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Abstract. In this contribution, the formulation of the SHB8PS continuum shell finite element 
is extended to anisotropic elastic–plastic behavior models with combined isotropic-kinematic 
hardening at large deformations. The resulting element is then implemented into the 
commercial implicit finite element code Abaqus/Standard via the UEL subroutine. The 
SHB8PS element is an eight-node, three-dimensional brick with displacements as the only 
degrees of freedom and a preferential direction called the thickness. A reduced integration 
scheme is adopted using an arbitrary number of integration points along the thickness 
direction and only one integration point in the other directions. The hourglass modes due to 
this reduced integration are controlled using a physical stabilization technique together with 
an assumed strain method for the elimination of locking. Therefore, the element can be used 
to model thin structures while providing an accurate description of the various through-
thickness phenomena. Its performance is assessed through several applications involving 
different types of non-linearities: geometric, material and that induced by contact. Particular 
attention is given to springback prediction for a Numisheet benchmark problem. 

1  INTRODUCTION 

During the last decade, considerable effort has been devoted to the development of eight-
node solid–shell elements for modeling of thin structures (e.g. [1-4]). As they use linear 
interpolation for efficiency reasons, these elements exhibit various locking phenomena which 
need to be cured in order to preserve the desired accuracy. Nevertheless, compared to 
conventional shell elements they have many advantages: the use of full three-dimensional 
constitutive laws, direct calculation of thickness variations, easy treatment to update 
configurations (no rotational degrees of freedom used), and simple connection with three-



dimensional elements since displacements are the only degrees of freedom. For sheet forming 
applications, key features like double-sided contact and increased accuracy with only one 
layer of elements through the thickness make these elements particularly attractive. 

The reduced integration technique, initiated by the works of Zienkiewicz et al. [5] and 
Hughes et al. [6], was the first successful solution to alleviate some locking pathologies. 
Finite elements using this method are very efficient due to their low numerical cost. However, 
stabilization techniques are needed in order to control the spurious zero-energy deformation 
modes (or hourglass modes) induced by this reduced integration.  

In order to circumvent locking phenomena for three-dimensional low-order elements, 
several authors have used the enhanced assumed strain (EAS) method, based on Simo and 
Rifai's pioneer work [7]. The basis of such element formulations is given by the mixed 
variational principle in which the so-called incompatible strain and stress act as additional 
independent variables. Recent investigations have combined EAS and reduced integration 
techniques to derive efficient and accurate elements. As examples, some authors used a fixed 
number of Gauss points in the thickness direction [1-4]. 

The SHB8PS is one such element that has been recently developed [1, 2], based on in-
plane one-point numerical quadrature with eight physical nodes and using an arbitrary number 
of integration points through the thickness direction. This avoids the use of several layers of 
elements in order to increase the number of integration points in the thickness, e.g. for metal 
forming problems. The hourglass modes caused by this reduced integration are efficiently 
controlled by a physical stabilization technique based on the assumed strain method [8]. 

In the current contribution, the formulation of the SHB8PS solid–shell finite element is 
extended to anisotropic elastic–plastic behavior models with combined isotropic-kinematic 
hardening at large deformations. The resulting element is then implemented into the 
commercial implicit finite element code Abaqus/Standard via the UEL subroutine. Its good 
performance is demonstrated through non-linear benchmark problems involving large strains, 
plasticity and contact. Particular attention is given to springback prediction for a 
NUMISHEET benchmark problem. 

2 FORMULATON OF THE SHB8PS ELEMENT 

2.1 Finite element interpolation 

SHB8PS is an eight-node, isoparametric hexahedral element with linear interpolation. It 
has a set of nint integration points chosen along the thickness direction ζ  in the local 
coordinate frame (see Fig. 1). 



Figure 1: SHP8PS reference geometry 

The spatial coordinates ix  and displacements iu  of any point in the element are related to 

the nodal coordinates and nodal displacements iIx  and iIu , respectively, using the classic 

linear isoparametric shape functions IN : 
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Subscript i varies from 1 to 3 and represents the direction of the spatial coordinates. Subscript 
I varies from 1 to 8. 

2.2 Discretized gradient operator 

First, we introduce the ib  (i = 1,..., 3) vectors, representing the derivatives of the shape 

functions at the origin of the reference coordinate system, defined by Hallquist [9] as 

, (0,0,0)  1, 2,3T

i ib N i= =  (3) 

The displacement gradient can then be written as follows (see Belytschko and Bindeman 
[8]): 
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where id  are the nodal displacement vectors. The functions hα  and vectors αγ  (α =1,...,4) are 

given by 
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The discretized gradient operator can be written as 
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2.3 Stabilization and assumed strain method 

The particular location of the integration points along a line generates six so-called 
hourglass modes. The control of the hourglass modes of the SHB8PS element is achieved by 
adding a stabilization component 

STAB
K  to the element stiffness matrix 

e
K . This part is 

drawn from the work of Belytschko and Bindeman [8], who applied an efficient stabilization 
technique together with an assumed strain method. The stabilization forces are consistently 
derived in the same way. Moreover, the discretized gradient operator is projected onto an 
appropriate sub-space in order to eliminate shear and membrane locking. 

