Applying Machine Learning to Reduce Overhead in DTN Vehicular Networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Applying Machine Learning to Reduce Overhead in DTN Vehicular Networks

Résumé

VANETs benefit from Delay Tolerant Networks (DTNs) routing algorithms when connectivity is intermittent because of the fast movement of vehicles. Multi-copy DTN algorithms spread message copies to increase the delivery probability but increasing network overhead. In this work we apply machine learning algorithms to reduce network overhead by discriminating the worst intermediate nodes for the transmission of copies. The scenario is a VANET of public buses that follow specific routes and schedules. This repetitive behavior creates an opportunity for applying trained classifiers to predict the occurrence of performance-related events. As the main contribution, our method decreases overhead without degrading delivery probability.
Fichier non déposé

Dates et versions

hal-01215915 , version 1 (15-10-2015)

Identifiants

Citer

Lourdes Portugal-Poma, Cesar Marcondes, Hermes Senger, Luciana Arantes. Applying Machine Learning to Reduce Overhead in DTN Vehicular Networks. The 2014 Computer Networks and Distributed Systems (SBRC), May 2014, Florianopolis, Brazil. pp.94-102, ⟨10.1109/SBRC.2014.12⟩. ⟨hal-01215915⟩
157 Consultations
0 Téléchargements

Altmetric

Partager

More