coherent than those of BoM, in particular, the header,
footer and the sidebar section. Note that BoM did not con-
sider the search bar on the top of the page, while our algo-
rithm did. In Figure 3(b) the YouTube video controls are
identified as a block separated from the video block. This
proves that content functions were taken into consideration
during the segmentation. The grey blocks refer to interactive
blocks and the unique purple block refers to the multimedia
content. Note that video subtitles are judged as multimedia
content since they overlap the video element. Our method
ensured the separation of blocks with different functionality,
thus facilitating the content mapping to the ’best-match’
device in the context of multi-screen environment.

Applications Precision Recall
Non-Matching

Over-
Segmented

Non-
Related

YouTube pages 0.38 0.67 0.08 0.46

Video player pages 0.74 0.80 0.056 0.18

Video Sync 0.72 0.96 0.035 0.21

Table 1: Evaluation of the MSoS approach

Comparing to a ground truth: In order to evaluate
our MSoS approach a GT was created manually, where co-
herent blocks were created and assigned a function between
’Multimedia’ and ’Interactive’. Afterwards, we compared
the MSoS results to the GT and we provide the comparison
results in Table 1 in the form of precision and recall rates.
We define the precision and recall rates as follows:
Precision = Nb of Matching Blocks/Nb of MSoS Blocks,
Recall = Nb of Matching Blocks/Nb of GT Blocks.
The Recall is equal to one if the MSoS could identify cor-
rectly all the blocks of the GT. The Precision is equal to
one if the MSoS did not produce any non-matching block.
The non-matching column refers to the average number of
blocks that: 1) are over-segmented by the MSoS, 2) have no
correspondence with any block in the GT or they are not
correctly labeled.

As Table 1 shows, the precision and recall rates for YouTube
pages are the lowest (0.38 and 0.67 resp.). This is due to
the high average of non-related blocks. These non-related
blocks are due to the identification of additional interactive
blocks that are present in YouTube pages but are not visible
for users, e.g., the guiding block that appears when we click
on the button next to the YouTube logo in the top of the

page. The tests conducted on the applications from video-
player libraries always lead to the separation of the control
bar from the video element. This is validated by the high
precision and recall values (0.74 and 0.80 respectively). The
non-related blocks here refer to the cases where the MSoS
could not label some blocks since they were not merged with
any labeled blocks. In addition in one application the sub-
titles were merged with the control bar while they should
have been merged with the video element. For the third
set of applications, the precision rate is 0.96 and it indi-
cates that almost all the blocks of the GT were identified by
MSoS. Though the average number of the over-segmented
blocks is small for the three set of applications (0.08, 0.056
and 0.035 resp.), it is important to note here that the over-
segmentation is the drawbacks of using a pG value that is
calculated according only to the labeled nodes.

5. CONCLUSION
This paper proposed a multiscreen-oriented segmentation

approach. The segmentation method is hybrid and aims at
creating coherent blocks and separating blocks of different
functionalities given as a guiding input. MSoS is completely
automatic and characterized by a dynamic adaptation to
the page content. It is inspired by an abstraction model
proposed in BoM. To validate our work, MSoS was inte-
grated within the virtual splitting system for application
distribution in the multi-screen context. Experiments were
conducted on a set of existing multimedia applications. We
compared the MSoS results to BoM[4] and to a manually
created ground truth. With our adaptive method, better
segmentation results were obtained especially in critical re-
gions of the page and blocks with different function were kept
separated. With a 81% precision, the MSoS is a promising
method. As a perspective, we are planning to enlarge our
application dataset to compare our MSoS qualitatively and
quantitatively to different segmentation methods. In addi-
tion, we want to extend the evaluation plan to consider the
importance of the block position on block identification.

6. REFERENCES
[1] D. Cai, S. Yu, J.R. Wen, and W.Y. Ma. Vips: A

vision-based page segmentation algorithm. Technical
report, Microsoft, MSR-TR-2003-79, 2003.

[2] J. Chen, B. Zhou, J. Shi, H. Zhang, and Q. Fengwu.
Function-based object model towards website
adaptation. In Proceedings of the 10th International
Conference on World Wide Web, WWW ’01, pages
587–596, New York, NY, USA, 2001. ACM.

[3] J.C. Dufourd, M. Tritschler, L. Bassbouss, R. Bouazizi,
and S. Steglich. An open platform for multiscreen
services. In the 11th European Interactive TV
conference EuroITV, Como, Italy, June 2013.

[4] A. Sanoja and S. Gançarski. Block-o-matic: A web
page segmentation framework. In Multimedia
Computing and Systems (ICMCS), 2014 International
Conference on, pages 595–600. IEEE, 2014.

[5] M. Sarkis, C. Concolato, and J.C. Dufourd. The virtual
splitter: Refactoring web applications for the
multiscreen environment. In Proceedings of the 2014
ACM Symposium on Document Engineering, DocEng
’14, pages 139–142, New York, NY, USA, 2014. ACM.

	Introduction
	State of the art
	The Multiscreen-oriented- segmentation Approach
	Overview
	DOM to partially-labeled logical tree
	Segmentation

	Experimentation
	Deployment and integration aspects
	Results and Discussion

	Conclusion
	References