In this approach, the ib  vectors (Eq. (3)) are replaced by the mean value of the derivatives 

of the shape functions over the element, denoted by ˆ
ib , as proposed by Flanagan and 

Belytschko [10]: 
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Then, vectors αγ  are replaced by vectors α̂γ  where the ib  vectors are simply substituted 

by ˆ
ib . A modified discretized gradient operator B̂  can be constructed in the same way. It can 

be shown that the terms of the B̂  operator vanish for α = 3,4. In other words, the B̂  operator 

reduces to its 12B̂  part defined identically but where α varies only from 1 to 2. Then, the 

remaining part 34B̂  of B̂ , which vanishes at the integration points, is further projected as 34B̂ . 

One can project the B̂  operator onto a B̂  operator as: 

12 34
ˆ ˆ ˆB B B= + (9) 



where 34B̂  is given by: 
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The stiffness matrix 
e

K  takes the form: 
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where the first term 12K  is evaluated at the integration points as 
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In this equation, ( )I
J ζ  is the Jacobian of the transformation between the reference and the 

current configurations; ( )Iω ζ  is the corresponding weight, while ep
C

σ
ε

∂∆=
∂∆

 is the elastic–

plastic tangent modulus. The geometric stiffness matrix GeomK is due to the non-linear 

(quadratic) part of the strain tensor and STABK  represents the stabilization stiffness given by 

equation: 
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In a similar way, the internal forces of the element can be written as 
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where STABf  represents the stabilization forces. 

The stabilization terms are calculated in a co-rotational coordinate system [8]. 



3 NUMERICAL EXAMPLES 

3.1 Pinched cylinder 

In this example, the elastic-plastic deformation of a cylinder subjected to two opposite 
concentrated loads in the middle of the structure and bounded by rigid diaphragms on its 
extremities is considered. This problem has been investigated by a number of authors like [2, 
12-16]. 

The undeformed mesh and boundary conditions are shown in Figure 2. The geometry is 
characterized by the length L=600 mm, the radius R =300 mm and thickness t = 3 mm. Due 
to symmetry, only one eighth of the cylinder is discretized. At the ends of the cylinder, the 
rigid diaphragms prevent any displacement in the radial directions. Material properties are the 
elasticity modulus E = 3000 MPa, Poisson's coefficient ν = 0.3 and initial yield stress σ0 =
24.3 MPa. A linear isotropic hardening law is adopted and can be written as:  

P
eqY Hεσσ += 0 (15) 

Where P
eqε  is the equivalent plastic strain and H the linear hardening coefficient taken equal to 

300 MPa. 

Figure 2: Geometry and boundary conditions for the pinched cylinder 
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Figure 3: Load deflection curves for elastic-plastic pinched cylinder 

Figure 3 shows the load versus the vertical deflection. For the same mesh (40×40×1 
elements), the results of the SHB8PS solid-shell element are compared to those of the SC8R 
solid-shell element and the S4R shell element, along with the reference solutions obtained by 
[13] and [17]. The calculations using the S4R element failed at a certain loading level, while 
the SC8R element is too stiff in this test problem and also converges more slowly. For this 
particularly discriminating test, the curve using SHB8PS element is clearly in better 
agreement with the 3D investigations of [13] and [17]. 

3.2 Unconstrained cylindrical bending 

The example of the unconstrained cylindrical bending test proposed as springback 
benchmark in NUMISHEET 2002 is studied [11]. This application allows us to evaluate the 
performance of the SHB8PS element, implemented in Abaqus/Standard, in presence of 
geometric, material and contact non-linearities. This benchmark involves a bending-
dominated deformation since there is no blank holder. The problem has complex contact 
boundary conditions during the forming process and the springback after forming is severe. 
The geometry of the problem is illustrated in Figure 4 and the geometric parameters are 
summarized in Table 1. 

The material under investigation is a High Strength Steel, which is supposed elastic–plastic 
with isotropic hardening following Swift law: 

( )0Y

nP
eqKσ ε ε= + (16) 

where 0,εK  and n represent the hardening parameters of the material. The Young modulus E 

= 2.175 × 105 MPa and the Poisson ration ν = 0.3. Further K = 645.24 MPa, n = 0.25177 and 

0ε = 0.0102. The friction coefficient of the interaction between surfaces punch-sheet and die-

sheet is µ = 0.14812. 



The amount of springback is quantified by the angle θ as defined in Figure 5. This angle is 
measured after forming at the maximum punch displacement and after springback. The tools 
are defined as analytical rigid surfaces. 

Figure 4: Tool geometry for the unconstrained bending problem 

Table 1: Geometric parameters of the unconstrained cylindrical bending problem

Geometric parameter      [mm] Geometric parameter     [mm] 

Punch radius 23.5 Length of the sheet  120.0 

Die radius (R2)  25.0 Thickness of the sheet  1.0 

Die shoulder (R3)  4.0 Width of the sheet  30.0 

Width of tools (W)  50.0 Punch stroke  28.5 

Figure 5: Definition of the angle to measure springback for the unconstrained cylindrical bending problem 

The SHB8PS element is compared with both solid and shell elements. Indeed, it is well-
known that in applications of sheet metal forming, shell elements have difficulties in dealing 
with double-sided contact – while conventional solid elements require several element layers 
to capture bending effects. In the present work, the simulations carried out with the SHB8PS 
element use only one element layer through the thickness. For symmetry reasons, only one 
quarter of the blank is discretized by means of 150 SHB8PS elements in the length and only 
one element over the width of the sheet. The analysis with the SHB8PS element is carried out 
using five Gauss points in the thickness direction because elastic–plastic applications require, 
in general, five integration points in minimum to describe the strongly non-linear through-
thickness stress distribution [2].  

In order to validate the proposed solid–shell element, its predictions are compared to the 
experimental results of the Numisheet 2002 benchmarks. Two elements from the element 
library of the Abaqus code are also used in the comparison: the shell element S4R and the 3D 



continuum element C3D8I. Again, 150 uniformly distributed elements are used in the length 
direction for these two elements. However, two layers of C3D8I elements are required in the 
thickness direction in order to represent the stress distribution due to bending with sufficient 
accuracy. Also, ten C3D8I elements are used along the width direction in order to keep their 
aspect ratio in acceptable limits. Figure 4 displays the punch force versus punch displacement 
curves predicted by the three elements, along with the experimental results (BE-1 to BE-4) 
from Meinders et al. [11]. 

Figure 6 shows that the numerical results obtained with SHB8PS element are the closest to 
the experimental results and they lay close to the solid element predictions. The slight 
differences between the two may be due to the different number and distribution of 
integration points along the thickness direction. The S4R element has too soft behavior with 
respect to SHB8PS and C3D8I elements. 

The springback angles are also investigated, as they were also experimentally measured 
[11]. The springback phenomenon is particularly exacerbated in this unconstrained bending 
application, as illustrated in Figure 7. Table 2 summarizes the opening angles before and after 
springback for elements SHB8PS, C3D8I and S4R, compared to experiments. The simulated 
values with SHB8PS and C3D8I elements are close to each other and the closest to 
experiments. Comparing the numerical results to the experimental ones, the good performance 
of the SHB8PS solid–shell element is confirmed. 

Table 2: Measured and simulated opening angles before and after springback 

Experimental Simulated 

BE-01 BE-02  BE-03 BE-04 SHB8PS  C3D8I S4R 
Forming 22.7707 22.0064 23.0255 20.8599 23.0692 22.5820 33.3078 

Springback 37.4212 35.6787 30.9036 35.3636 36.3952 32.0832 43.9071 

Figure 6: Punch force vs. punch displacement curves for High Strength Steel 



Figure 7: Deformed shape of the sheet in the unconstrained bending problem 

4  CONCLUSIONS 

An extended version of the solid--shell finite element SHB8PS has been implemented into 
the implicit finite element code Abaqus/Standard via the UEL subroutine. The formulation of 
this element employs a combination of the reduced integration scheme with the assumed 
strain method and a specific projection to eliminate locking phenomena. The resulting 
hourglass modes are controlled using a physical self-adapting stabilization procedure. This 
version of the SHB8PS element can deal with problems involving anisotropic elastic-plastic 
behavior at large deformations and double-sided contact between sheet and tools, which are 
typical in sheet metal forming applications. 

The performance of SHB8PS element has been shown through two numerical examples 
involving various types of non-linearities: geometric, material and contact. Indeed, at 
equivalent mesh density, SHB8PS performs at least as well as the most accurate (and 
expensive) solid elements. However, this accuracy is achieved at a lower cost by using one 
single layer of SHB8PS elements and simply adjusting the number of integration points 
through the thickness. This feature makes the element very competitive for sheet metal 
forming. 
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